JPH04247099A - Angiotensin i converting enzyme-inhibitory tri and tetrapeptide and production thereof - Google Patents

Angiotensin i converting enzyme-inhibitory tri and tetrapeptide and production thereof

Info

Publication number
JPH04247099A
JPH04247099A JP3033384A JP3338491A JPH04247099A JP H04247099 A JPH04247099 A JP H04247099A JP 3033384 A JP3033384 A JP 3033384A JP 3338491 A JP3338491 A JP 3338491A JP H04247099 A JPH04247099 A JP H04247099A
Authority
JP
Japan
Prior art keywords
angiotensin
lys
converting enzyme
peptide
fmoc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3033384A
Other languages
Japanese (ja)
Inventor
Nobuyasu Matsumura
伸康 松村
Toshio Shimizu
俊雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marino Forum 21
Original Assignee
Marino Forum 21
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marino Forum 21 filed Critical Marino Forum 21
Priority to JP3033384A priority Critical patent/JPH04247099A/en
Publication of JPH04247099A publication Critical patent/JPH04247099A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To provide the title peptide capable of inhibiting angiotensin I converting enzyme leading to blood pressure reduction. CONSTITUTION:A peptide extracted from bonito's intestine and purified using the reversed-phase ion exchange chromatography is put to enzymolysis followed by chromatographic separation, thus obtaining the objective peptide having angiotensin I converting enzyme-inhibitory activity of formula Ser-Val-Ala-Lys or Leu-Glu-Lys. For the peptide of the formula Ser-Val-Ala-Lys, IC50=1000muM; for another peptide of the formula Leu-Glu-Lys, IC50=800muM.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、アンジオテンシンI変
換酵素阻害ペプチドとその製造法に関する。より詳しく
は、本発明は、血圧を上昇させる働きのあるアンジオテ
ンシンIIをアンジオテンシンIから変換する酵素であ
るアンジオテンシンI変換酵素を阻害するペプチドに関
する。 【0002】 【従来の技術】高血圧症は、最大血圧が160mmHg
以上か、最小血圧が95mmHg以上の状態である。わ
が国では患者数が約2000万人であるといわれ、罹患
率の多い疾病である。 【0003】高血圧症は、脳出血、脳梗塞、クモ膜下出
血、狭心症、心筋梗塞、腎硬化症、腎不全、網膜静脈閉
塞症など広範囲の臓器にわたってさまざまな合併症を生
じることが知られており、有効な治療薬が望まれている
。 【0004】生体内において血圧を調節するメカニズム
の1つとして、昇圧系であるレニン・アンジオテンシン
系と、降圧系であるカリクレイン・キニン系がある。レ
ニン・アンジオテンシン系では、酵素レニンが腎臓の旁
系球体細胞(J・G細胞)で生成され、血圧でレニン基
質であるところのアンジオテシノーゲンに作用してアン
ジオテンシンIを生成する。このアンジオテンシンIを
アンジオテンシンIIに変換する酵素がアンジオテンシ
ンI変換酵素であり、生じたアンジオテンシンIIは、
細動脈に作用して収縮を起こさせる。 【0005】また、アンジオテンシンIIは副腎皮質に
も作用してアルドステロンの合成と分泌を促し、腎臓で
のNaの再吸収を促進し、体液量を保持する働きもある
。 このようにしてアンジオテンシンIIにより血圧が上昇
する。 【0006】一方、カリクレイン・キニン系では、蛋白
分解酵素であるカリクレインが、基質であるところのキ
ニノーゲンに作用してキニンを生じる。キニンは血管を
拡張させ、血圧を下げる作用を有するが、キニナーゼI
Iにより分解をうける。キニナーゼIIはアンジオテン
シンI交換酵素と同一物質であることが知られている。 【0007】以上のことから、アンジオテンシンI変換
酵素を阻害することによる高血圧の治療が考えられ、現
在までにカプトプリル、エナラプリル、アラセプリル、
デラプリル等が開発されている。また、カゼインやツェ
イン、ゼラチン、魚肉などに由来するペプチドも、アン
ジオテンシンI変換酵素を阻害する働きがあることが知
られている(特開昭59−44324号、特開昭64−
5497号参照)。 【0008】しかし、カプトプリルは強力な血圧降下作
用を有するが、合成法で作られ高価であり、安易に入手
することは難しい。その上、用量が不適当であると腎機
能障害や低血圧をもたらす。また、分子内に存在するS
H基のため、発疹や味覚異常を引き起こすとも言われて
いる。カゼインやツェイン、ゼラチン、魚肉などに由来
するペプチドは、天然物を原料とするものであり、製造
工程で多くの未利用物を生成し、その処理に莫大な費用
がかかるだけでなく、廃棄による環境汚染の心配がある
。 【0009】 【発明が解決しようとする課題】したがって、安価に入
手でき、副作用の少ない天然のアンジオテンシンI変換
酵素阻害物の開発、さらには、その適切な製造法の開発
が望まれている。 【0010】 【課題を解決するための手段】本発明者らは、上記課題
を解決するため種々検討した結果、本発明を完成するに
至った。すなわち、本発明は、魚介類内臓由来のアンジ
オテンシンI変換酵素阻害ペプチドに関する。 【0011】本ペプチドは魚介類の内臓から水抽出、加
熱した後、抽出したペプチド含有物を各種クロマトグラ
フィーの手法を使って分離することにより得られるペプ
チドを、さらに酵素分解することにより得られる。 【0012】本ペプチドは、水抽出液中のペプチドを逆
相クロマト用充填剤C18(シリカ担体にオクタデシル
基を結合させたもの)に吸着させ、pH6.0,7.0
,8.0,9.0の段階的溶出法で得た画分のうち、ア
ンジオテンシンI変換酵素阻害画分をさらに、逆相HP
LCで分離し、活性成分を酵素分解後、逆相HPLCで
分離することにより得られる。 【0013】本ペプチドは、動物の体内に広く分布して
いるトロポミオシンの一部である。したがって、トロポ
ミオシンの存在する全ての動物から抽出、分離すること
が可能である。 【0014】また、本ペプチドは、Fmoc(9−フル
オレニルメチルオキシカルボニル)−アミノ酸である、
Fmoc−リジン、Fmoc−グルタミン酸、Fmoc
−ロイシン、Fmoc−アラニン、Fmoc−バリン、
Fmoc−セリンを用いた固相合成法で製造することも
できる。 【0015】 【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 カツオ腸17.9gに4倍量の水を加え、ホモジナイザ
ー(ニッセイAM−1型)を用いて、氷冷下10,00
0rpm で5分間ホモジナイズした。120℃で5分
間オートクレーブした後、40,000Gで40分間4
℃で遠心分離し、その上清を濃縮後、C18充填剤( 
Waters 社 Bulk C1855〜105μm
)12.4gを詰めた簡易カラムに通し、ペプチドを吸
着させた。このカラムを蒸留水300mlで洗浄後、ア
セトニトリル15%溶液でペプチドを溶出した。この操
作を繰り返し、349.6mgのペプチド画分を得た。 【0016】本ペプチド画分は、10mMリン酸バッフ
ァー(pH6.0)で平衡化したアクセル plus 
CM( Waters 社)15gを詰めた簡易カラム
に添加し、10mMリン酸バッファー(pH6.0)2
50ml、(pH7.0)250ml、(pH8.0)
250ml、(pH9.0)250mlで溶出した。こ
のうちアンジオテンシンI変換酵素阻害能の強い画分を
さらに細分画するため、逆相HPLCで分離を行った。 HPLC条件はHPLC条件■に示した。 【0017】 HPLC条件■ カラム    RP−18(e)   1×25cm 
 メルク社検  出    UV  230nm 流  速    4ml/min  溶離液    A:0.1%  TFAB:0.1% 
 TFA  80%アセトニトリル【0018】条件■
では、ペプチドはリテンションタイム16分から48分
に溶出された。このうちリテンションタイム28分から
36分までの溶出液を分取し、さらに、HPLCで分画
した。このときの条件をHPLC条件■に示した。 【0019】 HPLC条件■ カラム    RP−18(e)   4mm×25c
m  メルク社検  出    UV  210nm 流  速    1.0ml/min 溶離液    
A:0.05%  TFAB:0.05%  TFA 
 50%アセトニトリルグラジエント条件  A100
%、B0%から800min 後にA50%、B50%
になる直線グラジエント【0020】条件■では、リテ
ンションタイム90〜210min にペプチドの溶出
が認められた。このうちリテンションタイム90〜21
0min に溶出したフラクションを分取し、HPLC
条件■でさらに分離した。 【0021】 HPLC条件■ カラム    RP−18(e)   4mm×25c
m  メルク社検  出    UV  210nm 流  速    1.0ml/min 溶離液    
A:0.05%  TFAB:0.05%  TFA 
 25%アセトニトリルグラジエント条件  A100
%、B0%から800min 後にA50%、B50%
になるリニアグラジエント【0022】HPLC条件■
で分離したチャートをチャート1に示した。ピーク1〜
14のアンジオテンシンI変換酵素阻害能を測定した結
果、ピーク14に阻害能が認められた。 【0023】本ピークを Applied Biosy
stem社の気相プロテイン・シーケンサー( Mod
el−470A ) とオンラインの高速液体クロマト
グラフィーを用いて Ddoman 分解反応を行い、
各サイクルで得られるPTH−アミノ酸を同定した。そ
の結果、配列番号1の構造をもつことが推定された。 【0024】さらに、日本電子製JMS−HX110/
HX110型質量分析機でFAB−MSスペクトルを測
定したところ、分子量774に対応する質量数のイオン
が観察され、ピーク14の成分が先に示したように、配
列番号1のアミノ酸配列であることが確認された。さら
に、このペプチドを基質として酵素分解条件■の条件で
、0.2M酢酸アンモニウムバッファー中でトリプシン
分解を行った。 【0025】 酵素分解条件■ 基質濃度    0.1% 酵素濃度    基質の2% 反応温度    37℃ pH        8.0 反応時間    24時間 【0026】酵素分解物は、セントリコン−10( A
micon社)を使用し、UF分離でトリプシンを除去
し、HPLC条件■で分離を行った。分離パターンをチ
ャート2に示した。各ピークの同定は、アミノ酸分析機
(JEOL製JLC−300型)でアミノ酸組成比を求
めて行った。その結果、ピーク1は Ser: Val
: Ala: Lys=1:1:1:1であり、配列番
号2であることが判明した。同様にピーク2は Leu
−Glu−Lys=1:1:1であり、 Leu− G
lu−Lys であることがわかった。 【0027】アンジオテンシンI変換酵素阻害能を測定
した結果、Ser−Val−Ala−Lys はIC5
0=1000μMで、 Leu−Glu−LysはIC
50=800μMであった。アンジオテンシンI変換酵
素阻害の測定は、カッシュマンらの方法〔バイオケミカ
ル・ファーマコロジー20巻1637〜1648頁(1
971)〕を改良した丸山らの方法(アグリカルチュア
ル・バイオロジカル・ケミストリー46巻5号〔139
3〜1394頁(1982)〕)にしたがった。 【0028】すなわち、試験管に本発明ペプチド含有組
成物水溶液30μlと、酵素基質としてL−ヒプリルヒ
スチジルロイシン(シグマ社製)とNaClを含有した
pH8.3のホウ酸バッファー250μlを加え、37
℃で10分間プレインキュベーションした。その後、ア
ンジオテンシンI変換酵素含有液100μlを加え、酵
素反応を開始した。このときホウ酸バッファーの濃度は
0.1M、L−ヒプリルヒスチジルロイシン濃度は5m
M、NaCl300mMであり、阻害がかからない場合
の酵素活性は8mUである。37℃、pH8.3で30
分間振動しつつ反応せしめた後、1N  HCl  2
50μlを加え、反応を停止させた。酢酸エチル1.5
mlを加え、15秒間振盪させて酵素反応で生じた馬尿
酸を抽出し、2000rpm 、10分間遠心分離して
酢酸エチル層1.0mlを試験管に採取した。酢酸エチ
ルをホットドライバスの中で120℃、30分間加温し
て完全に除去した後、室温で5分間放置した。そして、
 H2 O 1.0mlを加え、生成した馬尿酸の量を
228nmの吸光度を測定して求めた。酵素反応に使用
したアンジオテンシンI変換酵素含有液は、ラビットラ
ングアセトンパウダー(シグマ社製)1gを0.1Mホ
ウ酸バッファー(pH8.3)10mlに溶かし、よく
攪拌した後、4℃、40000Gで40分間遠心分離し
た上清を0.1Mホウ酸バッファー(pH8.3)で希
釈して作製した。 【0029】阻害率は下記の式を使用して求めた。 A:阻害剤の代わりに蒸留水の吸光度(228nm)B
:阻害剤添加時の吸光度(228nm)【0030】実
施例2 本発明のペプチドはFmoc(9−フルオレニルメチル
オキシカルボニル)−アミノ酸(Fmoc−リジン、F
moc−グルタミン酸、Fmoc−ロイシン、Fmoc
−アラニン、Fmoc−バリン、Fmoc−セリン)を
用いるペプチド固相合成で合成した。このペプチドは、
YMC−ODS−R5カラム(株式会社ワイエムシイ製
)で0.1%TFA(トリフルオロ酢酸)水溶液のイニ
シャル液から0.1%TFAの70%アセトニトリル溶
液をファイナル液とする25分の直線グラジエントで分
析(流速1.0ml/min 、検出UV210nm)
した結果、98%の純度を示した。 この物質を用いてACEを50%阻害する濃度であるI
C50値を測定した結果、Ser−Val− Ala−
Lysは1000μM、Leu−Glu−Lys は7
90μMであり、酵素分解で製造したものと同様であっ
た。 【0031】 【発明の効果】以上説明したとおり、本発明によれば、
従来廃棄されていた魚介類内臓から、血圧上昇を抑える
作用を有するアンジオテンシンI変換酵素阻害ペプチド
が得られる。 【配列表】 【0032】 配列番号:1 配列の長さ:7 配列の型:アミノ酸 トポロジー:直鎖状( linear ) 配列の種類
:ペプチド( peptide ) 起  源 生物名:カツオナス  ペラミス  ( Katsuw
onus pelamis )  【0033】 配列番号:2 配列の長さ:4 配列の型:アミノ酸 トポロジー:直鎖状( linear ) 配列の種類
:ペプチド( peptide ) 起  源 生物名:カツオナス  ペラミス  ( Katsuw
onus pelamis ) 
Description: [0001] The present invention relates to an angiotensin I converting enzyme inhibitory peptide and a method for producing the same. More specifically, the present invention relates to a peptide that inhibits angiotensin I converting enzyme, which is an enzyme that converts angiotensin I from angiotensin II, which has the effect of increasing blood pressure. [Prior Art] Hypertension is defined as a systolic blood pressure of 160 mmHg.
or above, the diastolic blood pressure is 95 mmHg or above. It is said that there are approximately 20 million patients in Japan, and it is a disease with a high morbidity rate. Hypertension is known to cause various complications affecting a wide range of organs, including cerebral hemorrhage, cerebral infarction, subarachnoid hemorrhage, angina pectoris, myocardial infarction, nephrosclerosis, renal failure, and retinal vein occlusion. Therefore, effective therapeutic drugs are desired. One of the mechanisms for regulating blood pressure in vivo is the renin-angiotensin system, which is a pressor system, and the kallikrein-kinin system, which is a hypotensive system. In the renin-angiotensin system, the enzyme renin is produced in the renal glomerular cells (JG cells) and acts on angiothesinogen, a renin substrate, at blood pressure to produce angiotensin I. The enzyme that converts angiotensin I to angiotensin II is angiotensin I converting enzyme, and the resulting angiotensin II is
It acts on arterioles and causes them to constrict. [0005] Angiotensin II also acts on the adrenal cortex to promote the synthesis and secretion of aldosterone, promotes the reabsorption of Na in the kidney, and has the function of retaining body fluid volume. In this way, angiotensin II increases blood pressure. On the other hand, in the kallikrein-kinin system, kallikrein, a protease, acts on kininogen, a substrate, to produce kinin. Kinin has the effect of dilating blood vessels and lowering blood pressure, but kininase I
Decomposed by I. Kininase II is known to be the same substance as angiotensin I exchange enzyme. [0007] Based on the above, treatment of hypertension by inhibiting angiotensin I converting enzyme has been considered, and to date, captopril, enalapril, alacepril,
Delapril etc. have been developed. In addition, peptides derived from casein, zein, gelatin, fish meat, etc. are known to have the effect of inhibiting angiotensin I-converting enzyme (JP-A-59-44324, JP-A-64-
(See No. 5497). [0008] However, although captopril has a strong antihypertensive effect, it is produced by a synthetic method and is expensive, making it difficult to obtain it easily. Moreover, inappropriate dosage results in renal dysfunction and hypotension. In addition, S present in the molecule
Because of the H group, it is said to cause rashes and taste abnormalities. Peptides derived from casein, zein, gelatin, fish meat, etc. are natural raw materials, and the manufacturing process generates a lot of unused material, which not only costs a huge amount of money to dispose of, but also wastes money due to disposal. There are concerns about environmental pollution. [0009]Therefore, it is desired to develop a natural angiotensin I converting enzyme inhibitor that is inexpensively available and has few side effects, and furthermore, to develop an appropriate method for producing the same. [Means for Solving the Problems] The present inventors have completed various studies to solve the above problems, and as a result, have completed the present invention. That is, the present invention relates to angiotensin I-converting enzyme-inhibiting peptides derived from fish and shellfish internal organs. [0011] The present peptide can be obtained by further enzymatically decomposing the peptide, which is obtained by extracting water from the internal organs of fish and shellfish, heating it, and separating the extracted peptide-containing substance using various chromatography techniques. [0012] This peptide was prepared by adsorbing the peptide in the aqueous extract onto C18 packing material for reverse phase chromatography (a silica carrier with an octadecyl group bonded to it), and adjusting the pH to 6.0 and 7.0.
, 8.0, 9.0, the angiotensin I-converting enzyme inhibiting fraction was further subjected to reverse phase HPLC.
It is obtained by separating by LC, enzymatically decomposing the active ingredient, and then separating by reverse phase HPLC. [0013] This peptide is part of tropomyosin, which is widely distributed in the animal body. Therefore, it is possible to extract and isolate tropomyosin from all animals in which it exists. [0014] Furthermore, the present peptide is an Fmoc (9-fluorenylmethyloxycarbonyl)-amino acid.
Fmoc-lysine, Fmoc-glutamic acid, Fmoc
-leucine, Fmoc-alanine, Fmoc-valine,
It can also be produced by solid phase synthesis using Fmoc-serine. [Example] The present invention will be specifically explained below with reference to Examples. Example 1 Add 4 times the amount of water to 17.9 g of bonito intestines, and use a homogenizer (Nissei AM-1 model) to incubate the intestine for 10,000 g on ice.
Homogenize for 5 minutes at 0 rpm. After autoclaving at 120℃ for 5 minutes, autoclaving at 40,000G for 40 minutes4
After centrifugation at ℃ and concentration of the supernatant, C18 packing material (
Waters Bulk C1855-105μm
) The peptide was adsorbed through a simple column packed with 12.4 g. After washing this column with 300 ml of distilled water, the peptide was eluted with a 15% acetonitrile solution. This operation was repeated to obtain 349.6 mg of peptide fraction. [0016] This peptide fraction was prepared using Accel plus equilibrated with 10mM phosphate buffer (pH 6.0).
It was added to a simple column packed with 15 g of CM (Waters), and 10 mM phosphate buffer (pH 6.0) was added.
50ml, (pH 7.0) 250ml, (pH 8.0)
250 ml, (pH 9.0) eluted with 250 ml. Among these, in order to further subdivide the fraction with strong angiotensin I-converting enzyme inhibitory ability, separation was performed by reverse phase HPLC. HPLC conditions are shown in HPLC conditions (■). HPLC conditions ■ Column RP-18(e) 1 x 25 cm
Merck detection UV 230nm Flow rate 4ml/min Eluent A: 0.1% TFAB: 0.1%
TFA 80% acetonitrile 0018 Conditions ■
In this case, the peptide was eluted at a retention time of 16 minutes to 48 minutes. Of these, the eluate with a retention time of 28 to 36 minutes was fractionated and further fractionated by HPLC. The conditions at this time are shown in HPLC conditions (2). HPLC conditions■ Column RP-18(e) 4mm×25c
m Merck detection UV 210nm Flow rate 1.0ml/min Eluent
A: 0.05% TFAB: 0.05% TFA
50% acetonitrile gradient conditions A100
%, A50%, B50% after 800min from B0%
A linear gradient of: ##STR1## Under condition (2), peptide elution was observed at a retention time of 90 to 210 min. Of these, retention time is 90-21
The fraction eluted at 0 min was collected and subjected to HPLC
Further separation was carried out under condition (■). HPLC conditions ■ Column RP-18(e) 4mm x 25c
m Merck detection UV 210nm Flow rate 1.0ml/min Eluent
A: 0.05% TFAB: 0.05% TFA
25% acetonitrile gradient conditions A100
%, A50%, B50% after 800min from B0%
Linear gradient that becomes 0022 HPLC conditions ■
The separated chart is shown in Chart 1. Peak 1~
As a result of measuring the angiotensin I converting enzyme inhibitory ability of No. 14, peak 14 was found to have inhibitory ability. [0023] This peak was applied using Applied Biosys.
stem's gas phase protein sequencer (Mod
el-470A) and online high-performance liquid chromatography to perform the Ddoman decomposition reaction,
The PTH-amino acids obtained in each cycle were identified. As a result, it was estimated to have the structure of SEQ ID NO:1. [0024] Furthermore, JEOL JMS-HX110/
When the FAB-MS spectrum was measured using an HX110 mass spectrometer, ions with a mass number corresponding to a molecular weight of 774 were observed, indicating that the component of peak 14 was the amino acid sequence of SEQ ID NO: 1, as shown above. confirmed. Furthermore, trypsin digestion was performed in a 0.2M ammonium acetate buffer using this peptide as a substrate under enzymatic digestion conditions (2). [0025] Enzyme degradation conditions ■ Substrate concentration 0.1% Enzyme concentration 2% of the substrate Reaction temperature 37°C pH 8.0 Reaction time 24 hours [0026] The enzymatic degradation product was Centricon-10 (A
Trypsin was removed by UF separation using HPLC (Micon), and separation was performed under HPLC conditions (■). The separation pattern is shown in Chart 2. Each peak was identified by determining the amino acid composition ratio using an amino acid analyzer (JEOL model JLC-300). As a result, peak 1 is Ser: Val
:Ala:Lys=1:1:1:1, and it was found to be SEQ ID NO:2. Similarly, peak 2 is Leu
-Glu-Lys=1:1:1, and Leu-G
It turned out to be lu-Lys. As a result of measuring the angiotensin I converting enzyme inhibitory ability, Ser-Val-Ala-Lys had an IC5
0 = 1000 μM, Leu-Glu-Lys is IC
50=800 μM. Angiotensin I-converting enzyme inhibition was measured by the method of Cushman et al.
971)] was improved by the method of Maruyama et al. (Agricultural Biological Chemistry Vol. 46, No. 5 [139
3-1394 (1982)]). That is, 30 μl of an aqueous solution of the peptide-containing composition of the present invention and 250 μl of a pH 8.3 boric acid buffer containing L-hypril histidyl leucine (manufactured by Sigma) and NaCl as enzyme substrates were added to a test tube. 37
Pre-incubated for 10 minutes at °C. Thereafter, 100 μl of an angiotensin I converting enzyme-containing solution was added to start the enzyme reaction. At this time, the concentration of boric acid buffer was 0.1M, and the concentration of L-hipryl histidylleucine was 5M.
M, NaCl is 300 mM, and the enzyme activity without inhibition is 8 mU. 30 at 37°C, pH 8.3
After reacting for a minute with shaking, add 1N HCl 2
50 μl was added to stop the reaction. ethyl acetate 1.5
ml was added and shaken for 15 seconds to extract hippuric acid produced by the enzyme reaction, and centrifuged at 2000 rpm for 10 minutes to collect 1.0 ml of ethyl acetate layer into a test tube. Ethyl acetate was completely removed by heating in a hot dry bath at 120° C. for 30 minutes, and then left at room temperature for 5 minutes. and,
1.0 ml of H2O was added, and the amount of hippuric acid produced was determined by measuring absorbance at 228 nm. The angiotensin I converting enzyme-containing solution used in the enzyme reaction was prepared by dissolving 1 g of Rabbit Lang Acetone Powder (manufactured by Sigma) in 10 ml of 0.1 M boric acid buffer (pH 8.3), stirring well, and incubating at 4°C and 40,000 G for 40 min. A supernatant obtained by centrifugation for one minute was diluted with 0.1 M borate buffer (pH 8.3). The inhibition rate was determined using the following formula. A: Absorbance of distilled water (228 nm) instead of inhibitor B
: Absorbance upon addition of inhibitor (228 nm) Example 2 The peptide of the present invention is Fmoc (9-fluorenylmethyloxycarbonyl)-amino acid (Fmoc-lysine, Fmoc-lysine, Fmoc-lysine,
moc-glutamic acid, Fmoc-leucine, Fmoc
-alanine, Fmoc-valine, Fmoc-serine) by solid phase peptide synthesis. This peptide is
Analysis was performed using a YMC-ODS-R5 column (manufactured by YMC Co., Ltd.) using a 25-minute linear gradient from an initial solution of 0.1% TFA (trifluoroacetic acid) aqueous solution to a final solution of 70% acetonitrile solution of 0.1% TFA. (Flow rate 1.0ml/min, detection UV 210nm)
The results showed a purity of 98%. I is the concentration that inhibits ACE by 50% using this substance.
As a result of measuring the C50 value, Ser-Val-Ala-
Lys is 1000μM, Leu-Glu-Lys is 7
The concentration was 90 μM, which was similar to that produced by enzymatic digestion. [0031] As explained above, according to the present invention,
Angiotensin I-converting enzyme-inhibiting peptides that have the effect of suppressing increases in blood pressure can be obtained from fish and shellfish viscera, which have traditionally been discarded. [Sequence Listing] Sequence number: 1 Sequence length: 7 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Originating organism name: Katsuonas pelamis (Katsuw)
onus pelamis) SEQ ID NO: 2 Sequence length: 4 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Originating organism name: Katsuonus pelamis
onus pelamis)

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1においてアンジオテンシンI変換酵素
阻害能の強い画分をHPLC■で分離したチャートを示
す。
FIG. 1 shows a chart in which fractions with strong angiotensin I-converting enzyme inhibitory ability were separated by HPLC ■ in Example 1.

【図2】図1において分離したペプチドを酵素分解によ
り分離したチャートを示す。
FIG. 2 shows a chart in which the peptides separated in FIG. 1 were separated by enzymatic degradation.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  Ser−Val−Ala−Lys の
構造をもつアンジオテンシンI変換酵素阻害ペプチド。 (ただし、Ser はセリン、Val はバリン、Al
a はアラニン、Lys はリジン残基を示す。)
1. An angiotensin I converting enzyme inhibitory peptide having the structure Ser-Val-Ala-Lys. (However, Ser is serine, Val is valine, Al
a represents alanine and Lys represents lysine residue. )
【請求項2】  Leu−Glu−Lys の構造をも
つアンジオテンシンI変換酵素阻害ペプチド。(ただし
、Lys はリジン、Leu はロイシン、Glu は
グルタミン酸残基を示す。)
2. An angiotensin I converting enzyme inhibitory peptide having a structure of Leu-Glu-Lys. (Lys indicates lysine, Leu indicates leucine, and Glu indicates glutamic acid residue.)
【請求項3】  トロポミオシンの存在する動物臓器か
ら溶媒を用いて抽出して得られる抽出液を分離、精製す
ることを特徴とする Ser−Val−Ala−Lys
−Leu−Glu−Lysの構造をもつアンジオテンシ
ンI変換酵素阻害ペプチドを酵素分解して得られる請求
項1または2に記載のアンジオテンシンI変換酵素阻害
ペプチドの製造法。
3. Ser-Val-Ala-Lys, which is characterized by separating and purifying an extract obtained by extracting tropomyosin from an animal organ using a solvent.
3. The method for producing an angiotensin I converting enzyme inhibiting peptide according to claim 1 or 2, which is obtained by enzymatically decomposing an angiotensin I converting enzyme inhibiting peptide having the structure -Leu-Glu-Lys.
【請求項4】  Fmoc−リジン、Fmoc−アラニ
ン、Fmoc−バリン、Fmoc−セリンを用いて固相
合成することを特徴とするSer−Val−Ala−L
ys の構造をもつアンジオテンシンI変換酵素阻害ペ
プチドの製造法。
4. Ser-Val-Ala-L, which is characterized by solid phase synthesis using Fmoc-lysine, Fmoc-alanine, Fmoc-valine, and Fmoc-serine.
A method for producing an angiotensin I converting enzyme inhibitory peptide having the structure ys.
【請求項5】  Fmoc−リジン、Fmoc−グルタ
ミン酸、Fmoc−ロイシンを用いて固相合成すること
を特徴とするLeu−Glu−Lys の構造をもつア
ンジオテンシンI変換酵素阻害ペプチドの製造法。
5. A method for producing an angiotensin I converting enzyme-inhibiting peptide having a Leu-Glu-Lys structure, which comprises solid-phase synthesis using Fmoc-lysine, Fmoc-glutamic acid, and Fmoc-leucine.
JP3033384A 1991-02-04 1991-02-04 Angiotensin i converting enzyme-inhibitory tri and tetrapeptide and production thereof Pending JPH04247099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033384A JPH04247099A (en) 1991-02-04 1991-02-04 Angiotensin i converting enzyme-inhibitory tri and tetrapeptide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033384A JPH04247099A (en) 1991-02-04 1991-02-04 Angiotensin i converting enzyme-inhibitory tri and tetrapeptide and production thereof

Publications (1)

Publication Number Publication Date
JPH04247099A true JPH04247099A (en) 1992-09-03

Family

ID=12385103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033384A Pending JPH04247099A (en) 1991-02-04 1991-02-04 Angiotensin i converting enzyme-inhibitory tri and tetrapeptide and production thereof

Country Status (1)

Country Link
JP (1) JPH04247099A (en)

Similar Documents

Publication Publication Date Title
Jung et al. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats
JP3318622B2 (en) Prolyl endopeptidase inhibitor
ES2286398T3 (en) USE OF AT LEAST ONE PEPTIDE OF THE CASEINA "ALPHA S2" WITH INHIBITING ACTIVITY OF I'ACE FOR THE PREPARATION OF MEDICINES AND FOODS.
JP5417405B2 (en) Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition
JP5416964B2 (en) Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors
JPH04282400A (en) Angiotensin converting enzyme inhibitor peptide
CN1623600A (en) Inhibitor of angiotensin I transferase activity and its application
JP5456100B2 (en) Angiotensin converting enzyme inhibitory dipeptide
JPH04247099A (en) Angiotensin i converting enzyme-inhibitory tri and tetrapeptide and production thereof
JP5456144B1 (en) Angiotensin converting enzyme inhibitory dipeptide
JP2873327B2 (en) Angiotensin converting enzyme inhibitor
JP3893579B2 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JPH05306296A (en) Fish-derived peptide and its production
JPH06220088A (en) Tripeptide inhibiting angiotensin i converting enzyme, its production and food containing the tripeptide
KR100367782B1 (en) Preperation of peptide from laver having inhibitory activity against angiotensin converting enzyme
JP2001106699A (en) New hexapeptide and angiotensin-converting enzyme inhibitor
JP2003024012A (en) Angiotensin i converting enzyme inhibitor and antihypertensive functional food
JP2990354B1 (en) Novel pentapeptide and angiotensin converting enzyme inhibitors
JPH04159297A (en) Peptide inhibiting angiotensin i transferase and preparation thereof
JP3709425B2 (en) Novel tripeptide and angiotensin converting enzyme inhibitors
JPH051095A (en) Angiotensin i converting enzyme-inhibitory tripeptide and its production
JP3972104B2 (en) Novel hexapeptide and angiotensin converting enzyme inhibitors
CA2621262C (en) Thio-containing inhibitors of aminopeptidase p, compositions thereof and method of use
JPH04149196A (en) Peptide of inhibiting angiotensin i converting enzyme and its production
JPH04297496A (en) Angiotensin i converting enzyme inhibiting hexapeptide and its production