JPH04247844A - Titanium-base composite and its manufacture - Google Patents

Titanium-base composite and its manufacture

Info

Publication number
JPH04247844A
JPH04247844A JP2541591A JP2541591A JPH04247844A JP H04247844 A JPH04247844 A JP H04247844A JP 2541591 A JP2541591 A JP 2541591A JP 2541591 A JP2541591 A JP 2541591A JP H04247844 A JPH04247844 A JP H04247844A
Authority
JP
Japan
Prior art keywords
titanium
ceramic particles
based composite
powder
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2541591A
Other languages
Japanese (ja)
Inventor
Tomomi Soeda
知美 副田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2541591A priority Critical patent/JPH04247844A/en
Publication of JPH04247844A publication Critical patent/JPH04247844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a titanium-base composite in which the formation of a brittle reaction product in the boundary between titanium and ceramic particles can be evaded and having high strength and high ductility. CONSTITUTION:At first, a titanium carbide film is formed on the surface of ceramic particles. Next, this ceramic particles and titanium or titanium alloy powder are mixed, and this mixed powder is sintered. In this way, the direct contact between the liquid phase part of the titanium and the ceramic particles can be prevented at the time of sintering and the formation of a brittle reaction product can be evaded, by which the titanium-base composite excellent in strength and ductility can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はチタン又はチタン合金か
らなる基材中にセラミックス粒子を分散強化させた高強
度のチタン基複合材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength titanium-based composite material in which ceramic particles are dispersed and strengthened in a base material made of titanium or a titanium alloy, and a method for manufacturing the same.

【0002】0002

【従来の技術】チタン基複合材は、理論上高い強度を有
すると共に、耐熱性及び耐食性が優れていることから、
航空宇宙分野及び自動車分野等において構造材として使
用すべく実用化が試みられている。
[Prior Art] Titanium-based composite materials have theoretically high strength, as well as excellent heat resistance and corrosion resistance.
Attempts are being made to put it to practical use as a structural material in the aerospace and automobile fields.

【0003】従来のチタン基複合材の製造方法を以下に
説明する。先ず、チタン又はチタン合金の粉末とセラミ
ックス粒子とを所定の割合で均一に混合し、これを原料
粉末とする。そして、この原料粉末をプレス加工して圧
粉体を得る。次いで、この圧粉体を真空中又はアルゴン
ガス中にて加熱して焼結させる。これにより、チタン基
複合材を得ることができる。
A conventional method for producing a titanium-based composite material will be explained below. First, titanium or titanium alloy powder and ceramic particles are uniformly mixed at a predetermined ratio, and this is used as a raw material powder. Then, this raw material powder is pressed to obtain a green compact. Next, this green compact is heated and sintered in vacuum or argon gas. Thereby, a titanium-based composite material can be obtained.

【0004】また、ホットプレス又は熱間静水圧プレス
装置を使用し、前記原料粉末を加圧すると同時に加熱し
て焼結させることによりチタン基複合材からなる所望の
形状の製品を得ることも試みられている。
[0004] It has also been attempted to obtain a titanium-based composite product in a desired shape by using a hot press or a hot isostatic press device to press and simultaneously heat and sinter the raw material powder. It is being

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来のチタン基複合材には以下に示す問題点がある。 即ち、従来の製造方法においては、焼結の際に金属チタ
ンの液相部がセラミックス粒子の表面に接触する。そう
すると、液相部の活性なチタンは強化粒子であるセラミ
ックスと激しく反応する。その結果、所望のチタン基複
合材を容易に得ることができないばかりでなく、チタン
とセラミックス粒子との界面に脆い反応生成物が形成さ
れる。このため、従来方法により製造されたチタン基複
合材は、延性が低いと共にその強度が理論強度よりも著
しく低いものとなってしまう。
However, the above-mentioned conventional titanium-based composite materials have the following problems. That is, in the conventional manufacturing method, the liquid phase portion of titanium metal comes into contact with the surface of the ceramic particles during sintering. Then, the active titanium in the liquid phase reacts violently with the reinforcing particles, which are ceramics. As a result, not only is it not possible to easily obtain a desired titanium-based composite material, but also a brittle reaction product is formed at the interface between titanium and ceramic particles. For this reason, titanium-based composite materials produced by conventional methods have low ductility and strength that is significantly lower than the theoretical strength.

【0006】下記化学式1及び2は、夫々セラミックス
がSiC及びAl2 O3 の場合のチタンとセラミッ
クスとの反応を示したものである。
Chemical formulas 1 and 2 below show the reaction between titanium and ceramics when the ceramics are SiC and Al2O3, respectively.

【0007】[0007]

【化1】3Ti+2SiC→TiSi2 +2TiC[Chemical formula 1] 3Ti+2SiC → TiSi2 +2TiC


0008】
[
0008

【化2】 13Ti+6Al2 O3 →4TiAl3 +9Ti
O2 この化学式1,2において、TiSi2 及びT
iAl3 はいずれも金属間化合物であり、TiC及び
TiO2 は夫々チタン炭化物及びチタン酸化物である
。これらの反応生成物は、いずれも極めて脆いという性
質を有している。
[Chemical formula 2] 13Ti+6Al2 O3 →4TiAl3 +9Ti
O2 In these chemical formulas 1 and 2, TiSi2 and T
Both iAl3 are intermetallic compounds, and TiC and TiO2 are titanium carbide and titanium oxide, respectively. All of these reaction products have the property of being extremely brittle.

【0009】本発明はかかる問題点に鑑みてなされたも
のであって、チタン又はチタン合金とセラミックス粒子
との界面に脆い反応生成物が生じることを回避してセラ
ミックス粒子とチタン又はチタン合金との良好な接着性
を確保することにより強度及び延性を著しく高めたチタ
ン基複合材及びその製造方法を提供することを目的とす
る。
The present invention has been made in view of such problems, and it is possible to avoid the formation of brittle reaction products at the interface between the titanium or titanium alloy and the ceramic particles, and to prevent the formation of brittle reaction products at the interface between the ceramic particles and the titanium or titanium alloy. The object of the present invention is to provide a titanium-based composite material that has significantly improved strength and ductility by ensuring good adhesion, and a method for producing the same.

【0010】0010

【課題を解決するための手段】本発明に係るチタン基複
合材は、チタン又はチタン合金からなる基材中に、炭化
チタン膜で被覆されたセラミックス粒子が分散されてい
ることを特徴とする。
A titanium-based composite material according to the present invention is characterized in that ceramic particles coated with a titanium carbide film are dispersed in a base material made of titanium or a titanium alloy.

【0011】本発明に係るチタン基複合材の製造方法は
、セラミックス粒子の表面上に炭化チタン膜を形成する
工程と、このセラミックス粒子とチタン又はチタン合金
粉末とを混合する工程と、この混合粉末を焼結させる工
程とを有することを特徴とする。
The method for producing a titanium-based composite material according to the present invention includes a step of forming a titanium carbide film on the surface of ceramic particles, a step of mixing the ceramic particles with titanium or titanium alloy powder, and a step of mixing the ceramic particles with titanium or titanium alloy powder. It is characterized by having a step of sintering.

【0012】0012

【作用】本願発明者等はチタン又はチタン合金とセラミ
ックス粒子との界面の接着性を高めるべく種々実験研究
を重ねた。その結果、予めセラミックス粒子を炭化チタ
ン膜で被覆し、このセラミックス粒子をチタン又はチタ
ン合金中に分散させることにより、高強度且つ高延性の
チタン基複合材を得ることができることが判明した。本
発明はこれらの実験結果に基づいてなされたものである
[Operation] The inventors of the present invention have conducted various experimental studies in order to improve the adhesion of the interface between titanium or titanium alloy and ceramic particles. As a result, it was found that a titanium-based composite material with high strength and high ductility can be obtained by coating ceramic particles in advance with a titanium carbide film and dispersing the ceramic particles in titanium or a titanium alloy. The present invention has been made based on these experimental results.

【0013】即ち、本発明においては、チタン又はチタ
ン合金からなる基材中に炭化チタン膜で被覆されたセラ
ミックス粒子が分散されている。これにより、チタン又
はチタン合金とセラミックス粒子との良好な界面接着性
を確保でき、強度及び延性が高いチタン基複合材を得る
ことができる。
That is, in the present invention, ceramic particles coated with a titanium carbide film are dispersed in a base material made of titanium or a titanium alloy. Thereby, good interfacial adhesion between titanium or a titanium alloy and ceramic particles can be ensured, and a titanium-based composite material with high strength and ductility can be obtained.

【0014】また、本発明方法においては、先ず、セラ
ミックス粒子の表面上に炭化チタン膜を形成する。次い
で、このセラミックス粒子とチタン又はチタン合金粉末
とを混合し、この混合粉末を焼結させる。この場合に、
セラミックス粒子は炭化チタン膜で覆われているため、
チタンの液相部とセラミックス粒子とが直接接触するこ
とを回避でき、チタン又はチタン合金とセラミックス粒
子との界面に脆い反応生成物が生じることを防止できる
。これにより、上述の強度及び延性が高いチタン基複合
材を得ることができる。
In the method of the present invention, first, a titanium carbide film is formed on the surface of ceramic particles. Next, the ceramic particles and titanium or titanium alloy powder are mixed, and the mixed powder is sintered. In this case,
Because the ceramic particles are covered with a titanium carbide film,
Direct contact between the liquid phase portion of titanium and the ceramic particles can be avoided, and generation of brittle reaction products at the interface between titanium or titanium alloy and the ceramic particles can be prevented. Thereby, a titanium-based composite material having high strength and ductility as described above can be obtained.

【0015】[0015]

【実施例】次に、本発明の実施例について、その特許請
求の範囲から外れる比較例と比較して説明する。
EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples that fall outside the scope of the claims.

【0016】先ず、平均粒径が5μmの炭化ケイ素(S
iC)粉末に対して炭化チタンのイオンプレーティング
を実施して、炭化ケイ素粒子の表面上に厚さが1μmの
炭化チタン膜を形成した。次に、この炭化チタン膜が設
けられた炭化ケイ素粉末とチタン粉末とを1:9の重量
比で均一に混合した。そして、この混合粉末を鉄ケース
に充填した後、このケースを密閉した。次に、熱間静水
圧プレス装置を使用して、温度が1200℃、圧力が1
000気圧の条件で前記ケース内の混合粉末を焼結させ
た。次いで、機械加工により前記鉄ケースを焼結体から
を剥離した。これにより、炭化ケイ素を5重量%含有し
た本実施例のチタン基複合材を得た。
First, silicon carbide (S) with an average particle size of 5 μm was
iC) Ion plating of titanium carbide was performed on the powder to form a titanium carbide film with a thickness of 1 μm on the surface of the silicon carbide particles. Next, the silicon carbide powder provided with the titanium carbide film and the titanium powder were uniformly mixed at a weight ratio of 1:9. After filling the mixed powder into an iron case, the case was sealed. Next, using a hot isostatic press device, the temperature was 1200 °C and the pressure was 1
The mixed powder in the case was sintered under the condition of 0,000 atm. Next, the iron case was separated from the sintered body by machining. As a result, a titanium-based composite material of this example containing 5% by weight of silicon carbide was obtained.

【0017】一方、炭化チタン膜が設けられていない炭
化ケイ素粉末及び金属チタン粉末を1:9の重量比で配
合し、この混合粉末を上述の実施例と同様の方法により
焼結させて、炭化ケイ素を5重量%含有した比較例のチ
タン基複合材を製造した。
On the other hand, silicon carbide powder, which is not provided with a titanium carbide film, and metallic titanium powder are mixed in a weight ratio of 1:9, and this mixed powder is sintered in the same manner as in the above-mentioned example to form a carbonized powder. A comparative titanium-based composite material containing 5% by weight of silicon was produced.

【0018】このようにして得た実施例及び比較例に係
るチタン基複合材について、引張強度及び伸びを測定し
た。その結果を下記表1に示す。
The tensile strength and elongation of the titanium-based composite materials of Examples and Comparative Examples thus obtained were measured. The results are shown in Table 1 below.

【0019】[0019]

【表1】[Table 1]

【0020】この表1から明らかなように、本実施例に
係るチタン基複合材は引張強度及び伸びが夫々78kg
/mm2 及び11%であり、強度及び延性が共に優れ
たものであった。
As is clear from Table 1, the titanium-based composite material according to this example has a tensile strength and an elongation of 78 kg.
/mm2 and 11%, and both strength and ductility were excellent.

【0021】一方、チタン粉末とセラミックス粉末とを
混合して焼結させただけの比較例は、引張強度及び伸び
の双方の特性が実施例に比して劣るものであった。
On the other hand, a comparative example in which titanium powder and ceramic powder were simply mixed and sintered was inferior to the examples in terms of both tensile strength and elongation.

【0022】なお、本発明において使用可能なセラミッ
クスは、上述のSiCに限定されるものではなく、Cr
2 O3 、TiO2 、ZrO2 、MgO及びY2
 O3 等の酸化物系セラミックス、Si3 N4 、
TiN、BN及びAlN等の窒化物系セラミックス、T
iC、B4 C、CrC2 及びWC等の炭化物系セラ
ミックス、ZrB2 及びTiB2 等のホウ化物系セ
ラミックス並びにサイアロン等、種々のものを使用する
ことができる。また、これらのセラミックスを2種類以
上混合して使用することもできる。
[0022] The ceramics that can be used in the present invention are not limited to the above-mentioned SiC, but include Cr.
2 O3, TiO2, ZrO2, MgO and Y2
Oxide ceramics such as O3, Si3 N4,
Nitride ceramics such as TiN, BN and AlN, T
Various materials can be used, such as carbide ceramics such as iC, B4C, CrC2 and WC, boride ceramics such as ZrB2 and TiB2, and sialon. Moreover, two or more types of these ceramics can be mixed and used.

【0023】更に、セラミックス粒子表面に対する炭化
チタン膜の被覆は、上述したイオンプレーティング法に
よる外に、例えばプラズマCVD(化学気相成長)法等
によっても実施することができる。
Furthermore, the coating of the titanium carbide film on the surface of the ceramic particles can be carried out not only by the above-mentioned ion plating method but also by, for example, a plasma CVD (chemical vapor deposition) method.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、チ
タン又はチタン合金からなる基材中に炭化チタン膜で被
覆されたセラミックス粒子が分散されているから、チタ
ン又はチタン合金とセラミックス粒子との良好な界面接
着性を確保でき、強度及び延性が優れたチタン基複合材
を得ることができる。
Effects of the Invention As explained above, according to the present invention, since ceramic particles coated with a titanium carbide film are dispersed in a base material made of titanium or a titanium alloy, titanium or a titanium alloy and ceramic particles can be bonded together. It is possible to ensure good interfacial adhesion and obtain a titanium-based composite material with excellent strength and ductility.

【0025】また、本発明方法によれば、セラミックス
粒子の表面上に炭化チタン膜を形成した後、このセラミ
ックス粒子とチタン又はチタン合金粉末との混合粉末を
焼結させるから、チタン又はチタン合金とセラミックス
粒子との界面に脆い反応生成物が生成されることを回避
できる。このため、上述の強度及び延性が優れたチタン
基複合材を容易に製造することができる。
Furthermore, according to the method of the present invention, after forming a titanium carbide film on the surface of the ceramic particles, a mixed powder of the ceramic particles and titanium or titanium alloy powder is sintered. Generation of brittle reaction products at the interface with ceramic particles can be avoided. Therefore, a titanium-based composite material having excellent strength and ductility as described above can be easily produced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  チタン又はチタン合金からなる基材中
に、炭化チタン膜で被覆されたセラミックス粒子が分散
されていることを特徴とするチタン基複合材。
1. A titanium-based composite material, characterized in that ceramic particles coated with a titanium carbide film are dispersed in a base material made of titanium or a titanium alloy.
【請求項2】  セラミックス粒子の表面上に炭化チタ
ン膜を形成する工程と、このセラミックス粒子とチタン
又はチタン合金粉末とを混合する工程と、この混合粉末
を焼結させる工程とを有することを特徴とするチタン基
複合材の製造方法。
2. A method comprising: forming a titanium carbide film on the surface of ceramic particles; mixing the ceramic particles with titanium or titanium alloy powder; and sintering the mixed powder. A method for producing a titanium-based composite material.
JP2541591A 1991-01-24 1991-01-24 Titanium-base composite and its manufacture Pending JPH04247844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2541591A JPH04247844A (en) 1991-01-24 1991-01-24 Titanium-base composite and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2541591A JPH04247844A (en) 1991-01-24 1991-01-24 Titanium-base composite and its manufacture

Publications (1)

Publication Number Publication Date
JPH04247844A true JPH04247844A (en) 1992-09-03

Family

ID=12165313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2541591A Pending JPH04247844A (en) 1991-01-24 1991-01-24 Titanium-base composite and its manufacture

Country Status (1)

Country Link
JP (1) JPH04247844A (en)

Similar Documents

Publication Publication Date Title
TWI477443B (en) Method for fabricating carbon substrate coated with silicon carbide, carbon substrate coated with silicon carbide and silicon carbide carbon composite sintered compact, silicon carbide carbon composite sintered compact coated with ceramics and method for
JPS60502246A (en) Composite improved silicon-aluminum-oxynitride cutting tool with coating
JPS6119583B2 (en)
JP2863675B2 (en) Manufacturing method of particle reinforced composite material
JPH055782B2 (en)
JPH07118070A (en) Silicon nitride ceramic sintered compact
JPH04247843A (en) Titanium-base composite and its manufacture
JPH04247844A (en) Titanium-base composite and its manufacture
JPH04247846A (en) Titanium-base composite and its manufacture
JPH04247845A (en) Titanium-base composite and its manufacture
JP4171916B2 (en) Heat-resistant covering material
Tsunekawa et al. Synthesis of iron aluminide matrix in situ composites from elemental powders by reactive low pressure plasma spraying
JPH0674177B2 (en) Method for strengthening titanium boride / silicon carbide composite ceramics
JP4458692B2 (en) Composite material
JP2004169064A (en) Copper-tungsten alloy, and method of producing the same
JPH04224601A (en) Manufacture of titanium-based composite material
JPH0711041B2 (en) Ceramic particle reinforced titanium composite material
JPH02258948A (en) Ceramic grain reinforced titanium composite material
JP3115011B2 (en) Method for producing titanium-based composite material
JP4189676B2 (en) Heat-resistant covering material
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JPH04247836A (en) Manufacture of titanium matrix composite
JP2568521B2 (en) Composite sintered body
JPH0349681B2 (en)
JPH02307862A (en) Production of high-hardness al2o3-base composite