JPH0424548A - Co2 sensor and co2 detecting method - Google Patents

Co2 sensor and co2 detecting method

Info

Publication number
JPH0424548A
JPH0424548A JP12942990A JP12942990A JPH0424548A JP H0424548 A JPH0424548 A JP H0424548A JP 12942990 A JP12942990 A JP 12942990A JP 12942990 A JP12942990 A JP 12942990A JP H0424548 A JPH0424548 A JP H0424548A
Authority
JP
Japan
Prior art keywords
sensor
metal oxide
capacitance
oxide
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12942990A
Other languages
Japanese (ja)
Other versions
JP2911962B2 (en
Inventor
Tatsuki Ishihara
達己 石原
Kazuhiro Yonetani
米谷 和浩
Yusaku Takita
祐作 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP12942990A priority Critical patent/JP2911962B2/en
Publication of JPH0424548A publication Critical patent/JPH0424548A/en
Application granted granted Critical
Publication of JP2911962B2 publication Critical patent/JP2911962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To obtain a CO2 sensor and a CO2 detecting method characterized by high sensitivity, quick response speed and CO2 selecting property by mixing perovskite metal oxide and non-composite-based metal oxides. and utilizing the change in capacitance of the mixture. CONSTITUTION:The equimolar mixture of BaCO3 and TiO2 is baked at 1,200 deg.C for 12 hours, and perovskite compound BaTiO3 is obtained. Equimolar amounts of various non-composite-based metal oxides are mixed into the BaTiO3. The mixture is compressed and molded into a disk shape and baked at 500 deg.C for one hour. Silver paste 4 is applied on both surfaces of the disk 2 after baking, and a CO2 sensor is obtained.

Description

【発明の詳細な説明】 [発明の利用分野1 この発明は、金属酸化物の静電容量の変化を用いたCO
,の検出に関する。
Detailed Description of the Invention [Field of Application of the Invention 1] This invention is a CO
, concerning the detection of .

[従来技術I CO2は化学的に極めて安定なガスであり、検出が最も
雌しいガスである。現在検討されているCO2センサに
は、β−アルミナやに、CO3等のco、!−イオン導
電体を用し)るものがある。このセンサでは、参照雰囲
気とCO2含有雰囲気とのCOr濃度の相違により、導
電体に起電力を発生させ、CO2を検出する。
[Prior Art I CO2 is a chemically extremely stable gas and is the most difficult gas to detect. CO2 sensors currently being considered include β-alumina, CO3, etc. - There are some that use ionic conductors). This sensor detects CO2 by generating an electromotive force in the conductor due to the difference in COr concentration between the reference atmosphere and the CO2-containing atmosphere.

これ以外に特公昭52−、II 3.591号は、Ba
T103等のペロブスカイト化合物を、ガスセンサに用
いることを提案している。センサの出力には、ペロブス
カイト化合物の抵抗値を用いる。しかしBaTi○、の
抵抗値は、COlによってはほとんど変化しない。これ
とは別に、特開昭61−262゜647号は、水酸化ア
パタイトの抵抗値からCO3を検出することを提案して
いる。
In addition to this, Special Publication No. 52-, II 3.591 is Ba
It is proposed that perovskite compounds such as T103 be used in gas sensors. The resistance value of the perovskite compound is used for the sensor output. However, the resistance value of BaTi○ hardly changes depending on COl. Separately, Japanese Patent Application Laid-Open No. 61-262゜647 proposes detecting CO3 from the resistance value of hydroxyapatite.

[発明の課題] この発明の課題は、高感度でかつ応答速度が速く、CO
7に選択的な、CO,センサとCO□検出方法とを得る
ことにある。
[Problem of the invention] The object of the invention is to provide high sensitivity and fast response speed, and to
The object of the present invention is to obtain a CO sensor and a CO□ detection method that are selective to 7.

[発明の構成] この発明では、ペロブスカイト金属酸化物と非複合系金
属酸化物とを混合し、その静電容量の変化から、CO3
を検出する。静電容量の変化は、非複合系金属酸化物と
CO3との可逆的炭酸塩形成反応に基づくものと考えら
れる。単味のペロブスカイト金属酸化物や単味の非複合
系金属酸化物では、CO2と接触しても、静電容量はほ
とんど変化しない。
[Structure of the invention] In this invention, a perovskite metal oxide and a non-composite metal oxide are mixed, and from the change in capacitance, CO3
Detect. The change in capacitance is believed to be based on the reversible carbonate formation reaction between the non-composite metal oxide and CO3. In a simple perovskite metal oxide or a simple non-composite metal oxide, the capacitance hardly changes even if it comes into contact with CO2.

用いる非複合系金属酸化物は、可逆的な炭酸塩形成反応
が容易なものが好ましい。このようなものには、アルカ
リ土類金属の酸化物、Cr及びFe。
The non-composite metal oxide used is preferably one that can easily undergo a reversible carbonate formation reaction. These include oxides of alkaline earth metals, Cr and Fe.

Co、 Ni、 Cu、の酸化物、Y及びZrの酸化物
、Pb及びB1の酸化物、原子番号57〜72のランタ
ニド元素の酸化物等がある。
Examples include oxides of Co, Ni, and Cu, oxides of Y and Zr, oxides of Pb and B1, and oxides of lanthanide elements having atomic numbers of 57 to 72.

[実施例] (ガスセンサの調製) ペロブスカイト化合物として、BaTiO3を選んだ。[Example] (Preparation of gas sensor) BaTiO3 was chosen as the perovskite compound.

ペロブスカイト化合物には、これ以外にCaTiO3,
5rTiOx等のアルカリ土類とTiとのペロブスカイ
ト、Ba5nO,、CaSnO3等のアルカリ土類とS
nとのペロブスカイト、LaNi0+LaCoO3,L
aMnOs等の、ランタニド元素と遷移金属元素とのペ
ロブスカイト、あるいはCaZr○3+  5rCeO
s等がある。
In addition to this, perovskite compounds include CaTiO3,
Perovskite of alkaline earth such as 5rTiOx and Ti, alkaline earth such as Ba5nO, CaSnO3 and S
Perovskite with n, LaNi0+LaCoO3,L
Perovskites of lanthanide elements and transition metal elements such as aMnOs, or CaZr○3+ 5rCeO
There are s etc.

BacO3とT i Ozとの等モル混合物を1200
°Cで12時間焼成し、BaTi0.を得た。BaTi
01に各種の非複合系金属酸化物を等モル量混合し、デ
ィスク状に圧縮成型して、500℃で1時間焼成した。
An equimolar mixture of BacO3 and T i Oz was added to 1200
℃ for 12 hours, BaTi0. I got it. BaTi
01 was mixed with equimolar amounts of various non-composite metal oxides, compression molded into a disk shape, and fired at 500° C. for 1 hour.

混合比は等モル量でなくても良い。The mixing ratio does not have to be equimolar.

焼成後のディスクの両面に銀ペーストを塗布し、第5図
のC02センサとした。図において、2はペロブスカイ
ト金属酸化物と非複合系金属酸化物との混合焼結ディス
ク(直径131m、厚さ1 am)、4は銀電極である
Silver paste was applied to both sides of the fired disk to form the C02 sensor shown in FIG. In the figure, 2 is a mixed sintered disk of perovskite metal oxide and non-composite metal oxide (diameter 131 m, thickness 1 am), and 4 is a silver electrode.

CO2センサを流通系に設置し、ヒータで加熱して、2
端子法で抵抗値や静電容量の変化を測定した。試料ガス
には、乾燥空気でCO2を希釈したものを用いた。抵抗
値の変化は一般に僅かであっlこ。
Install the CO2 sensor in the distribution system, heat it with a heater, and
Changes in resistance and capacitance were measured using the terminal method. The sample gas used was CO2 diluted with dry air. The change in resistance value is generally small.

第1図に、単味のBaTiO3,単味のpboと、Ba
Ti0.とpboとの等モル混合物との、CO。
Figure 1 shows plain BaTiO3, plain pbo, and BaTiO3.
Ti0. CO with an equimolar mixture of and pbo.

による容量の変化を示す。測定温度は500℃、縦軸は
乾燥空気中を基準とするCO2中での静電容量を、横軸
はCO2濃度を表す。単味のBaTiO3や単味のPb
Oの容量はCO3ではほとんど変化せず、BaTi0.
−PbO系の容量はCO2で減少する。
This shows the change in capacitance due to The measurement temperature was 500° C., the vertical axis represents the capacitance in CO2 based on dry air, and the horizontal axis represents the CO2 concentration. Plain BaTiO3 and plain Pb
The capacity of O hardly changes with CO3, and with BaTi0.
The capacity of the -PbO system decreases with CO2.

第2図に、CuOとBaTiOsとの等モル混合物の、
COlによる容量の変化を示す。測定温度は456℃で
ある。低濃度のCO7へはこの系で最も高い感度が得ら
れ、他の系とは異なりCOlとの接触で静電容量が増加
した。最適動作温度は456°Cと低い。
FIG. 2 shows an equimolar mixture of CuO and BaTiOs.
It shows the change in capacitance due to CO1. The measurement temperature is 456°C. This system had the highest sensitivity to low concentrations of CO7, and unlike the other systems, the capacitance increased on contact with CO1. The optimum operating temperature is as low as 456°C.

第3図に、CuO−BaTiO3系でのco、、co。Figure 3 shows co, , co in the CuO-BaTiO3 system.

H,、CH,への応答波形を示す(測定温度456°C
)。ガス濃度は各2%で、CO,への感度が最も高く、
COへの感度がこれに次ぎ、N2やCH。
Shows the response waveform to H,,CH, (measured temperature 456°C
). The gas concentration is 2% each, and the sensitivity to CO is the highest.
Sensitivity to CO comes next, followed by N2 and CH.

にはほとんど感じない。COの一部はセンサとの接触で
CO7に酸化されており、COへの感度がセンサ表面で
のCO−+CO2酸化反応で発現することが分かる。セ
ンサはN7やCHtには感じず、CO3の検出目標濃度
はCOの検出目標濃度に比べ充分高いので、このセンサ
は実質的にCO2に選択的である。
I hardly feel it. It can be seen that some of the CO is oxidized to CO7 upon contact with the sensor, and that sensitivity to CO is expressed through the CO-+CO2 oxidation reaction on the sensor surface. The sensor is not sensitive to N7 or CHt, and the detected target concentration of CO3 is sufficiently higher than that of CO, so the sensor is substantially selective to CO2.

2%のCO2に対する80%応答時間は25秒、CO2
含有雰囲気から空気中へ雰囲気を変更した際の回復応答
時間は180秒程度である。応答速度は、充分に実用的
な速さである。
80% response time for 2% CO2 is 25 seconds, CO2
The recovery response time when changing the atmosphere from a containing atmosphere to air is about 180 seconds. The response speed is fast enough for practical use.

第4図に、N1O−BaTiOsの等モル混合物での、
静電容量のCO1濃度依存性を示す。図の上部には、静
電容量Cを縦軸にCO2への応答波形を示す。測定温度
は555℃である。
FIG. 4 shows that in an equimolar mixture of N1O-BaTiOs,
The dependence of capacitance on CO1 concentration is shown. At the top of the figure, the response waveform to CO2 is shown with capacitance C as the vertical axis. The measurement temperature is 555°C.

表1に、各種非複合系金属酸化物とBaTi0゜との等
モル混合物について、検出特性を示す。
Table 1 shows the detection characteristics of equimolar mixtures of various non-composite metal oxides and 0° BaTi.

表 I  Co2検出特性 酸化物1′   誘電率2′  動作温度(°c) 3
1 CaOl 9.64  >900” MgO22,2187O La203  11.28  766 NdzOs   11.27  550YzOs   
10.21  759 cetos   22.09  661PbO66,9
4501 Nio   47.81  555 CuO109,61456 Zr(L   17.45  642 Cost4171−93  528 Fezos   27.17  341Bi、O327
,83445 VxOs   19.86    ・・・Sing  
 13.42    ・・・l):非複合系金属酸化物
、 Co30.は BaTi0s : Co3O4−3=C
O2感度0 0.891 0.329 0.451 0.641 0.794 0.410 0.711 0.441 2.892 0.740 0.362 0.678 0.824 1.00 1.00 1゜ 2):300℃の空気中の誘電率 3):最適動作温度。
Table I Co2 detection characteristics Oxide 1' Dielectric constant 2' Operating temperature (°c) 3
1 CaOl 9.64 >900” MgO22,2187O La203 11.28 766 NdzOs 11.27 550YzOs
10.21 759 cetos 22.09 661PbO66,9
4501 Nio 47.81 555 CuO109,61456 Zr(L 17.45 642 Cost4171-93 528 Fezos 27.17 341Bi, O327
,83445 VxOs 19.86...Sing
13.42...l): Non-composite metal oxide, Co30. is BaTi0s: Co3O4-3=C
O2 sensitivity 0 0.891 0.329 0.451 0.641 0.794 0.410 0.711 0.441 2.892 0.740 0.362 0.678 0.824 1.00 1.00 1° 2): Dielectric constant in air at 300°C 3): Optimum operating temperature.

4):2%のCO2への感度、CCO,/Ca1r。4): Sensitivity to 2% CO2, CCO,/Ca1r.

5):感度の飽和が生じるCO2濃度、%単位6):9
00℃以上。
5): CO2 concentration at which sensitivity saturation occurs, in % 6): 9
00℃ or higher.

表から明らかなように、Cu0−BaTio、系で最も
高感度になり、CuOではC02により容量が増加し、
他の酸化物ではCO2で容量が減少する。
As is clear from the table, the Cu0-BaTio system has the highest sensitivity, and in CuO, the capacity increases with CO2,
Other oxides have reduced capacity with CO2.

高い感度が得られる非複合系金属酸化物はCu○MgO
,La、O,、CeO,、Ni○、Co、O,であり、
これらはいずれも可逆的な炭酸塩形成反応が容易な酸化
物である。炭酸塩が安定なCaOでは感度は低く、最適
動作温度も高い。また最適動作温度は、炭酸塩の安定性
が高い程高い。更に炭酸塩を形成しない、V2O,やS
10.では感度が得られない。これらのことから、CO
,による容量の変化は、非複合系金属酸化物とCO7と
の可逆的反応による炭酸塩の形成に基づくものと考えら
れる。
A non-composite metal oxide that provides high sensitivity is Cu○MgO.
, La, O, , CeO, , Ni○, Co, O,
All of these are oxides that easily undergo a reversible carbonate formation reaction. For CaO, where the carbonate is stable, the sensitivity is low and the optimum operating temperature is high. Furthermore, the more stable the carbonate, the higher the optimum operating temperature. Additionally, V2O, and S, which do not form carbonates.
10. Sensitivity cannot be obtained. From these facts, CO
The change in capacity due to , is considered to be based on the formation of carbonate due to the reversible reaction between the non-complex metal oxide and CO7.

[発明の効果] この発明では、CO7に選択的で応答速度が速く、かつ
高感度な、CO2センサとCO2検出方法とが得られる
。この発明では金属酸化物の容量の変化を利用し、β−
アルミナやに2C○1等の固体電解質センサとは異なり
、標準雰囲気を必要としない。
[Effects of the Invention] The present invention provides a CO2 sensor and a CO2 detection method that are selective to CO7, have a fast response speed, and are highly sensitive. In this invention, β-
Unlike solid electrolyte sensors such as alumina and 2C○1, it does not require a standard atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はBaTi0s−PbO系co、センサの濃度特
性を示す特性図、 第2図はCuO−BaT io 、系CO,センサの濃
度特性を示す特性図、 第3図はCu0−BaTio3系CO□センサの応答波
形を示す特性図、 第4図はN1O−BaTiOx系CO,センサの濃度特
性を示す特性図、 第5図は、実施例のCO,センサの斜視図である。 第 図 第 図 rn。 (’/、 ) 第 図 第 図 第4 図 CO2(’10)
Figure 1 is a characteristic diagram showing the concentration characteristics of BaTi0s-PbO system CO, sensor. Figure 2 is a characteristic diagram showing the concentration characteristics of CuO-BaTio, system CO, sensor. Figure 3 is Cu0-BaTio3 system CO□. FIG. 4 is a characteristic diagram showing the response waveform of the sensor; FIG. 4 is a characteristic diagram showing the concentration characteristics of the N1O-BaTiOx-based CO sensor; FIG. 5 is a perspective view of the CO sensor of the example. Figure Figure rn. ('/, ) Figure Figure 4 Figure CO2 ('10)

Claims (3)

【特許請求の範囲】[Claims] (1)ペロブスカイト金属酸化物と、非複合系金属酸化
物との混合物の、静電容量の変化を用いたCO_2セン
サ。
(1) A CO_2 sensor that uses changes in capacitance of a mixture of a perovskite metal oxide and a non-composite metal oxide.
(2)前記の非複合系金属酸化物を、アルカリ土類金属
の酸化物、Cr及びFe、Co、Ni、Cu、の酸化物
、Y及びZrの酸化物、Pb及びBiの酸化物、原子番
号57〜72のランタニド元素の酸化物、からなる群の
少なくとも一員の酸化物としたことを特徴とする、請求
項1のCO_2センサ。
(2) The non-composite metal oxide may be an alkaline earth metal oxide, an oxide of Cr and Fe, Co, Ni, Cu, an oxide of Y and Zr, an oxide of Pb and Bi, or an atom. 2. The CO_2 sensor according to claim 1, wherein the CO_2 sensor is an oxide of at least one member of the group consisting of oxides of lanthanide elements numbered 57 to 72.
(3)ペロブスカイト金属酸化物と、非複合系金属酸化
物とを混合して、CO_2センサとし、センサ中の非複
合系金属酸化物と、CO_2との可逆的な炭酸塩形成反
応により、センサの静電容量を変化させ、 この静電容量の変化から、CO_2を検出する、CO_
2検出方法。
(3) A CO_2 sensor is made by mixing a perovskite metal oxide and a non-composite metal oxide, and a reversible carbonate formation reaction between the non-composite metal oxide in the sensor and CO_2 causes the sensor to CO_2 is detected by changing the capacitance and from this change in capacitance.
2 detection method.
JP12942990A 1990-05-18 1990-05-18 CO Bottom 2 sensor and CO Bottom 2 detection method Expired - Lifetime JP2911962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12942990A JP2911962B2 (en) 1990-05-18 1990-05-18 CO Bottom 2 sensor and CO Bottom 2 detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12942990A JP2911962B2 (en) 1990-05-18 1990-05-18 CO Bottom 2 sensor and CO Bottom 2 detection method

Publications (2)

Publication Number Publication Date
JPH0424548A true JPH0424548A (en) 1992-01-28
JP2911962B2 JP2911962B2 (en) 1999-06-28

Family

ID=15009273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12942990A Expired - Lifetime JP2911962B2 (en) 1990-05-18 1990-05-18 CO Bottom 2 sensor and CO Bottom 2 detection method

Country Status (1)

Country Link
JP (1) JP2911962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993624A (en) * 1995-12-07 1999-11-30 Matsushita Electric Industrial Co., Ltd. Carbon dioxide gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993624A (en) * 1995-12-07 1999-11-30 Matsushita Electric Industrial Co., Ltd. Carbon dioxide gas sensor

Also Published As

Publication number Publication date
JP2911962B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
US6019881A (en) NOx sensor
JPS6054259B2 (en) Moisture sensitive ceramic
US20060231987A1 (en) Tape-cast sensors and method of making
JPS6179155A (en) Oxygen sensor element
JPH0424548A (en) Co2 sensor and co2 detecting method
Ishihara et al. Capacitive-type gas sensor for the selective detection of carbon dioxide
WO1998032007A1 (en) Nitrogen oxides detection method, and sensor element for detection of nitrogen oxides
Ishihara et al. Mixed Oxide Capacitor of CuO-BaSnO3 as a Sensor for CO2 Detection over a wide Range of Concentration.
JP2000019152A (en) Hydrogen gas sensor
JP2948124B2 (en) Oxygen sensor
JP2566272B2 (en) Oxygen sensor
JPS637342B2 (en)
JPH09257747A (en) Carbon dioxide sensor
JP3469344B2 (en) Carbon monoxide gas sensing element
JP3450898B2 (en) Method for manufacturing incomplete combustion detection element for exhaust gas
JPH03165253A (en) Oxygen sensor
JPH07140099A (en) Electrochemical apparatus
JPH01291151A (en) Oxygen sensor
US20020070109A1 (en) Hydrocarbon sensor and method for producing the same
JP2985589B2 (en) Temperature sensor
JP2985562B2 (en) Temperature sensor
JP3516488B2 (en) Nitrogen oxide sensor
JPH09264867A (en) Carbon dioxide sensor
JPH0471029B2 (en)
JP2001324464A (en) Carbon dioxide gas sensor and production method thereof