JPH0424510A - Displacement detector - Google Patents

Displacement detector

Info

Publication number
JPH0424510A
JPH0424510A JP12937390A JP12937390A JPH0424510A JP H0424510 A JPH0424510 A JP H0424510A JP 12937390 A JP12937390 A JP 12937390A JP 12937390 A JP12937390 A JP 12937390A JP H0424510 A JPH0424510 A JP H0424510A
Authority
JP
Japan
Prior art keywords
magnetic flux
yoke
yokes
magnetic
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12937390A
Other languages
Japanese (ja)
Inventor
Hideo Niwa
英夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanmei Electric Co Ltd
Original Assignee
Sanmei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanmei Electric Co Ltd filed Critical Sanmei Electric Co Ltd
Priority to JP12937390A priority Critical patent/JPH0424510A/en
Publication of JPH0424510A publication Critical patent/JPH0424510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To change the number of magnetic fluxes passing yokes linearly with respect to the displacement of a magnetism cutting member by distributing the magnetic fluxes at equal intervals in the longitudinal direction of the yokes, and changing the size of the range wherein the magnetic fluxes can be distributed based on the displacement of the magnetism shielding member. CONSTITUTION:When an exciting current is supplied into an exciting coil 5, from a power supply 6 the coil 5 generates alternating magnetic fluxes which are imparted to yokes 1 and 2. In the yoke 1, the magnetic fluxes cannot pass through a magnetic-flux cutting member 7. Therefore, the magnetic fluxes from a magnetic-flux supplying means 3 are distributed at equal intervals in the longitudinal direction of the yokes between the yokes 1 and 2 as shown by the symbol PHI. When the magnetic-flux cutting member 7 is displaced in the longitudinal direction of the yoke 1 together with a moving body through a linking means 8, the size of the range wherein the magnetic fluxes are distributed at the equal intervals is changed. Since the power supply 6 is a constant current power supply, the number of the magnetic fluxes generated from the coil 5 is proportional to the distance between the coil 5 and the magnetic-flux shielding member 7. Therefore, the number of the magnetic fluxes which are interlinked with a detecting coil 9 is changed in proportion to the displacement of the magnetic-flux shielding member 7. The output signal is linearly changed with respect to the displacement of the magnetic-flux shielding member 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は変位する部材の位置を検出する為に用いられ
る変位検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a displacement detector used to detect the position of a displacing member.

〔従来の技術〕[Conventional technology]

この種の変位検出器としては差動トランスがある。差動
トランスにおいては検出対象である移動体の変位によ、
てそれに連結したコアが進退すると、磁束の分布が変化
する。その結果、検出コイルに鎮交する磁束数が変わり
、検出コイルに得られる電圧が変化する。このようにし
て移動体の変位に対応した信号を検出コイルから得るこ
とができる。
A differential transformer is an example of this type of displacement detector. In a differential transformer, due to the displacement of the moving object to be detected,
When the core connected to it moves back and forth, the distribution of magnetic flux changes. As a result, the number of magnetic fluxes that intersect with the detection coil changes, and the voltage obtained at the detection coil changes. In this way, a signal corresponding to the displacement of the moving body can be obtained from the detection coil.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の変位検出器では上記の如くコアの変位に伴な
って磁束の分布が変化する為、上記コアの変位に対する
上記鎮交磁束数の変化が非直線となり、変位に対し上記
信号が非直線となる問題点があった。このような信号は
、例えばその信号を用いて上記移動体の移動の制御を行
なおうとする場合、制御回路において変換回路を要する
等、制御回路を複雑化する問題点があった。
In this conventional displacement detector, the distribution of magnetic flux changes with the displacement of the core as described above, so the change in the number of magnetic flux declinations with respect to the displacement of the core becomes non-linear, and the above-mentioned signal with respect to displacement becomes non-linear. There was a problem. Such a signal has the problem of complicating the control circuit, such as requiring a conversion circuit in the control circuit, when attempting to control the movement of the mobile object using the signal.

本発明は上記従来技術の問題点(技術的課題)を解決す
る為になされたもので、磁束をヨークの長手方向に等間
隔に分布させ得るようにすると共にその分布可能な範囲
の大きさを磁気遮断部材の変位により変化させるように
することによって、ヨークを通る磁束の数を磁気遮断部
材の変位に対し直線的に変化させ得るようにし、以て変
位に対し極めて直線性の良い信号を検出コイルから得る
ことができるようにした変位検出器を捷供することを目
的とするものである。
The present invention was made in order to solve the problems (technical problems) of the prior art described above, and it makes it possible to distribute the magnetic flux at equal intervals in the longitudinal direction of the yoke, and also to increase the size of the range where the magnetic flux can be distributed. By changing the magnetic flux according to the displacement of the magnetic shielding member, the number of magnetic fluxes passing through the yoke can be changed linearly with respect to the displacement of the magnetic shielding member, thereby detecting a signal with extremely good linearity with respect to displacement. The object of the present invention is to provide a displacement detector that can be obtained from a coil.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的を達成する為に、本願発明は前記請求の範囲記
載の通りの手段を講したものであって、その作用は次の
通りである。
In order to achieve the above object, the present invention takes the measures as described in the claims above, and its effects are as follows.

〔作用〕[Effect]

一対のヨーク相互の間においては、磁束供給手段と磁束
遮断部材との間においてのみヨークの長手方向に向けて
等間隔に磁束が分布する。−力検出コイルは上記ヨーク
を通る磁束数に対応した信号を出力する。ヨークの長手
方向へ向けての磁束遮断部材の変位に伴ない上記等間隔
の磁束が分布できる範囲の大きさが変化する。従って上
記ヨークを通る磁束数は上記磁束遮断部材の変位に対し
直線的に変化する。その結果、上記信号は上記磁束遮断
部材の変位に伴ない直線的に変化する。
Between the pair of yokes, magnetic flux is distributed at equal intervals in the longitudinal direction of the yokes only between the magnetic flux supply means and the magnetic flux blocking member. - The force detection coil outputs a signal corresponding to the number of magnetic fluxes passing through the yoke. As the magnetic flux blocking member is displaced in the longitudinal direction of the yoke, the size of the range in which the magnetic flux can be distributed at equal intervals changes. Therefore, the number of magnetic fluxes passing through the yoke varies linearly with the displacement of the magnetic flux blocking member. As a result, the signal changes linearly with the displacement of the magnetic flux blocking member.

〔実施例〕〔Example〕

以下本願の実施例を示す図面について説明する。 The drawings showing the embodiments of the present application will be described below.

第1図において、IはW、1のヨークで、円柱杖に形成
してある。2は第2のヨークで、円筒状に形成してある
。これらのヨーク1,2は磁気抵抗の小さい材料例えば
パーマロイで形成され、各々の長手方向が相互に平行と
なるよう同軸状態に配置してある。3は磁束供給手段で
、上記ヨーク12において同一側となる長手方向の各一
端に磁束を与える為のものであり、それらの各一端相互
を磁気的に繋ぐ側板4と、ヨーク1の一端に周設した励
磁コイル5とから構成してある。6はコイル5を励磁す
る為の交流電源で、例えば定電流電源が用いられる。7
は磁束遮断部材で、環状に形成されて、第1のヨーク1
が挿通された状態でかつそのヨークの長手方向に移動可
能に備えてあり、非磁性材料製或いは非金属材料製の連
結手段8をもって変位の検出を行うべき移動体に連結す
るようにしてある。この磁束遮断部材7は低電気抵抗材
料例えば銅、銀で形成される。超電導材を用いるとより
好ましい。またこれは太く形成して断面積を大きくする
と良い。9は検出コイルで、図示の如くヨーク1におい
て磁束供給手段が付設された端部に周設して、その端部
を通る磁束の数と対応する信号を出力し得るようにして
ある。9aは出力端子で、変位対応信号を取り扱う図示
外の周知の回路或いは装置に接続される。
In FIG. 1, I is a yoke of W, 1, which is formed into a cylindrical cane. 2 is a second yoke, which is formed into a cylindrical shape. These yokes 1 and 2 are made of a material with low magnetic resistance, such as permalloy, and are coaxially arranged so that their longitudinal directions are parallel to each other. Reference numeral 3 denotes magnetic flux supply means, which supplies magnetic flux to each end of the yoke 12 in the longitudinal direction on the same side. It is composed of an excitation coil 5 provided therein. 6 is an AC power source for exciting the coil 5, and for example, a constant current power source is used. 7
is a magnetic flux blocking member, which is formed in an annular shape and is connected to the first yoke 1.
The yoke is inserted through the yoke and is movable in the longitudinal direction of the yoke, and is connected to a moving body whose displacement is to be detected using a connecting means 8 made of a non-magnetic or non-metallic material. The magnetic flux blocking member 7 is made of a low electrical resistance material such as copper or silver. It is more preferable to use a superconducting material. Also, it is better to form it thicker so as to increase the cross-sectional area. Reference numeral 9 denotes a detection coil, which is disposed around the end of the yoke 1 where the magnetic flux supply means is attached, as shown, so that it can output a signal corresponding to the number of magnetic fluxes passing through the end. Reference numeral 9a denotes an output terminal, which is connected to a well-known circuit or device (not shown) that handles displacement corresponding signals.

上記構成のものにあっては、電源6から励磁コイル5に
励磁用の電流(例えば数KHz の高周波電流)が供給
されるとコイル5は交番磁束を発し、それがヨーク1.
2に与えられる。ヨーク1においては、上記磁束が磁束
遮断部材7の中を通り抜けようとすると磁束遮断部材7
にはその磁束によって磁束の数に対応した大きさの短絡
電流が流れ、その短絡電流によって上記通り抜けようと
する磁束と同数で反対方向の磁束が発せられる。従って
上記磁束は磁束遮断部材7の中を実質的に通り抜けるこ
とができない。この為、上記磁束供給手段3からの磁束
は、上記磁束供給手段3と磁束遮断部材7との間の範囲
において符号Φで示す如く、ヨーク1.2相互の間にヨ
ークの長手方向に向けて等間隔に分布する。この状態に
おいて検出コイル9には、ヨーク1においてその検出コ
イル9が付設された部分を貫いている数の磁束(この磁
束の数は上記の範囲においてヨーク1,2間の空間に分
布している磁束の数に等しい)が鎖交する。
In the above configuration, when an excitation current (for example, a high frequency current of several KHz) is supplied from the power supply 6 to the excitation coil 5, the coil 5 emits an alternating magnetic flux, which causes the yoke 1.
given to 2. In the yoke 1, when the magnetic flux tries to pass through the magnetic flux blocking member 7, the magnetic flux blocking member 7
The magnetic flux causes a short-circuit current of a magnitude corresponding to the number of magnetic fluxes to flow, and the short-circuit current generates magnetic flux of the same number and in the opposite direction as the magnetic flux that is passing through. Therefore, the magnetic flux cannot substantially pass through the magnetic flux blocking member 7. Therefore, the magnetic flux from the magnetic flux supplying means 3 is directed between the yokes 1 and 2 in the longitudinal direction of the yoke, as indicated by the symbol Φ in the range between the magnetic flux supplying means 3 and the magnetic flux blocking member 7. Distributed at equal intervals. In this state, the detection coil 9 has a number of magnetic fluxes penetrating the portion of the yoke 1 to which the detection coil 9 is attached (this number of magnetic fluxes is distributed in the space between the yokes 1 and 2 within the above range). (equal to the number of magnetic fluxes) are interlinked.

その結果、検出コイル9には上記鎮交する磁束の数に対
応する電圧が誘起され、それが出力信号として端子9a
から出力される。
As a result, a voltage corresponding to the number of intersecting magnetic fluxes is induced in the detection coil 9, which is output as an output signal at the terminal 9a.
is output from.

磁束遮断部材7が連結手段8を介して移動体と共にヨー
ク1の長手方向に変位すると上記磁束が等間隔で分布で
きる範囲の大きさが変化する。上記電源6は定電流電源
であるので、コイル5かう発せられる磁束の数はコイル
5と磁束遮断部材7との間の距離に比例する。即ち上記
磁束が分布できる範囲の大きさが変化しても上記磁束の
分布の間隔は一定である。従って、上記検出コイル9と
鎮交する磁束の数は磁束遮断部材7の変位に比例して変
化し、上記出力信号は磁束遮断部材7の変位に対し直線
的に変化する。向上記動作の場合、第1のヨーク1を通
る磁束は表皮効果により主としてヨーク1の周縁を通る
為、ヨーク1は中空に形成してあってもよい。
When the magnetic flux blocking member 7 is displaced in the longitudinal direction of the yoke 1 together with the moving body via the connecting means 8, the size of the range in which the magnetic flux can be distributed at equal intervals changes. Since the power source 6 is a constant current power source, the number of magnetic fluxes emitted from the coil 5 is proportional to the distance between the coil 5 and the magnetic flux blocking member 7. That is, even if the size of the range in which the magnetic flux can be distributed changes, the intervals of the magnetic flux distribution remain constant. Therefore, the number of magnetic fluxes intersecting with the detection coil 9 changes in proportion to the displacement of the magnetic flux blocking member 7, and the output signal changes linearly with respect to the displacement of the magnetic flux blocking member 7. In the case of the above operation, the magnetic flux passing through the first yoke 1 mainly passes through the periphery of the yoke 1 due to the skin effect, so the yoke 1 may be formed hollow.

次に第2図は上記構成の変位検出器の特性(磁束遮断部
材7の変位と検出コイル9から得られる出力信号との関
係)を示すもので、イ、口で示されるように、ヨーク1
.2の端部と対応する部分を除いて、磁束遮断部材7の
変位に対し直線的に変化する出力を得ることができてい
る。
Next, FIG. 2 shows the characteristics of the displacement detector configured as described above (the relationship between the displacement of the magnetic flux blocking member 7 and the output signal obtained from the detection coil 9).
.. Except for the portion corresponding to the end portion of 2, it is possible to obtain an output that changes linearly with respect to the displacement of the magnetic flux blocking member 7.

次に本願の異なる実施例を示す第3図について説明する
。この例は励磁コイル5dに検出コイルを兼ねさせた例
を示すものである。この例の場合には、出力端子9ad
 に出力信号を得るようにする為の抵抗10を励磁用の
電l56dに直列に接続することによって、コイル5d
から出力信号を得る。
Next, FIG. 3 showing a different embodiment of the present application will be described. This example shows an example in which the excitation coil 5d also serves as a detection coil. In this example, output terminal 9ad
By connecting the resistor 10 in series to the excitation voltage 156d, the coil 5d
Get the output signal from.

上記出力信号は次のように表すことができる。Eを出力
信号、ωを励磁電源の角周波数、■を定電流振巾、Lを
コイル5dのインダクタンスとすると、E=ωLlであ
る。インダクタンスLはコイル5dと磁束遮断部材7d
の距離に比例する為、出力信号Eは磁束遮断部材7dの
変位に比例する。
The above output signal can be expressed as follows. If E is the output signal, ω is the angular frequency of the excitation power source, ▪ is the constant current amplitude, and L is the inductance of the coil 5d, then E=ωLl. The inductance L is the coil 5d and the magnetic flux blocking member 7d.
Therefore, the output signal E is proportional to the displacement of the magnetic flux blocking member 7d.

なお、機能上前図のものと同−又は均等構成と考えられ
る部分には、前回と同一の符号にアルファべ、トのdを
付して重複する説明を省略した。
It should be noted that parts that are functionally the same or equivalent to those in the previous figure are given the same reference numerals as in the previous figure, followed by the letter ``d'', and redundant explanations are omitted.

(また次回以降のものにおいても順次同様の考えでアル
ファベントのe、f、g、h、i、jを順に付して重複
する説明を省略する。) 次に第4図は本願の更に異なる実施例を示すもので、ヨ
ークle、 2eの一端と他端に夫々磁束供給手段IL
 12を付設した例を示すものである。この例において
各磁束供給手段11.12の励磁コイル5e5eは電源
6eに対して各々から発せられる磁束が図示されるよう
に相互にぶつかり合う極性となるように接続される。尚
13は第2のヨーク2eの一部にその長手方向に向けて
形成されたスリットを示し、連結手段8eは該スリット
13を通るようにされる。
(Also, in the next and subsequent versions, e, f, g, h, i, and j of Alpha Bento will be added in order based on the same idea, and redundant explanations will be omitted.) Next, Fig. 4 shows a further different explanation of the present application. This shows an embodiment, and magnetic flux supply means IL are provided at one end and the other end of the yokes le and 2e, respectively.
12 is shown. In this example, the excitation coils 5e5e of each magnetic flux supply means 11.12 are connected to the power source 6e so that the magnetic fluxes emitted from each have polarities that collide with each other as shown. Note that 13 indicates a slit formed in a part of the second yoke 2e in the longitudinal direction thereof, and the connecting means 8e is made to pass through the slit 13.

上記のように構成されたものにおいては、両側の検出コ
イル(各磁束供給手段11.12における励磁用のコイ
ル5e、 5e)に得られる電圧が夫々変化し、それら
の電圧の差が出力信号として出力端子9aeに得られる 磁束遮断部材7eの変位に対する上記出力信号の関係は
第5図に実線で示される通りで、ヨークの長手方向の中
間部において出力がOとなる図示の如きV字状の特性と
なる。この出力信号は位相検波器に通すことにより、破
線で示すような直線出力を得ることができる。
In the configuration as described above, the voltages obtained in the detection coils on both sides (excitation coils 5e, 5e in each magnetic flux supply means 11.12) change, and the difference between these voltages is used as an output signal. The relationship between the output signal and the displacement of the magnetic flux blocking member 7e obtained at the output terminal 9ae is as shown by the solid line in FIG. Becomes a characteristic. By passing this output signal through a phase detector, a linear output as shown by the broken line can be obtained.

次に第6図は本願の更に異なる実施例を示すもので、磁
束遮断部材7fをヨークの長手方向に変位させる為の構
造の異なる例を示すものである。図において、磁束供給
手段における側板4fには透孔15を形成すると共に、
長尺に形成した第1のヨーク1fをその透孔15を通し
て長手方向に進退自在に備えさせてあり、該ヨーク1f
に磁束遮断部材7fを取付けてある。
Next, FIG. 6 shows a further different embodiment of the present application, and shows a different example of the structure for displacing the magnetic flux blocking member 7f in the longitudinal direction of the yoke. In the figure, a through hole 15 is formed in the side plate 4f of the magnetic flux supply means, and
A first yoke 1f formed in an elongated length is provided so as to be freely advanced and retracted in the longitudinal direction through the through hole 15, and the yoke 1f
A magnetic flux blocking member 7f is attached to.

このような構成のものにあっては、第1のヨーク1fが
移動体に連結される。
In such a configuration, the first yoke 1f is connected to the movable body.

次に第7.8図は本願の更に異なる実施例を示すもので
、第1のヨーク1gは中空に形成してあると共に、その
ヨーク1gの一部には長手方向に向けて細幅のスリット
18が形成してある。上記中空部には連結手段の一例と
して示す非磁性材料製の進退杆19が進退自在に挿通さ
れ、その進退杆19に磁束遮断部材7gが上記スリット
18を貫通させた止付片20でもって止付けてある。
Next, Fig. 7.8 shows a further different embodiment of the present application, in which the first yoke 1g is formed hollow, and a part of the yoke 1g has a narrow slit in the longitudinal direction. 18 are formed. A reciprocating rod 19 made of a non-magnetic material shown as an example of a connecting means is inserted into the hollow portion so as to be freely retractable. It's attached.

このような構成のものにあっては、進退杆19の進退に
より磁束遮断部材7gをヨークの長手方向に変位させる
ことができる。
With such a configuration, the magnetic flux blocking member 7g can be displaced in the longitudinal direction of the yoke by moving the advancing/retracting rod 19 back and forth.

次に第9.10図は本願の更に異なる実施例を示すもの
で、第1及び第2のヨーク1h2hをいずれも杆状(板
状)に形成し、各々のヨークに対して磁束遮断部材7h
、 7hをヨークの長手方向に向けて変位自在に備えさ
せた例を示すものである。上記磁束遮断部材7h、 7
hは相互に一体に形成されて一緒にヨークの長手方向に
移動できるようになっている。
Next, FIG. 9.10 shows a further different embodiment of the present application, in which the first and second yokes 1h2h are both formed into a rod shape (plate shape), and a magnetic flux blocking member 7h is attached to each yoke.
, 7h are provided so as to be freely displaceable in the longitudinal direction of the yoke. The magnetic flux blocking member 7h, 7
h are formed integrally with each other so that they can move together in the longitudinal direction of the yoke.

一対のヨークlh、 2hをこのように形成した場合に
おいて検出コイルを励磁用のコイルとは別に独立して備
えさせる場合、その検出コイルは各磁束供給手段11h
、12h の側において、夫々符号9h“、9h′で示
される場所のうちのいずれか一方又は置方に備えさせる
ことができる。
When the pair of yokes lh and 2h are formed in this way and the detection coil is provided independently from the excitation coil, the detection coil is connected to each magnetic flux supply means 11h.
, 12h, it can be provided at any one of the locations or locations indicated by reference numerals 9h'' and 9h', respectively.

次に第11図は本願の更に異なる実施例を示すもので、
ヨークli  2iをいずれも中心1点22を中心とす
る円弧状に形成し、磁束遮断部材71をそれらのヨーク
li、 2iに沿って移動できるように備えさせた例を
示すものである。
Next, FIG. 11 shows a further different embodiment of the present application,
This shows an example in which the yokes li and 2i are both formed in an arc shape centered on a single center point 22, and the magnetic flux blocking member 71 is provided so as to be movable along the yokes li and 2i.

このような構成のものにあっては、中心点22を中心と
する磁束遮断部材7jの回動力向の変位に対応した出力
信号を得ることができる。
With such a configuration, it is possible to obtain an output signal corresponding to the displacement of the rotational force direction of the magnetic flux blocking member 7j about the center point 22.

次に第12図は本願の更に買なる実施例を示すもので、
電磁弁用のウェツト型比例ソレノイド用に構成された変
位検出器の例を示すものである。図において、24は耐
圧チューブで、非磁性材料で形成され、ソレノイドにお
けるプランジャ室に連通される。尚その連通により弁装
置の油路からの油がプランジャ室を通して耐圧チューブ
内に流入する。ヨーク1jは上記耐圧チューブ24の中
に進退自在に納められており、連結片25によって上記
プランジャ室内のプランジャに連結されるようになって
いる。
Next, FIG. 12 shows a further preferred embodiment of the present application.
1 shows an example of a displacement detector configured for a wet type proportional solenoid for a solenoid valve. In the figure, a pressure tube 24 is made of a non-magnetic material and communicates with the plunger chamber of the solenoid. Due to this communication, oil from the oil passage of the valve device flows into the pressure tube through the plunger chamber. The yoke 1j is housed in the pressure tube 24 so as to be able to move forward and backward, and is connected to the plunger in the plunger chamber by a connecting piece 25.

上記構成のものにあっては、ヨーク1jがプランジャと
一体に進退することにより磁束遮断部材7Jが変位し、
プランジャの変位に対応する信号を得ることができる。
In the above configuration, the magnetic flux blocking member 7J is displaced by the yoke 1j moving forward and backward together with the plunger,
A signal corresponding to the displacement of the plunger can be obtained.

尚第5図から第12図に示される各実施例においては、
第1図に示される例のようにヨークの一端のみに磁束供
給手段が付設してあっても良い。
In each of the embodiments shown in FIGS. 5 to 12,
As in the example shown in FIG. 1, the magnetic flux supply means may be provided only at one end of the yoke.

[発明の効果〕 以上のように本発明にあっては、変位の検出対象である
移動体と共に磁束遮断部材7を変位させた場合、検出コ
イル9と鎮交する磁束数が変わって、検出コイル9から
変位位置に対応する信号を得ることができるは勿論のこ
と、 上記の場合、本願発明にあっては一対のヨーク1.2が
平行であってそれらの間においては磁束をヨークの長手
方向に等間隔に分布させ得るようになっており、しかも
ヨーク1,2において磁束が分布できる範囲の大きさは
、磁束遮断部材7の変位に応じて変わるようになってい
るから、ヨーク1を通る磁束の数を上記磁束遮断部材7
の変位に対して直線的に変化させられる特長がある。こ
のことは検出コイル9に鎖交する磁束数の変化が磁束遮
断部材7の変位に対し直線的であることであって、変位
に対し極めて直線性の良い信号を得られる効果がある。
[Effects of the Invention] As described above, in the present invention, when the magnetic flux blocking member 7 is displaced together with the moving body whose displacement is to be detected, the number of magnetic fluxes intersecting with the detection coil 9 changes, and the detection coil In the above case, in the present invention, the pair of yokes 1.2 are parallel, and between them the magnetic flux is directed in the longitudinal direction of the yokes. Moreover, the size of the range in which the magnetic flux can be distributed in the yokes 1 and 2 changes according to the displacement of the magnetic flux blocking member 7. The number of magnetic fluxes is determined by the magnetic flux blocking member 7.
It has the advantage of being able to change linearly with the displacement of . This means that the change in the number of magnetic fluxes interlinking with the detection coil 9 is linear with respect to the displacement of the magnetic flux blocking member 7, and has the effect of obtaining a signal with extremely good linearity with respect to displacement.

このような変位に対する直線の良い信号は、例えばその
信号を用いて上記移動体の移動の制御を行なう場合、そ
の制御回路を簡素化できる有益性がある。
Such a linear signal for displacement has the advantage of simplifying the control circuit, for example, when the signal is used to control the movement of the moving body.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は縦断面略示
図(図を明瞭にする為ハツチングは省略した)、第2図
は第1図の変位検出器の特性図、第3図は異なる実施例
を示す縦断面略示図、第4図は更に異なる実施例を示す
縦断面略示図、第5図は第4図の変位検出器の特性を示
す図、第6図は磁束遮断部材を変位させる為の構造が異
なった変位検出器の例を示す断面図、第7図は磁束遮断
部材を変位させる為の構造が更に異なった変位検出器の
例を示す断面図、第8図は第7図における■−■線断面
図、第9図は変位検出器の更に異なる実施例を示す断面
図、第10図は第9図の例の斜視図、第11図及び第1
2図は夫々変位検出器の更に異なる実施例を示す断面図
。 12・・・ヨーク、3.11.12・・・磁束供給手段
、7・・・磁束遮断部材、9・・・検出コイ  ル 。 第 図 第 図 第 図 第 図 第 図 第 図 充 第 医 第 図 第10 図 簗 図
The drawings show an embodiment of the present application, and FIG. 1 is a schematic longitudinal cross-sectional view (hatching has been omitted for clarity), FIG. 2 is a characteristic diagram of the displacement detector shown in FIG. 1, and FIG. The figure is a schematic longitudinal section showing a different embodiment, FIG. 4 is a schematic longitudinal section showing a further different embodiment, FIG. 5 is a diagram showing the characteristics of the displacement detector of FIG. 4, and FIG. 7 is a sectional view showing an example of a displacement detector with a different structure for displacing the magnetic flux blocking member; FIG. 7 is a sectional view showing an example of a displacement detector with a further different structure for displacing the magnetic flux blocking member; 8 is a sectional view taken along the line ■-■ in FIG. 7, FIG. 9 is a sectional view showing a further different embodiment of the displacement detector, FIG. 10 is a perspective view of the example shown in FIG.
FIG. 2 is a sectional view showing further different embodiments of the displacement detector. 12... Yoke, 3.11.12... Magnetic flux supply means, 7... Magnetic flux blocking member, 9... Detection coil. Figures Figures Figures Figures Figures Figures Figures Figures Figures Doctors Figure 10 Figures Diagrams

Claims (1)

【特許請求の範囲】 1、一対のヨークを各々の長手方向が相互に平行となる
状態に配置すると共に、それらのヨークにおいて同一側
となる長手方向の各一端には、それらの端に相互に逆極
性の交番磁束を与えるようにした磁束供給手段を付設し
て、上記一対のヨーク相互の間において磁束をヨークの
長手方向に向けて等間隔に分布させ得るようにし、上記
一対のヨークのうち少なくとも一方のヨークには、短絡
電流の発生によって磁束の通過を遮断し得るよう低電気
抵抗材料でもって環状に形成された磁束遮断部材を、そ
のヨークが該磁束遮断部材を貫通する状態でかつそのヨ
ークの長手方向に移動可能に備えさせると共に、上記一
対のヨークのうち少なくとも一方のヨークにおいて上記
磁束供給手段が付設された端の近傍の位置には検出コイ
ルを周設して、上記検出コイルに、上記ヨークの長手方
向への上記磁束遮断部材の変位位置に対応した信号が得
られるようにしたことを特徴とする変位検出器。 2、一方のヨークが柱状に形成され、他方のヨークが筒
状に形成されて、それらが同軸状に配置されている請求
項1記載の変位検出器。 3、一対のヨークにおける各一端と各他端とに夫々磁束
供給手段が付設してある請求項1記載の変位検出器。 4、一方のヨークが他方のヨークに対して長手方向に向
け進退自在になっており、その進退自在のヨークに磁気
遮断部材が取付けてある請求項1記載の変位検出器。 5、柱状のヨークは中空に形成してあると共にその長手
方向に向けてスリットが形成してあり、上記ヨークの中
空部には進退杆が進退自在に挿通してあると共に、その
進退杆に磁気遮断部材が上記スリットを介して取付けて
ある請求項2記載の変位検出器。 6、一対のヨークが円弧状に形成してある請求項1記載
の変位検出器。 7、磁束供給手段は励磁用のコイルを備えており、検出
コイルは上記励磁用のコイルを以て構成してある請求項
1記載の変位検出器。
[Claims] 1. A pair of yokes are arranged so that their longitudinal directions are parallel to each other, and each end of the yokes on the same side in the longitudinal direction is provided with a A magnetic flux supplying means for applying alternating magnetic flux of opposite polarity is provided so that the magnetic flux can be distributed at equal intervals in the longitudinal direction of the yokes between the pair of yokes, and At least one of the yokes has a magnetic flux blocking member formed in an annular shape made of a low electrical resistance material so as to be able to block the passage of magnetic flux due to the generation of a short circuit current, with the yoke penetrating the magnetic flux blocking member. The yoke is provided so as to be movable in the longitudinal direction, and a detection coil is disposed around the end of at least one of the pair of yokes to which the magnetic flux supply means is attached, and the detection coil is disposed around the yoke. . A displacement detector, characterized in that a signal corresponding to a displacement position of the magnetic flux blocking member in the longitudinal direction of the yoke is obtained. 2. The displacement detector according to claim 1, wherein one yoke is formed into a columnar shape and the other yoke is formed into a cylindrical shape, and these are arranged coaxially. 3. The displacement detector according to claim 1, wherein magnetic flux supply means are attached to each one end and each other end of the pair of yokes. 4. The displacement detector according to claim 1, wherein one yoke is movable longitudinally relative to the other yoke, and a magnetic shielding member is attached to the movable yoke. 5. The columnar yoke is hollow and has a slit formed in its longitudinal direction, and a retractable rod is inserted into the hollow part of the yoke so that it can move forward and backward, and the retractable rod has a magnetic field. 3. The displacement detector according to claim 2, wherein the blocking member is attached through the slit. 6. The displacement detector according to claim 1, wherein the pair of yokes are formed in an arc shape. 7. The displacement detector according to claim 1, wherein the magnetic flux supply means includes an excitation coil, and the detection coil includes the excitation coil.
JP12937390A 1990-05-18 1990-05-18 Displacement detector Pending JPH0424510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12937390A JPH0424510A (en) 1990-05-18 1990-05-18 Displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12937390A JPH0424510A (en) 1990-05-18 1990-05-18 Displacement detector

Publications (1)

Publication Number Publication Date
JPH0424510A true JPH0424510A (en) 1992-01-28

Family

ID=15007980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12937390A Pending JPH0424510A (en) 1990-05-18 1990-05-18 Displacement detector

Country Status (1)

Country Link
JP (1) JPH0424510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021183A1 (en) * 2001-08-31 2003-03-13 Mitsubishi Denki Kabushiki Kaisha Displacement sensor and solenoid valve driver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021183A1 (en) * 2001-08-31 2003-03-13 Mitsubishi Denki Kabushiki Kaisha Displacement sensor and solenoid valve driver
US6916005B2 (en) 2001-08-31 2005-07-12 Mitsubishi Denki Kabushiki Kaisha Displacement sensor and solenoid valve driver

Similar Documents

Publication Publication Date Title
US4667158A (en) Linear position transducer and signal processor
US4939459A (en) High sensitivity magnetic sensor
US3331971A (en) Magnetic control stick system
EP0356171A2 (en) Direct-coupled fluxgate current sensor and sensing method using the same
US4866378A (en) Displacement transducer with opposed coils for improved linearity and temperature compensation
CN110531287A (en) A kind of Magnetic Sensor
US5399952A (en) Electromagnetic drive system with integral position detector
US5406205A (en) Gradient-generation system, nuclear spin tomograph, and process for the generation of images with a nuclear-spin tomograph
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
JP2001309636A (en) Linear drive
US2856581A (en) Magnetometer
EP0595367B1 (en) Displacement transducer with opposed coils for improved linearity and temperature compensation
CH618043A5 (en) Instrument transformer for the isolated measurement of currents or voltages
US5309050A (en) Ferromagnetic wire electromagnetic actuator
JPS61134601A (en) Magnetic type displacement sensor
JPH0424510A (en) Displacement detector
JPH112647A (en) Direct current sensor and method for preventing flowing-out of direct current
US4963818A (en) Current sensor having an element made of amorphous magnetic metal
US3113280A (en) Electro-magnetic means for measuring a mechanical excursion
US3356933A (en) Displacement sensor comprising differential transformer with nonmagnetic core
JPH0422813A (en) Displacement detector
US9151639B2 (en) Two-dimensional inductive position sensing system
GB2295459A (en) Alternating current sensor
US3546648A (en) Linear variable differential transformer
JPH11325808A (en) Displacement sensor