JPH0424524A - Remote temperature measuring apparatus - Google Patents

Remote temperature measuring apparatus

Info

Publication number
JPH0424524A
JPH0424524A JP2129908A JP12990890A JPH0424524A JP H0424524 A JPH0424524 A JP H0424524A JP 2129908 A JP2129908 A JP 2129908A JP 12990890 A JP12990890 A JP 12990890A JP H0424524 A JPH0424524 A JP H0424524A
Authority
JP
Japan
Prior art keywords
light
scanning
infrared
band
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129908A
Other languages
Japanese (ja)
Inventor
Tatsuo Arai
竜雄 新井
Hisashi Yoshimori
久 吉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2129908A priority Critical patent/JPH0424524A/en
Publication of JPH0424524A publication Critical patent/JPH0424524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make it possible to perform accurate temperature measurement even at a shallow depression angle even under sunlight by providing an optical means for introducing external light, and providing an infrared-ray sensor for receiving the emitted light from the optical means. CONSTITUTION:A scanning part condenses external light with a mirror and a lens, and an object is optically scanned. An infrared-ray sensor 4 receives the emitted light from the scanning part 3 and responds to light in the ozone absorbing band in the spectrum of sunlight, i.e. the wavelength band of 9.6mum. The scanning part having the sensitivity in the wavelength in the vicinity of 8 - 13mum is used. A bandpass filter 5 is located between the scanning part 3 and the infrared-ray sensor 4 and transmits light in the wavelength band of the ozone absorbing band of 9.6mum. A cooler 6 cools the infrared-ray sensor 4. A processing part 2 comprises an amplifier 7 for amplifying the detected signal from the sensor 4, an operating part 8 for operating the output of the amplifier 7, a display part 9 for displaying the result, a control part 10 for controlling the operating part 8 and other circuit parts and a scanning driving circuit 11 for driving the scanning part 3 based on the instruction from the control part 10.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、海水面温度のように、太陽光の下にある物体
の温度検出に適した遠隔温度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a remote temperature measurement device suitable for detecting the temperature of an object under sunlight, such as sea surface temperature.

〈従来の技術〉 遠隔的に物体の温度を検出する測定装置としては、物体
から放射される赤外線の強度を赤外線センサで検出する
ことで、その物体の温度を測定するものがある。
<Prior Art> As a measuring device for remotely detecting the temperature of an object, there is one that measures the temperature of an object by using an infrared sensor to detect the intensity of infrared rays emitted from the object.

この遠隔温度測定装置では、レンズやミラー等の光学手
段で外部光を赤外線センサ上に導くようになっており、
赤外線センサの検出信号を処理することにより物体の温
度測定値か得られる。
This remote temperature measurement device uses optical means such as lenses and mirrors to guide external light onto the infrared sensor.
By processing the detection signal of the infrared sensor, a temperature measurement of the object can be obtained.

〈発明が解決しようとする課題〉 ところて、従来の遠隔温度測定装置を用いて、太陽光の
下にある物体の温度、例えば、海水面の温度を測定する
場合、次のような問題がある。
<Problems to be Solved by the Invention> However, when measuring the temperature of an object under sunlight, such as the temperature of sea water, using a conventional remote temperature measurement device, there are the following problems. .

すなわち、太陽光の下での測定では、一般に、対象物は
遠方にあって、相対的に温度測定装置の位置が低く、温
度測定装置の検出方向と水平方向との間の角度(俯角)
が浅くなりがちであるが、このように検出方向の俯角が
浅いと、温度測定装置には対象物の放射光のほかに、太
陽光の反射光が多量に入射し、この反射光のために放射
光の強度が検出できなくなり、温度測定が不可能となる
In other words, when measuring under sunlight, the object is generally far away, the temperature measurement device is located relatively low, and the angle (depression angle) between the detection direction of the temperature measurement device and the horizontal direction is small.
However, when the angle of depression in the detection direction is shallow, a large amount of reflected sunlight enters the temperature measuring device in addition to the emitted light from the object, and this reflected light causes The intensity of the synchrotron radiation becomes undetectable, making temperature measurement impossible.

本発明は、上述の問題点に鑑みてなされたものであって
、太陽光の下においても浅い俯角で、海水面等の温度を
正確に測定することができる遠隔温度測定装置を提供す
ることを課題とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a remote temperature measurement device that can accurately measure the temperature of seawater, etc., even under sunlight with a shallow angle of depression. Take it as a challenge.

く課題を解決するための手段〉 本発明は、上記の課題を達成するために、外部光を導入
する光学手段と、この光学手段の出射光を受光する赤外
線センサとを備えた遠隔温度測定装置であって、光学手
段と赤外線センサとの間の光路上にバンドパスフィルタ
が設けられ、該バンドパスフィルタは、太陽光スペクト
ル中のオゾン吸収帯と同一波長帯の光を透過するもので
あり、赤外線センサは、オゾン吸収帯を含む帯域で感度
を有するものである構成とした。
Means for Solving the Problems> In order to achieve the above problems, the present invention provides a remote temperature measuring device comprising an optical means for introducing external light and an infrared sensor for receiving light emitted from the optical means. A bandpass filter is provided on the optical path between the optical means and the infrared sensor, and the bandpass filter transmits light in the same wavelength band as the ozone absorption band in the sunlight spectrum, The infrared sensor was configured to have sensitivity in a band including the ozone absorption band.

〈作用〉 太陽光の下で、上記構成の遠隔温度測定装置を比較的低
い位置から対象物に向けると、その対象物から光学手段
には、放射光とともに、太陽光の反射光が入射する。こ
れら入射光のうち、オゾン吸収帯と同一波長帯の光だけ
がバンドパスフィルタを透過して赤外線センサに達し、
オゾン吸収帯以外の光はカットされる。
<Operation> When the remote temperature measuring device having the above configuration is directed toward an object from a relatively low position under sunlight, reflected light of the sunlight enters the optical means from the object together with emitted light. Of these incident lights, only the light in the same wavelength band as the ozone absorption band passes through the bandpass filter and reaches the infrared sensor.
Light outside the ozone absorption band is cut off.

太陽光の反射光のスペクトルには、もともとオゾン吸収
帯の光は含まれていないから、パントノくスフィルタで
カットされるのは、太陽光の反射光の全部であり、オゾ
ン吸収帯と同一波長の対象物からの放射光だけがバンド
パスフィルタを透過することになる。
The spectrum of sunlight reflected light does not originally include light in the ozone absorption band, so what is cut by the pantone filter is all of the sunlight reflected light, which has the same wavelength as the ozone absorption band. Only the emitted light from the target object will pass through the bandpass filter.

赤外線センサは、このオゾン吸収帯と同一波長帯の放射
光を受光し、この放射光の強度から対象物の温度測定値
が得られる。
The infrared sensor receives radiation in the same wavelength band as this ozone absorption band, and a temperature measurement value of the object can be obtained from the intensity of this radiation.

〈実施例〉 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
<Example> Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は本発明の一実施例の構成図である。この実施例
の遠隔温度測定装置は、光学系1と、信号処理系2とか
らなる。
FIG. 1 is a block diagram of an embodiment of the present invention. The remote temperature measuring device of this embodiment consists of an optical system 1 and a signal processing system 2.

光学系1は、スキャニング部3と、赤外線センサ4と、
バンドパスフィルタ5と、冷却器6とを備える。
The optical system 1 includes a scanning section 3, an infrared sensor 4,
It includes a bandpass filter 5 and a cooler 6.

スキャニング部3は、外部光をミラーやレンズで集光し
て、対象物を光学的に走査するものである。
The scanning unit 3 condenses external light with a mirror or lens and optically scans the object.

赤外線センサ4は、スキャニング部3の出射光を受光す
るもので、太陽光スペクトル中のオゾン吸収帯、すなわ
ち96μm波長帯の光に感応するよう、波長8〜13μ
m付近に感度があるものが使用される。
The infrared sensor 4 receives the light emitted from the scanning unit 3, and is sensitive to light in the ozone absorption band in the sunlight spectrum, that is, in the 96 μm wavelength band.
A sensor with sensitivity around m is used.

バンドパスフィルタ5は、スキャニング部3と赤外線セ
ンサ4との間の光路上にあって、オゾン吸収帯である9
、6μm波長帯の光を透過するものである。このバンド
パスフィルタ5には、主として、誘電体多層膜フィルタ
が使用されるが、回折格子を用いてもよい。
The bandpass filter 5 is located on the optical path between the scanning unit 3 and the infrared sensor 4 and has an ozone absorption band of 9
, which transmits light in the 6 μm wavelength band. A dielectric multilayer filter is mainly used as the bandpass filter 5, but a diffraction grating may also be used.

冷却器6は赤外線センサ4を冷却するものである。The cooler 6 cools the infrared sensor 4.

信号処理系2は、赤外線センサ4の検出信号を増幅する
増幅器7と、増幅器7の出力に基づいて対象物の温度測
定値を演算する演算部8と、演算結果を表示する表示器
9と、演算部8その他の回路部を制御する制御部IOと
、制御部10からの指示に基づいてスキャニング部3を
駆動するスキャニング駆動回路11とからなる。
The signal processing system 2 includes an amplifier 7 that amplifies the detection signal of the infrared sensor 4, a calculation unit 8 that calculates the temperature measurement value of the object based on the output of the amplifier 7, and a display 9 that displays the calculation result. It consists of a control section IO that controls the calculation section 8 and other circuit sections, and a scanning drive circuit 11 that drives the scanning section 3 based on instructions from the control section 10.

上記の構成において、対象物からその物体の放射光と、
太陽光の反射光とかスキャニング部3に入射すると、こ
れらの先はすべてバンドパスフィルタ5に入射する。
In the above configuration, the emitted light of the object from the object,
When reflected light from sunlight enters the scanning unit 3, all of the reflected light enters the bandpass filter 5.

このバンドパスフィルタ5ては、オゾン吸収帯と同一波
長帯の光だけが透過する。
This bandpass filter 5 transmits only light in the same wavelength band as the ozone absorption band.

ところで、第2図のスペクトル線図に示すように、太陽
表面での太陽光スペクトルをAとすると、このスペクト
ルAは全域で連続しているが、地上での太陽光は、大気
圏を通過することで、特定波長の光が吸収、減衰してお
り、そのスペクトルBにはいくつかの窓があり、赤外領
域では、オゾンによる吸収で96μm波長帯がオゾン吸
収帯B。とじて窓になっている。スペクトル中にこのよ
うな窓(オゾン吸収帯B。)があることは、太陽光の反
射光も同じである。
By the way, as shown in the spectrum diagram in Figure 2, if the sunlight spectrum on the sun's surface is A, this spectrum A is continuous over the entire area, but sunlight on the ground passes through the atmosphere. So, light of a specific wavelength is absorbed and attenuated, and there are several windows in the spectrum B. In the infrared region, the 96 μm wavelength band is the ozone absorption band B due to absorption by ozone. It closes to form a window. The presence of such a window (ozone absorption band B) in the spectrum is the same for reflected sunlight.

バンドパスフィルタ5では、オゾン吸収帯B。以外の光
がカットされるが、前記したように、太陽光の反射光に
は、もともとオゾン吸収帯B。の光は含まれていないか
ら、結局、バンドパスフィルタ5では、太陽光の反射光
のすべてがカットされることになり、バンドパスフィル
タ5を通過するのは、オゾン吸収帯B。と同一波長帯の
放射光のみとなる。
Bandpass filter 5 has ozone absorption band B. However, as mentioned above, reflected sunlight is originally in the ozone absorption band B. Therefore, the bandpass filter 5 ends up cutting off all of the reflected sunlight, and only the ozone absorption band B passes through the bandpass filter 5. Only the synchrotron radiation in the same wavelength band as .

赤外線センサ4は、オゾン吸収帯B。と同一波長帯の放
射光を受光し、その放射光の強度に対応した検出信号を
出力する。赤外線センサ4の検出信号は、増幅器7で増
幅されて演算部8に入力する。
The infrared sensor 4 has an ozone absorption band B. It receives radiation in the same wavelength band and outputs a detection signal corresponding to the intensity of the radiation. A detection signal from the infrared sensor 4 is amplified by an amplifier 7 and input to a calculation section 8 .

演算部8は、増幅された検出信号に基づいて所定の演算
を行って温度測定値を算出する。その温度測定値は表示
器9に表示される。
The calculation unit 8 performs a predetermined calculation based on the amplified detection signal to calculate a temperature measurement value. The temperature measurement value is displayed on the display 9.

〈発明の効果〉 以上述べたように、本発明によれば、太陽光の反射光を
除外して対象物の放射赤外線のみか検出されることにな
り、太陽光の反射光が入射するような状況でも支障なく
温度測定が可能で、したがって、太陽光の下においても
浅い俯角で温度測定を正確に行うことができる。
<Effects of the Invention> As described above, according to the present invention, only the radiated infrared rays of the object are detected, excluding the reflected light of sunlight. Temperature measurement can be performed without any problem in any situation, and therefore, temperature measurement can be performed accurately even under sunlight with a shallow depression angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は作用説明
のためのスペクトル線図である。 3・・・スキャニング部、4 赤外線センサ、5バンド
パスフイルタ。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a spectral diagram for explaining the operation. 3...scanning section, 4 infrared sensor, 5 band pass filter.

Claims (1)

【特許請求の範囲】[Claims] (1)外部光を導入する光学手段と、この光学手段の出
射光を受光する赤外線センサとを備えた遠隔温度測定装
置であって、 光学手段と赤外線センサとの間の光路上にバンドパスフ
ィルタが設けられ、 該バンドパスフィルタは、太陽光スペクトル中のオゾン
吸収帯と同一波長帯の光を透過するものであり、 赤外線センサは、オゾン吸収帯を含む帯域で感度を有す
ものである、 ことを特徴とする遠隔温度測定装置。
(1) A remote temperature measuring device comprising an optical means for introducing external light and an infrared sensor for receiving the light emitted from the optical means, and a bandpass filter is provided on the optical path between the optical means and the infrared sensor. is provided, the bandpass filter is one that transmits light in the same wavelength band as the ozone absorption band in the sunlight spectrum, and the infrared sensor is sensitive in the band that includes the ozone absorption band. A remote temperature measuring device characterized by:
JP2129908A 1990-05-18 1990-05-18 Remote temperature measuring apparatus Pending JPH0424524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129908A JPH0424524A (en) 1990-05-18 1990-05-18 Remote temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129908A JPH0424524A (en) 1990-05-18 1990-05-18 Remote temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0424524A true JPH0424524A (en) 1992-01-28

Family

ID=15021369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129908A Pending JPH0424524A (en) 1990-05-18 1990-05-18 Remote temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0424524A (en)

Similar Documents

Publication Publication Date Title
EP0943085B1 (en) Method and apparatus for the imaging of gases
US6157033A (en) Leak detection system
EP3343202B1 (en) Substance detecting device, substance detecting system, and substance detecting method
JP2001349829A (en) Gas monitoring device
GB2353591A (en) Gas sensor with an open optical measuring path
CN110082335B (en) Infrared, Raman and laser three-channel point-to-point real-time fusion measuring system
US10775310B2 (en) Raman spectrum detection apparatus and method based on power of reflected light and image recognition
GB2188416A (en) Flame condition monitoring
JPH07229840A (en) Method and apparatus for optical measurement
JPH08261835A (en) Pyroelectric type infrared sensor
US3471698A (en) Infrared detection of surface contamination
US6723989B1 (en) Remote emissions sensing system and method with a composite beam of IR and UV radiation that is not split for detection
US5563420A (en) Integrated ultraviolet and infrared source with minimal visible radiation
JPH0424524A (en) Remote temperature measuring apparatus
JPH04218790A (en) Measuring apparatus of distance
US5285070A (en) Air turbulence detector
US20210131957A1 (en) Far-Infrared Spectroscopic Device and Far-Infrared Spectroscopic Method
JP3663955B2 (en) Air quality monitoring device
RU2126985C1 (en) Device determining temperature contrasts between hydrometeors and ambient air
KR20240101980A (en) Apparatus for detecting gas
JP2874288B2 (en) UV absorption detector
JPH0835884A (en) Infrared temperature distribution measuring apparatus and measuring method therefor
EP1151275B1 (en) Remote emissions sensing system and method with a composite beam of ir and uv radiation that is not split for detection
CN115963061A (en) Multi-spectral transmission type atmospheric extinction coefficient measuring device and calibration method
RU2226269C2 (en) Device for remote atmosphere control