JPH04246846A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04246846A
JPH04246846A JP1176591A JP1176591A JPH04246846A JP H04246846 A JPH04246846 A JP H04246846A JP 1176591 A JP1176591 A JP 1176591A JP 1176591 A JP1176591 A JP 1176591A JP H04246846 A JPH04246846 A JP H04246846A
Authority
JP
Japan
Prior art keywords
film
insulating film
tetraethoxysilane
condensed
conductor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1176591A
Other languages
Japanese (ja)
Inventor
Akira Tabuchi
明 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1176591A priority Critical patent/JPH04246846A/en
Publication of JPH04246846A publication Critical patent/JPH04246846A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable a high integrated semiconductor IC provided with a multilayer interconnection to be enhanced in yield and reliability by a method wherein a semiconductor device forming method and especially a forming method where a layer insulating film provided to a semiconductor device of multilayer interconnection structure is formed are offered, where an SiO2 glass insulating film which is fully turned into glass and free from cracks can be filled flat into a narrow groove whose width is of the order of submicrons through the layer insulating film forming method concerned. CONSTITUTION:A first process where tetraethoxysilane gas is introduced onto a board in a nitrogen or inert gas atmosphere of reduced pressure to form a tetraethoxysilane condensed film on the board concerned, a second process where water vapor is introduced onto the board provided with the condensed film in the atmosphere of reduced pressure the same as above to enable water vapor to react on the tetraethoxysilane condensed film on the board to turn it into a silanol film, and a third process where the board is heated to turn the silanol film into an insulating film of silicon oxide glass through dehydrating reaction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法、
特に多層配線構造の半導体装置における層間絶縁膜の形
成方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device,
In particular, the present invention relates to a method for forming an interlayer insulating film in a semiconductor device having a multilayer wiring structure.

【0002】近年、半導体ICの高集積化に伴い、回路
を構成する配線には多層配線が多く用いられるようにな
ってきている。また配線パターンの幅、配線パターン間
の間隔等もますます狭くなる傾向にある。
[0002] In recent years, as semiconductor ICs have become more highly integrated, multilayer wiring has come to be used more and more as wiring constituting circuits. Furthermore, the width of wiring patterns, the spacing between wiring patterns, etc. tend to become narrower and narrower.

【0003】このように配線が多層化され、且つ配線間
隔が狭くなった際には、下層配線の配設面に形成される
狭い幅の深い段差を層間絶縁膜で埋めて、上層配線の形
成される層間絶縁膜の上面を平坦化することが、上層配
線の断面積を均一化し電気抵抗の増大やマイグレーショ
ンによる断線等を防止して、上記半導体ICの信頼性を
向上するうえに極めて重要になってくる。
[0003] When interconnections are multilayered and the spacing between interconnections becomes narrower, the narrow and deep steps formed on the lower interconnection surface are filled with an interlayer insulating film to form upper interconnections. It is extremely important to flatten the top surface of the interlayer insulating film to make the cross-sectional area of the upper layer wiring uniform, to prevent increases in electrical resistance and disconnections due to migration, and to improve the reliability of the semiconductor IC. It's coming.

【0004】0004

【従来の技術】従来、上記層間絶縁膜を形成する際に主
として用いられていた絶縁膜の形成方法には、周知の化
学気相成長(CVD) 法及び有機系(稀には無機系)
スピンオングラス(SOG)塗布の方法がある。
[Prior Art] Conventionally, the insulating film forming methods mainly used to form the above-mentioned interlayer insulating film include the well-known chemical vapor deposition (CVD) method and organic (rarely inorganic) methods.
There is a spin-on glass (SOG) coating method.

【0005】しかし通常のモノシラン(SiH4)等の
シリコンソースと酸素(O2)等の酸化源との気相化学
反応により形成される化学気相成長酸化シリコン(CV
D−SiO2)膜は、成長に際してのステップカバレー
ジ性が悪いために、前述したように高集積化が進んで配
線間隔が狭まった際には、図4のCVD−SiO2層間
絶縁膜形成面の模式断面図に示すように、CVD−Si
O2層間絶縁膜54の下層配線53A 、53B 等の
間隔部上に逆テーパ側面55を有する溝56が形成され
、同様にステップカバレージ性の悪いスパッタ法等によ
りこの層間絶縁膜54上に被着されるアルミニウム(A
l)等の上層配線層57の上記層間絶縁膜54の溝56
の上部に、極端に膜厚の薄い部分58や断層59等を生
じて上層配線の信頼性が低下するという問題を生ずる。 (51は半導体基板、52は下層絶縁膜)一方、例えば
シラノール[Si(OH)4] のエタノール[C2H
5OH]溶液等からなるSOGをスピンコートした後、
加熱によりこの塗布膜をガラス化するSOG塗布方法に
おいては、図5のSOG層間絶縁膜形成面の模式断面図
に示すように、SOG膜60が下層配線53A 、53
B 等の間隔部を充分に埋めて層間絶縁膜60上面の平
坦化は図れるが、このSOG膜60を加熱してガラス化
する際に、SOG膜60の厚く形成されている部分にク
ラック61が入り、吸湿性を生じて、下層配線53A 
、53B 等間の絶縁性の劣化や、下層配線53A 、
53B 等の腐食による劣化を生ずるという問題があっ
た。またこのSOG層間絶縁膜にコンタクト窓を形成し
、その上に上層配線層を形成する際、厚く塗布されたS
OG層間絶縁膜は前記熱処理によるガラス化が不完全に
なるために、コンタクト窓内に水蒸気等のガスが放出さ
れ、コンタクト窓内に表出する下層配線面に自然酸化膜
等の不導体膜を形成させて下層配線と上層配線間のコン
タクト抵抗を増大させるという問題もあった。
However, chemical vapor grown silicon oxide (CV), which is formed by a gas phase chemical reaction between a silicon source such as ordinary monosilane (SiH4) and an oxidation source such as oxygen (O2),
D-SiO2) film has poor step coverage during growth, so when the interconnect spacing becomes narrower due to higher integration as mentioned above, the schematic diagram of the CVD-SiO2 interlayer insulating film formation surface shown in Fig. 4 As shown in the cross-sectional view, CVD-Si
A groove 56 having a reversely tapered side surface 55 is formed on the space between the lower wirings 53A, 53B, etc. of the O2 interlayer insulating film 54, and is similarly deposited on the interlayer insulating film 54 by sputtering or the like with poor step coverage. Aluminum (A
Groove 56 in the interlayer insulating film 54 of the upper wiring layer 57 such as
An extremely thin portion 58, a fault 59, etc. are formed on the top of the layer, resulting in a problem that the reliability of the upper layer wiring is reduced. (51 is a semiconductor substrate, 52 is a lower insulating film) On the other hand, for example, ethanol [C2H of silanol [Si(OH)4]
After spin-coating SOG consisting of a 5OH] solution, etc.
In the SOG coating method in which the coating film is vitrified by heating, as shown in the schematic cross-sectional view of the surface on which the SOG interlayer insulating film is formed in FIG.
Although the upper surface of the interlayer insulating film 60 can be flattened by sufficiently filling the gaps such as B, when the SOG film 60 is heated and vitrified, cracks 61 are formed in the thick portions of the SOG film 60. It enters the lower layer wiring 53A and becomes hygroscopic.
, 53B, etc., and the lower layer wiring 53A, etc.
53B etc., which caused deterioration due to corrosion. Also, when forming a contact window in this SOG interlayer insulating film and forming an upper wiring layer on it, a thick layer of SOG was applied.
Since the OG interlayer insulating film is not completely vitrified by the heat treatment, gases such as water vapor are released into the contact window, and a nonconductor film such as a natural oxide film is formed on the lower wiring surface exposed in the contact window. There is also the problem that the contact resistance between the lower layer wiring and the upper layer wiring increases due to the formation.

【0006】更に上記SOG塗布方法において、前記ク
ラックの発生やガスの発生を防止するために、SOG膜
を薄く塗布し、熱処理してガラス化する工程を繰り返し
て所定の厚さのSOG膜を形成する方法も試みられたが
、この方法でも下層配線の間隔部に生ずる溝幅がサブミ
クロンオーダに狭まった際には、配線間の凹部に一回の
塗布によってSOG液が厚く溜まってしまうので、その
部分のSOG膜にクラックを発生させずにこのSOG膜
をランプ加熱等によりガラス化することは極めて困難で
になる。
Furthermore, in the above-mentioned SOG coating method, in order to prevent the occurrence of cracks and generation of gas, a process of applying a thin SOG film and vitrifying it by heat treatment is repeated to form an SOG film of a predetermined thickness. A method was also tried to do this, but even with this method, when the width of the groove formed between the lower wiring lines narrowed to the submicron order, a thick layer of SOG liquid would accumulate in the recesses between the wiring lines after one application. It is extremely difficult to vitrify this SOG film by heating with a lamp or the like without causing cracks in the SOG film in that area.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、サブ
ミクロンオーダの狭い幅の溝内に完全にガラス化されク
ラック等の発生のないSiO2ガラス系絶縁膜を平坦に
埋込むことが可能な層間絶縁膜の形成方法を提供し、多
層配線を有する高集積度半導体ICの歩留り及び信頼性
を向上することを目的とする。
[Problems to be Solved by the Invention] Therefore, the present invention aims to provide an interlayer structure that allows a SiO2 glass-based insulating film that is completely vitrified and does not cause cracks to be flatly buried in a narrow trench on the order of submicrons. It is an object of the present invention to provide a method for forming an insulating film, and to improve the yield and reliability of highly integrated semiconductor ICs having multilayer wiring.

【0008】[0008]

【課題を解決するための手段】上記課題は、窒素若しく
は不活性ガスの減圧雰囲気中で基板上にテトラエトキシ
シランの蒸気を導入し該基板上にテトラエトキシシラン
凝縮膜を形成する工程と、該テトラエトキシシラン凝縮
膜を有する該基板上に窒素若しくは不活性ガスの減圧雰
囲気中で水蒸気を導入し該テトラエトキシシラン凝縮膜
を該水蒸気との反応によりシラノール膜に変化せしめる
工程と、該基板を加熱し該シラノール膜を脱水反応によ
り酸化シリコンガラスからなる絶縁膜に変化せしめる工
程を含む本発明による半導体装置の製造方法、若しくは
半導体基板上に形成された絶縁膜上に下層の導電体パタ
ーンを形成し、該下層導電体パターンの形成面上に層間
絶縁膜を形成し、該層間絶縁膜上に上層の導電体パター
ンを形成する工程を有する半導体装置の製造方法におい
て、該層間絶縁膜を形成するに際して、該下層導電体パ
ターンの形成面上にテトラエトキシシランの蒸気を吹き
つけて該下層導電体パターンの形成面上にテトラエトキ
シシランの凝縮膜を被着する第1の工程と、該テトラエ
トキシシランの凝縮膜を有する該下層導電体パターン形
成面上に水蒸気を吹きつけ、化学反応により該テトラエ
トキシシラン凝縮膜をシラノール膜に変化せしめる第2
の工程と、熱処理による脱水反応により該シラノール膜
を酸化シリコンガラス膜に変化せしめる第3の工程とを
含み、上記第1、第2、第3の工程を順次繰り返し行っ
て該下層導電体パターン形成面上に酸化シリコンガラス
よりなり上面が平坦化された所定の厚さの層間絶縁膜を
形成する工程を有することを特徴とする半導体装置の製
造方法によって解決される。
[Means for Solving the Problems] The above-mentioned problems include a step of introducing tetraethoxysilane vapor onto a substrate in a reduced pressure atmosphere of nitrogen or inert gas to form a tetraethoxysilane condensed film on the substrate; A step of introducing water vapor onto the substrate having a tetraethoxysilane condensed film in a reduced pressure atmosphere of nitrogen or inert gas and converting the tetraethoxysilane condensed film into a silanol film by reaction with the water vapor, and heating the substrate. The method for manufacturing a semiconductor device according to the present invention includes a step of changing the silanol film into an insulating film made of silicon oxide glass by a dehydration reaction, or forming a lower conductor pattern on an insulating film formed on a semiconductor substrate. , a method for manufacturing a semiconductor device comprising the steps of forming an interlayer insulating film on the formation surface of the lower conductor pattern and forming an upper conductor pattern on the interlayer insulating film, when forming the interlayer insulating film; , a first step of spraying tetraethoxysilane vapor onto the formation surface of the lower conductor pattern to deposit a condensed film of tetraethoxysilane on the formation surface of the lower conductor pattern; A second step in which water vapor is sprayed onto the lower conductor pattern forming surface having a condensed film, and the tetraethoxysilane condensed film is changed into a silanol film by a chemical reaction.
and a third step of changing the silanol film into a silicon oxide glass film through a dehydration reaction through heat treatment, and forming the lower conductor pattern by repeating the first, second, and third steps in sequence. The problem is solved by a method of manufacturing a semiconductor device, which includes the step of forming an interlayer insulating film of a predetermined thickness made of silicon oxide glass and having a planarized upper surface on the surface.

【0009】[0009]

【作用】図1は本発明の原理説明用工程断面図で、図中
、1は反応容器、2はガス導入用シャワー、3は真空排
気口、4はテトラエトキシシラン(TEOS)導入バル
ブ、5は水蒸気(H2O) 導入バルブ、6は窒素(N
2)導入バルブ、7は基板ステージ、8は赤外線ランプ
、9は基板を示す。
[Function] Fig. 1 is a process sectional view for explaining the principle of the present invention, in which 1 is a reaction vessel, 2 is a shower for gas introduction, 3 is a vacuum exhaust port, 4 is a tetraethoxysilane (TEOS) introduction valve, 5 is water vapor (H2O) introduction valve, 6 is nitrogen (N
2) An introduction valve, 7 a substrate stage, 8 an infrared lamp, and 9 a substrate.

【0010】即ち本発明の方法においては、図1(a)
 に示すように、絶縁膜を形成しようとする基板9を基
板ステージ7上に載置し、反応容器1内をN2の減圧状
態にした後、この容器1内に[Si(OC2H5)4]
組成を有するテトラエトキシシラン(TEOS)の蒸気
110 を例えばシャワー2を介し基板9上に吹きつけ
るように導入し、基板上にTEOSの凝縮膜10を形成
する。
That is, in the method of the present invention, FIG.
As shown in the figure, after placing the substrate 9 on which an insulating film is to be formed on the substrate stage 7 and reducing the pressure inside the reaction container 1 with N2, [Si(OC2H5)4] is placed in the reaction container 1.
A vapor 110 of tetraethoxysilane (TEOS) having a certain composition is introduced so as to be blown onto the substrate 9 via a shower 2, for example, to form a condensed film 10 of TEOS on the substrate.

【0011】次いで反応容器1内をN2で置換し更に減
圧状態にした後、図1(b) に示すように、シャワー
2を介し基板9上即ちTEOSの凝縮膜10上に水蒸気
(H2O)111を吹きつけるように導入し、Si(O
C2H5)4+H2O → Si(OH)4+4C2H
5OH ↑の反応により前記TEOSの凝縮膜10をS
OGと同一成分であるシラノール[Si(OH)4] 
膜12に変化させる。
Next, after purging the inside of the reaction vessel 1 with N2 and further reducing the pressure, water vapor (H2O) 111 is applied to the substrate 9, that is, the condensed film 10 of TEOS, through the shower 2, as shown in FIG. 1(b). was introduced by spraying Si(O
C2H5)4+H2O → Si(OH)4+4C2H
The TEOS condensation film 10 is converted into S by the reaction of 5OH ↑.
Silanol [Si(OH)4], which is the same component as OG
The film is changed into a film 12.

【0012】次いで反応容器1内をN2で置換した後、
基板9を例えば赤外線ランプ8により500〜800 
℃程度に加熱し前記シラノール[Si(OH)4] 膜
12を脱水硬化(ガラス化)させて、クラックがなく十
分にガラス化されて強固な酸化シリコン(SiO2)ガ
ラス絶縁膜13を形成する。
Next, after purging the inside of the reaction vessel 1 with N2,
For example, the substrate 9 is heated to 500 to 800
The silanol [Si(OH)4] film 12 is dehydrated and hardened (vitrified) by heating to about .degree.

【0013】なお、上記1サイクルの工程で形成られる
SiO2ガラス絶縁膜13の膜厚は 500〜1000
Å程度であるので、上記工程を10サイクル程度繰り返
して5000〜10000 Å程度の所定膜厚を有する
SiO2ガラス絶縁膜を形成する。
[0013] The thickness of the SiO2 glass insulating film 13 formed in the above one cycle process is 500 to 1000.
Since the SiO2 glass insulating film has a predetermined thickness of about 5,000 to 10,000 Å, the above steps are repeated about 10 cycles to form a SiO2 glass insulating film having a predetermined thickness of about 5,000 to 10,000 Å.

【0014】この方法によると、前記TEOSの凝縮膜
10はサブミクロンオーダの狭い幅の溝の内面(側面及
び底面)に、コーナー部が若干厚くなった薄い膜として
付着する。従ってこのTEOSの凝縮膜10をシラノー
ル化し、このシラノール膜を熱処理によりガラス化して
形成されるSiO2ガラス絶縁膜13は、十分にガラス
化されてクラックの発生がなく、溝のコーナー部が若干
厚くなった薄い膜として形成される。
According to this method, the TEOS condensed film 10 is deposited on the inner surface (side surface and bottom surface) of a groove having a narrow width on the order of submicrons, as a thin film that is slightly thicker at the corner portions. Therefore, the SiO2 glass insulating film 13, which is formed by converting the TEOS condensed film 10 into silanol and vitrifying the silanol film by heat treatment, is sufficiently vitrified without cracking, and the corners of the grooves are slightly thicker. It is formed as a thin film.

【0015】従って、上記工程を繰り返し、上記SiO
2ガラス絶縁膜13を積層することにより溝部内に平坦
に埋め込まれるSiO2ガラス絶縁膜には、クラックが
発生することがないので、耐湿性は十分に確保される。 またガラス化も十分になされているので、コンタクト窓
を形成しその上に上層の配線金属層を形成する際に、コ
ンタクト窓内へSiO2ガラス絶縁膜からガスが放出さ
れることがなく配線界面の酸化、汚染等が回避されるの
で、配線層間のコンタクト抵抗の増大も防止される。
[0015] Therefore, by repeating the above steps, the above SiO
Since cracks do not occur in the SiO2 glass insulating film that is flatly embedded in the groove by laminating the two glass insulating films 13, sufficient moisture resistance is ensured. In addition, since the glass has been sufficiently vitrified, when forming a contact window and forming an upper wiring metal layer on it, gas is not released from the SiO2 glass insulating film into the contact window and the wiring interface is Since oxidation, contamination, etc. are avoided, an increase in contact resistance between wiring layers is also prevented.

【0016】[0016]

【実施例】以下本発明を、一実施例について、図2に示
す製造装置の一例の模式構成図、及び図3に示す一実施
例の工程断面図を参照し具体的に説明する。
EXAMPLE The present invention will be specifically described below with reference to an example of the manufacturing apparatus shown in FIG. 2 and a process cross-sectional view of an example shown in FIG. 3.

【0017】本発明の方法に用いられる製造装置の一例
を示す図2において、1は反応容器、2はガス導入用シ
ャワー、3は真空排気口、4はTEOS導入バルブ、5
は水蒸気導入バルブ、6はN2導入バルブ、7は基板ス
テージ、8は赤外線ランプ、9は基板、14はTEOS
容器、15はTEOSを60〜70℃程度に加熱する熱
風循環恒温層、16は純水容器、17は純水を50℃程
度に加熱する恒温水槽、18は置換用N2供給管、19
はパージ用N2供給管、20はTEOS供給管、21は
水蒸気供給管、22A 、22B 、22C 、22D
 は熱電対による温度コントローラ23A 、23B 
、23C 、23D 等を備えた保温手段、24A 、
24B 、24C 、24D はガス流量計(低差圧用
)、25はN2パージ用バルブ、26はTEOS蒸気元
バルブを示す。
In FIG. 2 showing an example of the manufacturing apparatus used in the method of the present invention, 1 is a reaction vessel, 2 is a gas introduction shower, 3 is a vacuum exhaust port, 4 is a TEOS introduction valve, and 5 is a gas introduction shower.
is a steam introduction valve, 6 is a N2 introduction valve, 7 is a substrate stage, 8 is an infrared lamp, 9 is a substrate, 14 is a TEOS
Container, 15 is a hot air circulating constant temperature layer that heats the TEOS to about 60-70°C, 16 is a pure water container, 17 is a constant temperature water tank that heats pure water to about 50°C, 18 is a replacement N2 supply pipe, 19
is the N2 supply pipe for purging, 20 is the TEOS supply pipe, 21 is the steam supply pipe, 22A, 22B, 22C, 22D
are temperature controllers 23A and 23B using thermocouples.
, 23C, 23D, etc., 24A,
24B, 24C, and 24D are gas flow meters (for low differential pressure), 25 is a N2 purge valve, and 26 is a TEOS steam source valve.

【0018】本発明の方法により半導体ICの層間絶縁
膜を形成するに際しては、例えば図3(a) に示すよ
うに、半導体基板31上に下層絶縁膜32が形成され、
この下層絶縁膜32上にサブミクロン間隔でサブミクロ
ン幅の複数のポリシリコン配線33A 、33B 等が
形成されてなる被処理基板34(図2の9に対応)を、
図2における反応容器1内の基板ステージ7上に載置し
、反応容器1内をN2に置換した後、真空排気口3から
排気を行って反応容器1内を1〜10Torr程度の減
圧状態に維持した状態で、バルブ4を開いてガス導入用
シャワー2から室温〜50℃程度に保持されたTEOS
蒸気110 を、図3(a) 示すように被処理基板3
4上吹きつけるように数秒間供給し、前記被処理基板3
4上にその表面に沿って厚さ 500〜1000Å程度
のTEOS凝縮膜10A を形成する。
When forming an interlayer insulating film of a semiconductor IC by the method of the present invention, for example, as shown in FIG. 3(a), a lower insulating film 32 is formed on a semiconductor substrate 31;
A substrate to be processed 34 (corresponding to 9 in FIG. 2) on which a plurality of polysilicon wirings 33A, 33B, etc. of submicron width are formed at submicron intervals on this lower layer insulating film 32,
After placing the substrate on the substrate stage 7 in the reaction container 1 in FIG. 2 and replacing the inside of the reaction container 1 with N2, exhaust is performed from the vacuum exhaust port 3 to reduce the pressure inside the reaction container 1 to about 1 to 10 Torr. While maintaining the temperature, open the valve 4 and use the gas introduction shower 2 to remove the TEOS, which has been maintained at room temperature to approximately 50°C.
The vapor 110 is transferred to the substrate 3 to be processed as shown in FIG. 3(a).
4 for several seconds as if spraying onto the substrate 3 to be processed.
A TEOS condensed film 10A having a thickness of approximately 500 to 1000 Å is formed on the surface of the TEOS film 10A along the surface thereof.

【0019】次いで図2のTEOS導入バルブ4を閉じ
反応容器1内をN2で置換し1〜10Torr程度に減
圧した状態でバルブ5を開き、図3(b) に示すよう
に、室温〜50℃程度に保持された水蒸気111 を前
記TEOS凝縮膜10A の形成されている被処理基板
34上に吹きつけH2O との反応、及び反応生成物で
あるC2H5OHの真空排気による蒸発によって、シラ
ノール[Si(OH)4] 膜12A に変化させる。
Next, the TEOS introduction valve 4 in FIG. 2 is closed, the inside of the reaction vessel 1 is replaced with N2, the pressure is reduced to about 1 to 10 Torr, and the valve 5 is opened, as shown in FIG. 3(b), from room temperature to 50°C. The water vapor 111 maintained at a certain level is blown onto the substrate 34 to be processed on which the TEOS condensed film 10A is formed, reacts with H2O, and evaporates the reaction product C2H5OH by vacuum evacuation to form silanol [Si(OH)]. )4] film 12A.

【0020】次いで図2のバルブ5を閉じ、バルブ6を
開き反応容器1内をN2で置換し、次いで所定の真空排
気を行って反応容器1内を数Torr程度のN2雰囲気
とし、赤外線ランプ8から発する赤外線(I.R) に
より基板1の表面を例えば 700℃程度に15秒程度
加熱し、脱水反応により図3(c) に示すように、前
記シラノール膜12A を厚さ 500〜1000Å程
度の完全にガラス化されて硬化し、且つクラック等の欠
陥のない第1のSiO2ガラス絶縁膜13A とする。
Next, the valve 5 in FIG. 2 is closed, the valve 6 is opened, and the inside of the reaction vessel 1 is replaced with N2. Then, the inside of the reaction vessel 1 is evacuated to a specified level to create an N2 atmosphere of about several Torr, and the infrared lamp 8 is turned on. The surface of the substrate 1 is heated to, for example, about 700° C. for about 15 seconds using infrared rays (I.R.) emitted from the silanol film 12A to a thickness of about 500 to 1000 Å by dehydration reaction, as shown in FIG. 3(c). The first SiO2 glass insulating film 13A is completely vitrified and cured, and has no defects such as cracks.

【0021】次いで、上記TEOS凝縮膜の形成、TE
OS凝縮膜と水蒸気との反応、及びI.R 加熱の工程
を例えば更に5回程度繰り返し、図3(d) に示すよ
うに 500〜1000Å程度の厚さの完全にガラス化
されて硬化し、且つクラック等の欠陥のない第1、第2
、第3、第4、第5及び第6のSiO2ガラス絶縁膜、
13A 、13B 、13C 、13D 、13E 、
13F が積層されてなる、厚さ3000〜6000Å
程度SiO2ガラス層間絶縁膜13が形成される。
Next, the formation of the TEOS condensed film, TEOS
Reaction of OS condensation film with water vapor, and I. The R heating process is repeated, for example, about 5 times, and as shown in FIG. 3(d), the first and second layers are completely vitrified and hardened to a thickness of about 500 to 1000 Å, and have no defects such as cracks.
, third, fourth, fifth and sixth SiO2 glass insulating films,
13A, 13B, 13C, 13D, 13E,
13F is laminated, thickness 3000-6000 Å
A SiO2 glass interlayer insulating film 13 is formed.

【0022】なお、上記方法においてTEOS凝縮膜1
0A 等は溝のコーナ部に厚く被着するので、図3(d
) に示すようにSiO2ガラス層間絶縁膜13は、第
1、第2、第3とSiO2ガラス絶縁膜を重ねるに従っ
てコーナ部に緩やかな丸みを帯びるようになり、最終的
には図のようにポリシリコン配線33A 、33B 間
のサブミクロン幅の溝の上部のSiO2ガラス層間絶縁
膜13の上面はほぼ平坦化される。
Note that in the above method, the TEOS condensed film 1
0A, etc., adheres thickly to the corners of the groove, so the
), as the first, second, and third SiO2 glass insulating films are stacked, the corners of the SiO2 glass interlayer insulating film 13 become gently rounded, and finally, as shown in the figure, the SiO2 glass interlayer insulating film 13 becomes polygonal. The upper surface of the SiO2 glass interlayer insulating film 13 above the submicron width trench between the silicon interconnections 33A and 33B is substantially flattened.

【0023】次いで図3(e) に示すように、通常の
スパッタ法及びパターニング法により、上記SiO2層
間絶縁膜13上に例えばアルミニウム配線35を形成し
、本発明に係る層間絶縁膜を用いた多層配線構造が完成
する。
Next, as shown in FIG. 3(e), for example, an aluminum wiring 35 is formed on the SiO2 interlayer insulating film 13 by ordinary sputtering and patterning methods to form a multilayer structure using the interlayer insulating film according to the present invention. The wiring structure is completed.

【0024】[0024]

【発明の効果】以上説明のように本発明によれば、サブ
ミクロンオーダの狭い幅を有する配線間の溝内にも完全
にガラス化されて硬化し、且つクラックの発生のない層
間絶縁膜を埋込んで上面が平坦化された層間絶縁膜が形
成できるので、層間絶縁膜上に形成される上層配線の信
頼性が確保されると同時に、層間絶縁膜の耐湿性は向上
し下層配線の信頼性も向上する。また本発明による層間
絶縁膜は完全にガラス化されているので、配線接続の形
成に際してコンタクト窓内へガスが放出されることがな
く、下層配線面の不導体化が回避されるので、配線層間
接続部の低コンタクト抵抗が確保される。
As described above, according to the present invention, it is possible to form an interlayer insulating film that is completely vitrified and hardened and that does not cause cracks even in the grooves between wirings having a narrow width on the order of submicrons. Since an interlayer insulating film with a flattened top surface can be formed by embedding, the reliability of the upper layer wiring formed on the interlayer insulating film is ensured, and at the same time, the moisture resistance of the interlayer insulating film is improved, increasing the reliability of the lower layer wiring. Sexuality also improves. Furthermore, since the interlayer insulating film according to the present invention is completely vitrified, gas is not released into the contact window when wiring connections are formed, and the lower wiring surface is prevented from becoming nonconductive. Low contact resistance at the connection portion is ensured.

【0025】以上により本発明は、多層配線構造を有す
る半導体装置の歩留り及び信頼性向上に極めて有効であ
る。
As described above, the present invention is extremely effective in improving the yield and reliability of semiconductor devices having a multilayer wiring structure.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の原理説明用工程断面図[Figure 1] Process cross-sectional diagram for explaining the principle of the present invention

【図2】 
 本発明に用いた製造装置の一例の模式構成図
[Figure 2]
A schematic configuration diagram of an example of a manufacturing device used in the present invention

【図3】
  本発明の方法の一実施例の工程断面図
[Figure 3]
Process sectional view of an embodiment of the method of the present invention

【図4】  
CVD−SiO2層間絶縁膜形成面の模式断面図
[Figure 4]
Schematic cross-sectional view of CVD-SiO2 interlayer insulation film formation surface

【図5
】  SOG層間絶縁膜形成面の模式断面図
[Figure 5
] Schematic cross-sectional view of the SOG interlayer insulation film formation surface

【符号の説明】[Explanation of symbols]

1  反応容器 2  ガス導入用シャワー 3  真空排気口 4  テトラエトキシシラン(TEOS)蒸気導入バル
ブ5  水蒸気(H2O) 導入バルブ 6  窒素(N2)導入バルブ 7  基板ステージ 8  赤外線ランプ 9  基板 10  TEOS凝縮膜 12  シラノール膜 13  SiO2ガラス絶縁膜 110   TEOS蒸気 111   水蒸気 IR  赤外線
1 Reaction container 2 Gas introduction shower 3 Vacuum exhaust port 4 Tetraethoxysilane (TEOS) steam introduction valve 5 Water vapor (H2O) introduction valve 6 Nitrogen (N2) introduction valve 7 Substrate stage 8 Infrared lamp 9 Substrate 10 TEOS condensed film 12 Silanol Film 13 SiO2 glass insulation film 110 TEOS vapor 111 Water vapor IR Infrared

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  窒素若しくは不活性ガスの減圧雰囲気
中で基板上にテトラエトキシシランの蒸気を導入し該基
板上にテトラエトキシシラン凝縮膜を形成する工程と、
該テトラエトキシシラン凝縮膜を有する該基板上に窒素
若しくは不活性ガスの減圧雰囲気中で水蒸気を導入し該
テトラエトキシシラン凝縮膜を該水蒸気との反応により
シラノール膜に変化せしめる工程と、該基板を加熱し該
シラノール膜を脱水反応により酸化シリコンガラスから
なる絶縁膜に変化せしめる工程を含むことを特徴とする
半導体装置の製造方法。
1. A step of introducing tetraethoxysilane vapor onto a substrate in a reduced pressure atmosphere of nitrogen or inert gas to form a tetraethoxysilane condensed film on the substrate;
a step of introducing water vapor onto the substrate having the tetraethoxysilane condensed film in a reduced pressure atmosphere of nitrogen or inert gas and converting the tetraethoxysilane condensed film into a silanol film by reaction with the water vapor; 1. A method for manufacturing a semiconductor device, comprising the step of heating and converting the silanol film into an insulating film made of silicon oxide glass through a dehydration reaction.
【請求項2】  半導体基板上に形成された絶縁膜上に
下層の導電体パターンを形成し、該下層導電体パターン
の形成面上に層間絶縁膜を形成し、該層間絶縁膜上に上
層の導電体パターンを形成する工程を有する半導体装置
の製造方法において、該層間絶縁膜を形成するに際して
、該下層導電体パターンの形成面上にテトラエトキシシ
ランの蒸気を吹きつけて該下層導電体パターンの形成面
上にテトラエトキシシランの凝縮膜を被着する第1の工
程と、該テトラエトキシシランの凝縮膜を有する該下層
導電体パターン形成面上に水蒸気を吹きつけ、化学反応
により該テトラエトキシシラン凝縮膜をシラノール膜に
変化せしめる第2の工程と、熱処理による脱水反応によ
り該シラノール膜を酸化シリコンガラス膜に変化せしめ
る第3の工程とを含み、上記第1、第2、第3の工程を
順次繰り返し行って該下層導電体パターン形成面上に酸
化シリコンガラスよりなり上面が平坦化された所定の厚
さの層間絶縁膜を形成する工程を有することを特徴とす
る半導体装置の製造方法。
2. A lower conductor pattern is formed on an insulating film formed on a semiconductor substrate, an interlayer insulating film is formed on the surface of the lower conductor pattern, and an upper conductor pattern is formed on the interlayer insulating film. In a method for manufacturing a semiconductor device that includes a step of forming a conductor pattern, when forming the interlayer insulating film, tetraethoxysilane vapor is sprayed onto the formation surface of the lower conductor pattern to form the lower conductor pattern. A first step of depositing a condensed film of tetraethoxysilane on the forming surface, and spraying water vapor onto the lower conductor pattern forming surface having the condensed film of tetraethoxysilane to form the tetraethoxysilane through a chemical reaction. The method includes a second step of changing the condensed film into a silanol film, and a third step of changing the silanol film into a silicon oxide glass film through a dehydration reaction by heat treatment, and the first, second, and third steps are performed. A method for manufacturing a semiconductor device, comprising the steps of sequentially and repeatedly forming an interlayer insulating film of a predetermined thickness made of silicon oxide glass and having a flattened upper surface on the surface on which the lower conductor pattern is formed.
JP1176591A 1991-02-01 1991-02-01 Manufacture of semiconductor device Withdrawn JPH04246846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176591A JPH04246846A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176591A JPH04246846A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04246846A true JPH04246846A (en) 1992-09-02

Family

ID=11787074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176591A Withdrawn JPH04246846A (en) 1991-02-01 1991-02-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04246846A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840631A (en) * 1994-11-28 1998-11-24 Nec Corporation Method of manufacturing semiconductor device
JP2010245449A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and storage medium
JP2010245448A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Film depositing device, film depositing method, and storage medium
US20120041170A1 (en) * 2009-04-30 2012-02-16 Hynek Benes Reactive inorganic clusters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840631A (en) * 1994-11-28 1998-11-24 Nec Corporation Method of manufacturing semiconductor device
JP2010245449A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and storage medium
JP2010245448A (en) * 2009-04-09 2010-10-28 Tokyo Electron Ltd Film depositing device, film depositing method, and storage medium
US20120041170A1 (en) * 2009-04-30 2012-02-16 Hynek Benes Reactive inorganic clusters
US8829143B2 (en) * 2009-04-30 2014-09-09 Dow Global Technologies Llc Reactive inorganic clusters

Similar Documents

Publication Publication Date Title
KR100372216B1 (en) Hydrogen Chamber Secuoxane Flowable Oxides as Interlevel Dielectric Devices for ULSI Circuits of 0.5 and Less Than 0.5 Microns
US5459105A (en) Method of manufacturing a semiconductor device having multilayer insulating films
US5840631A (en) Method of manufacturing semiconductor device
JPH04239750A (en) Forming method for fluorine-containing silicon oxide film
JPH05226480A (en) Manufacture of semiconductor device
KR960006961B1 (en) Method for forming interconnect structure, insulating films and surface protective films of semiconductor device
US6972252B1 (en) Method of improving adhesion between two dielectric films
JP3173426B2 (en) Method for manufacturing silica insulating film and method for manufacturing semiconductor device
TW587285B (en) Method for manufacturing a semiconductor device
JPH06177120A (en) Deposition of interlayer dielectric film
JPH04246846A (en) Manufacture of semiconductor device
JPH1126449A (en) Formation of insulating film
US6281113B1 (en) Method for forming an interplayer insulating film and semiconductor device
JPH0936117A (en) Multilayer wiring forming method
JPH06163523A (en) Fabrication of semiconductor device
JPH01185945A (en) Manufacture of semiconductor device
JP4747755B2 (en) Organic insulating film, manufacturing method thereof, and semiconductor device using organic insulating film
JP3158835B2 (en) Semiconductor device and manufacturing method thereof
JPH03214627A (en) Semiconductor device and its manufacture
KR0149468B1 (en) A method for forming a semiconductor device
JP2560623B2 (en) Method for manufacturing semiconductor device
JPH0758199A (en) Manufacture of semiconductor device
JPH08203892A (en) Method and system for producing semiconductor device
JPH04107924A (en) Manufacture of semiconductor device
JPH0590425A (en) Formation of multilayer wiring

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514