JPH04245000A - Disposal system of radioactive waste refuse - Google Patents

Disposal system of radioactive waste refuse

Info

Publication number
JPH04245000A
JPH04245000A JP1052591A JP1052591A JPH04245000A JP H04245000 A JPH04245000 A JP H04245000A JP 1052591 A JP1052591 A JP 1052591A JP 1052591 A JP1052591 A JP 1052591A JP H04245000 A JPH04245000 A JP H04245000A
Authority
JP
Japan
Prior art keywords
radioactive
concrete
contamination
waste
radioactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1052591A
Other languages
Japanese (ja)
Inventor
Kuniaki Niihori
新堀 邦明
Shiro Furumura
古村 史朗
Hiroaki Kato
裕明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP1052591A priority Critical patent/JPH04245000A/en
Publication of JPH04245000A publication Critical patent/JPH04245000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure and discriminate efficiently the part of radioactive concrete of a large amount of concrete waste produced on the occasion of dismantling of a building with a measure of disuse of nuclear power generation facilities, before the building is dismantled, and to conduct a rational disposal on the basis of the results thereof. CONSTITUTION:After a radioactive apparatus is removed, the amount of surface radioactivity and the depth of permeation of contamination are measured and evaluated in respect to reference values of radioactive waste refuse disposal which are expected to be set in relation to radioactive concentration. Based on these measurement and evaluation, a method of decontamination corresponding to the form of contamination is applied and thereby a contaminated part is removed. Radioactive concrete, a decontamination waste liquid, etc. thus removed are discriminated in accordance with the level of radioactivity and packed in containers. The surface of an object of measurement wherefrom the contaminated part is removed is measured again for checking, so as to confirm that the concrete thereof is not radioactive.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は放射性廃棄物の処分シス
テムに係り、特に原子力発電施設の廃止措置に伴い建屋
解体時に発生する大量でしかもその放射能レベルが非理
に低い放射性コンクリート廃棄物を効率的に処分するこ
とができる放射性廃棄物の処分システムに関する。
[Industrial Application Field] The present invention relates to a radioactive waste disposal system, and in particular, to efficiently dispose of radioactive concrete waste, which is generated in large quantities during the demolition of buildings associated with the decommissioning of nuclear power generation facilities, and whose radioactivity level is unreasonably low. The present invention relates to a radioactive waste disposal system that can be disposed of automatically.

【0003】0003

【従来の技術】原子力発電施設の寿命は30〜40年と
いわれており、寿命となった原子力発電施設は所定の期
間密閉管理された後に解体撤去される。この原子力発電
施設の廃止措置工程はまず、施設内に設置された機器や
配管等が解体撤去され、その後に建屋解体がなされる。 この建屋解体の際に発生するコンクリート廃棄物は大量
でしかもそのほとんどが非放射性であり、放射性のもの
でもその放射能レベルは非常に低く、また、建屋の表面
近傍のみが放射性であるといった特長を有している。こ
れらのコンクリート廃棄物を全く弁別しないで施設を解
体した場合には大量の放射性コンクリート廃棄物が発生
し、大規模な貯蔵施設もしくは処分施設が必要となる。 また、施設解体後に全コンクリート廃棄物を各処分先毎
に区分するための弁別測定をしようとする場合にはかな
りの数の測定システムを以てしても相当な測定・処理時
間を要する。
2. Description of the Related Art Nuclear power generation facilities are said to have a lifespan of 30 to 40 years, and nuclear power generation facilities that have reached the end of their lifespan are dismantled and removed after being hermetically managed for a predetermined period of time. In the decommissioning process for nuclear power generation facilities, first the equipment and piping installed within the facility are dismantled and removed, and then the building is dismantled. A large amount of concrete waste is generated during building demolition, and most of it is non-radioactive, and even if it is radioactive, its radioactivity level is very low, and only the area near the surface of the building is radioactive. have. If the facility were to be dismantled without any sorting of these concrete wastes, a large amount of radioactive concrete waste would be generated, requiring large-scale storage or disposal facilities. Furthermore, when attempting to carry out differential measurements to classify all concrete waste into respective disposal destinations after facility demolition, a considerable amount of measurement and processing time is required even if a considerable number of measurement systems are used.

【0004】そのため、原子力発電施設の廃止措置の際
に発生する大量の非放射性および放射能レベルの低い放
射性コンクリート廃棄物に対し効率的な処分システムに
よって放射性廃棄物を処分先毎に適切に区分でき、且つ
放射性コンクリート廃棄物の発生量を大幅に減少させる
ことが可能となる。その結果、放射性廃棄物の貯蔵施設
もしくは処分施設を小規模にできると共に、一般の廃棄
物として取扱える非放射性コンクリート廃棄物について
は埋立て等有効利用が可能となる。また、放射性廃棄物
の発生量を大幅に少なく且つ廃棄物の区分ができるため
作業員および一般公衆への放射線被曝を低減することが
できる。
[0004] Therefore, it is necessary to use an efficient disposal system for the large amount of non-radioactive and low-level radioactive concrete waste that is generated during the decommissioning of nuclear power generation facilities, so that the radioactive waste can be appropriately sorted by disposal site. , and the amount of radioactive concrete waste generated can be significantly reduced. As a result, storage or disposal facilities for radioactive waste can be made smaller, and non-radioactive concrete waste, which can be treated as general waste, can be effectively used, such as in landfills. Furthermore, since the amount of radioactive waste generated can be significantly reduced and the waste can be separated, radiation exposure to workers and the general public can be reduced.

【0005】[0005]

【発明が解決しようとする課題】これまで放射性コンク
リート廃棄物は測定,除染,容器詰め等の処分に関わる
作業が個別に行われている状態であり、発生するコンク
リート廃棄物全体を鑑みて、装置化することによる効率
化が図られていなかった。
[Problem to be solved by the invention] Until now, operations related to disposal of radioactive concrete waste, such as measurement, decontamination, and packaging, have been carried out individually. Efficiency was not achieved through equipment.

【0006】放射性コンクリート廃棄物は放射化コンク
リートと汚染コンクリートに分けられる。放射化コンク
リート廃棄物の場合には炉心の周りに位置するコンクリ
ートが対象であり、これらのものについてはある程度解
析評価により放射化範囲と放射化コンクリートの放射能
レベルを予測することが可能である。また、放射化コン
クリートは全体が放射化されているため除染できないの
で、その部分は全て除去される。
Radioactive concrete waste is divided into radioactive concrete and contaminated concrete. In the case of radioactive concrete waste, the target is the concrete located around the reactor core, and it is possible to predict the range of radioactivity and the radioactivity level of the radioactive concrete through analysis and evaluation to some extent. Furthermore, since the entire radioactive concrete is radioactive, it cannot be decontaminated, so all of that part will be removed.

【0007】一方、汚染コンクリートは原子力発電施設
の運転中または保守時に何らかの原因で放射性物質が建
屋コンクリート表面に付着し発生するもので、コンクリ
ート表面に付着した放射性物質の一部は建屋コンクリー
ト表面から内部に浸透することもある。汚染コンクリー
トの場合には汚染箇所(床,壁,天井)や汚染コンクリ
ートの汚染形態(表面のみ汚染/内部まで浸透した汚染
)および汚染物の放射能濃度は各発電施設の履歴により
それぞれ異なっているため、放射化コンクリートのよう
に範囲や放射能濃度を容易に解析的な手法を用いて評価
することは不可能である。仮に、汚染コンクリートの範
囲を明確にしない状態のまま建屋を解体した場合、汚染
コンクリートが非放射性コンクリートと混合され、建屋
コンクリート全体が放射性廃棄物となる可能性がある。 そのため、建屋解体前に建屋各部屋の床,壁,天井に対
し汚染コンクリートの範囲並びにそれらの放射能濃度を
明確にした上で、汚染コンクリートについては完全に除
去し、放射能レベルに応じた処分を行った上で建屋を解
体する必要がある。
On the other hand, contaminated concrete is generated when radioactive materials adhere to the building concrete surface for some reason during operation or maintenance of a nuclear power facility, and some of the radioactive materials adhering to the concrete surface are transferred internally from the building concrete surface. It may also penetrate. In the case of contaminated concrete, the contaminated location (floor, wall, ceiling), the type of contamination of the contaminated concrete (contamination only on the surface/contamination that has penetrated into the interior), and the radioactivity concentration of the contaminated material vary depending on the history of each power generation facility. Therefore, it is impossible to easily evaluate the range and radioactivity concentration using analytical methods as in the case of radioactive concrete. If the building were to be demolished without clarifying the extent of the contaminated concrete, the contaminated concrete would be mixed with non-radioactive concrete, potentially turning the entire building concrete into radioactive waste. Therefore, before dismantling the building, we will clarify the extent of contaminated concrete and its radioactivity concentration on the floors, walls, and ceilings of each room in the building, and then completely remove the contaminated concrete and dispose of it according to its radioactivity level. After doing this, it is necessary to demolish the building.

【0008】原子力発電施設の廃止措置に伴い発生する
コンクリート廃棄物については、機器解体撤去時に発生
する前記放射化コンクリートについての測定・弁別シス
テムは検討されているものの、建屋解体前に汚染コンク
リート廃棄物を合理的に測定・弁別する装置は個別の作
業毎に検討されてはいる。しかしながら、全体を体系化
して装置を最適化することによる効率化を図った放射性
廃棄物の処分システムについては検討されていない課題
がある。
Concerning concrete waste generated during decommissioning of nuclear power generation facilities, although measurement and discrimination systems for radioactive concrete generated during equipment dismantling and removal have been studied, contaminated concrete waste must be Devices that can rationally measure and discriminate are being considered for each individual task. However, there are issues that have not been studied regarding a radioactive waste disposal system that aims to improve efficiency by systematizing the entire system and optimizing the equipment.

【0009】本発明は上記課題を解決するためになされ
たもので、原子力発電施設の廃止措置に伴い建屋解体の
際に発生する大量のコンクリート廃棄物を建屋解体前に
効率的に放射性コンクリート部分を測定・弁別し、その
結果を基に合理的処理を行うことができる放射性廃棄物
の処分システムを提供することにある。 [発明の構成]
The present invention has been made to solve the above-mentioned problems, and it is possible to efficiently remove radioactive concrete from a large amount of concrete waste generated during building demolition due to decommissioning of nuclear power generation facilities before the building is dismantled. The objective is to provide a radioactive waste disposal system that can measure and differentiate radioactive waste and perform rational treatment based on the results. [Structure of the invention]

【0010】0010

【課題を解決するための手段】本発明は原子力発電施設
内に設置された機器・配管等を撤去した後の管理区域内
のコンクリート建屋構造物の床,壁,天井等の測定対象
面に対して表面汚染放射能量および汚染浸透度を測定し
て前記測定対象面が放射性コンクリートか非放射性コン
クリートかの判定を行い、その判定結果に基づき前記測
定対象面が放射性コンクリートの場合には放射能の汚染
形態が表面のみか、表面から内部へ浸透しているか、ま
たは表面に存在するクラック等の中に入り込んだものか
の汚染形態を判定し、この汚染形態の判定に基づきそれ
ぞれの汚染形態に応じた除染方法を適用してそれぞれの
汚染部分を除去し、除去した放射性コンクリート,除染
廃液等は該放射性コンクリート,除染廃液等が有する放
射能レベルに応じて弁別したのち、容器詰めし、汚染部
分が除去された測定対象面に対しては再度確認測定を行
い非放射性コンクリートの確認を行うことを特徴とする
[Means for Solving the Problems] The present invention is designed to measure surfaces to be measured such as floors, walls, and ceilings of concrete building structures in controlled areas after removing equipment, piping, etc. installed in a nuclear power generation facility. The amount of surface contamination radioactivity and the degree of contamination penetration are measured to determine whether the surface to be measured is radioactive concrete or non-radioactive concrete, and based on the determination result, if the surface to be measured is radioactive concrete, radioactive contamination is determined. Determine the type of contamination, whether it is only on the surface, permeating from the surface to the inside, or penetrating into cracks, etc. existing on the surface, and based on this determination of the type of contamination, Decontamination methods are applied to remove each contaminated part, and the removed radioactive concrete, decontamination waste liquid, etc. are classified according to the radioactivity level they contain, and then packed in containers and removed from contaminated areas. The method is characterized in that a confirmation measurement is performed again on the surface to be measured from which a portion has been removed to confirm that the concrete is non-radioactive.

【0011】[0011]

【作用】このように構成された処分システムにおいては
建屋構造物の床,壁,天井面に対して表面汚染放射能量
と汚染浸透深度の精密測定を行い放射性であるか否かの
判定を行う。放射性であると判定された箇所については
その面が表面のみの汚染であれば拭取り等の除染が行わ
れ、内部にまで浸透した汚染である場合にはそれがクラ
ック状の汚染か否かを判断し浸透深度に応じて除去する
。また、除去された放射性コンクリート,除染廃液等は
それの放射能レベルに応じて弁別される。
[Operation] In the disposal system configured as described above, the amount of surface contamination radioactivity and the depth of contamination penetration are precisely measured on the floors, walls, and ceilings of building structures to determine whether or not they are radioactive. For areas determined to be radioactive, decontamination such as wiping is performed if only the surface of the area is contaminated, and if the contamination has penetrated into the interior, it is determined whether the contamination is in the form of cracks or not. Determine and remove according to the penetration depth. In addition, the removed radioactive concrete, decontamination waste liquid, etc. are classified according to their radioactivity levels.

【0012】0012

【実施例】本発明に係る放射性廃棄物の一実施例を図面
を参照しながら説明する。
[Embodiment] An embodiment of the radioactive waste according to the present invention will be explained with reference to the drawings.

【0013】図1は第1の実施例を説明するための処理
システムの工程を示す流れ図である。図1において、原
子力発電施設に設置された放射性機器・配管撤去1した
後の管理区域内のコンクリート建屋構造物の床面,壁面
,天井面に対して、解体前サーベイ情報あるいは機器・
配管撤去1時のスミヤ,サーベイ情報等の事前情報を基
に汚染の可能性のある測定対象面に対して放射能測定2
を行う。この放射能測定2は床,壁,天井面に対して表
面汚染放射能量と汚染浸透度の精密測定評価をGe半導
体検出器,NaI(Tl)シンチレータ等の放射能検出
器等を用いて実施する。これによって測定対象面が放射
性コンクリートか非放射性コンクリートかの判定を行う
。放射能測定で処分の判定レベル3未満の場合は非放射
性と判定される。また、放射性と判定されると同時にそ
の汚染面に対して表面状態測定4を行う。表面状態測定
4では放射能検出器と超音波探傷検出器等との組合わせ
で表面汚染,浸透汚染,クラック状の汚染であるかどう
かについて測定を行う。次にこれらの汚染形態に応じて
、表面汚染と判定5された場合には水ジェット,アイス
ブラスト等6の除染方法によって表面の汚染を除去する
。そして、再び放射能測定2され、判定レベル3未満で
あれば処理を完了する。判定レベル以上であれば再び除
染を実施するかあるいはスキャブラ等7の機械的表層剥
離工法を用いて汚染部の所定量を除去する。また、浸透
汚染,クラック状の汚染と判定された場合にはスキャブ
ラ等7の機械的表層剥離工法を用いて汚染部を除去する
。その後の処理作業は表面汚染の場合と同様である。 除染あるいは除去された放射性コンクリート、除染に伴
い発生した除染廃液等の放射性廃棄物8はその放射能レ
ベルに応じて弁別され容器詰め等9の処理を実施する。 また、汚染部が除去された後の測定対象面は上述処理後
度測定を行い、表面が所定の放射能レベルにまで除染で
きたことを判断する。一方、除染により汚染が除去でき
ない場合は上記浸透汚染,クラック状の汚染の場合と同
様に汚染部を除去する。以上の処理を一連の作業工程と
して実施する。
FIG. 1 is a flowchart showing the steps of a processing system for explaining a first embodiment. In Figure 1, pre-dismantling survey information, equipment, and
Radioactivity measurement 2 on surfaces to be measured that may be contaminated based on prior information such as smear from pipe removal 1 and survey information
I do. In this radioactivity measurement 2, precise measurement and evaluation of the amount of surface contamination radioactivity and the degree of contamination penetration is carried out on floors, walls, and ceiling surfaces using radioactivity detectors such as Ge semiconductor detectors and NaI (Tl) scintillators. . This determines whether the surface to be measured is radioactive concrete or non-radioactive concrete. If the radioactivity measurement results in less than level 3 for disposal, it is determined to be non-radioactive. Further, at the same time as the contaminated surface is determined to be radioactive, surface condition measurement 4 is performed on the contaminated surface. In surface condition measurement 4, a combination of a radioactivity detector, an ultrasonic flaw detector, etc. is used to measure whether there is surface contamination, penetrating contamination, or crack-like contamination. Next, depending on these forms of contamination, if surface contamination is determined (5), surface contamination is removed by a decontamination method (6) such as water jetting or ice blasting. Then, radioactivity measurement 2 is performed again, and if the determination level is less than 3, the process is completed. If it is above the determination level, decontamination is carried out again or a predetermined amount of the contaminated area is removed using a mechanical surface layer removal method such as a scabler 7. In addition, if it is determined that the contamination is penetrating contamination or crack-like contamination, the contaminated portion is removed using a mechanical surface layer peeling method such as a scabler 7. Subsequent treatment operations are similar to those for surface contamination. Radioactive waste 8 such as radioactive concrete that has been decontaminated or removed and decontamination waste liquid generated due to decontamination is classified according to its radioactivity level and processed 9 such as being packed into containers. Further, after the contaminated portion has been removed, the surface to be measured is subjected to the above-mentioned treatment and then subjected to a measurement to determine whether the surface has been decontaminated to a predetermined radioactivity level. On the other hand, if the contamination cannot be removed by decontamination, the contaminated part is removed in the same manner as in the case of penetrating contamination and crack-like contamination. The above processing is performed as a series of work steps.

【0014】図2は図1に示した処理作業に必要な処理
システムに使用する各装置を遠隔操作等により移動機構
を有した台車に搭載して一つのユニットとして装置化し
た例を示している。この装置によって前述の処分システ
ムの一連の作業を行うことができ、特に床を対象に処分
する場合にはその効果を発揮する。すなわち、図2にお
いて、台車10に放射能検出器11、超音波探傷検出器
12、表面汚染除染装置13、機械的表層剥離装置14
、廃棄物収納容器15およびこれらの装置の制御装置1
6等を搭載し、装置化している。図1および図2に示し
た放射性廃棄物の処分システムによって例えば総量50
万トン発生する建屋解体廃棄物を表1に示したような廃
棄物の処分とすることが可能となる。
FIG. 2 shows an example in which each device used in the processing system necessary for the processing work shown in FIG. 1 is mounted on a trolley with a moving mechanism by remote control or the like to form a single unit. . This device can perform a series of operations of the disposal system described above, and is particularly effective when disposing of floors. That is, in FIG. 2, a cart 10 is equipped with a radioactivity detector 11, an ultrasonic flaw detector 12, a surface contamination decontamination device 13, and a mechanical surface layer stripping device 14.
, waste storage container 15 and control device 1 for these devices
It is equipped with a 6th class aircraft and has been turned into a device. For example, the radioactive waste disposal system shown in Figs.
It becomes possible to dispose of the 10,000 tons of building demolition waste that is generated as shown in Table 1.

【0015】[0015]

【表1】[Table 1]

【0016】表1は原子炉施設の建屋構造物のコンクリ
ートが50万トンの場合について、本発明に係る処分シ
ステムを適用した後の一般廃棄物と放射性(汚染)廃棄
物のレベルと重量の関係を示したものである。汚染廃棄
物の重量は本発明の適用によって汚染があると仮定した
約 1.5万m2 の範囲に対し汚染浸透深度を鑑み1
5mm除去した場合に発生する放射性廃棄物量を試算し
た一例であり、本発明により大量の建屋コンクリートを
処分先毎に区分できることがわかる。また、建屋解体後
の測定弁別では50万トン全てが放射性廃棄物となる可
能性があったものを、本発明により表1の例では放射性
廃棄物を約1/1000と大幅に低減することが可能で
ある。
[0016] Table 1 shows the relationship between the level and weight of general waste and radioactive (contaminated) waste after applying the disposal system according to the present invention in the case where the concrete of the building structure of a nuclear reactor facility is 500,000 tons. This is what is shown. The weight of contaminated waste is determined by applying the present invention to an area of about 15,000 m2, which is assumed to be contaminated, and considering the depth of contamination penetration.
This is an example of a trial calculation of the amount of radioactive waste generated when 5 mm is removed, and it can be seen that the present invention allows a large amount of building concrete to be sorted by disposal destination. In addition, in the example shown in Table 1, the present invention can significantly reduce the amount of radioactive waste to about 1/1000, compared to the possibility that all 500,000 tons would have become radioactive waste in the measurement and discrimination after the building was dismantled. It is possible.

【0017】図3は図1におけるシステムの放射能濃度
算出方法の例をブロック図で示したものである。各処分
に対する許容放射能濃度基準値が例えばBq/トンで示
された場合に対応する例である。すなわち、図3におい
て、汚染浸透測定により測定した汚染浸透度測定結果1
7から汚染の浸透度18を基に適用する汚染除去技術1
9により剥離される汚染物量20と剥離部分が有する含
有放射能量21から核種別または総放射能濃度(含有放
射能量/剥離量)22を評価するものである。また、汚
染浸透測定ではクラック状の汚染があると想定される場
合には超音波探傷検出器と放射能検出器を組合わせて検
出する。本実施例の処分システムで各処分に対する許容
表面放射能量を評価することによってより合理的な放射
性廃棄物の弁別が可能となる。
FIG. 3 is a block diagram showing an example of a radioactivity concentration calculation method of the system shown in FIG. This example corresponds to a case where the allowable radioactivity concentration standard value for each disposal is expressed, for example, in Bq/ton. That is, in FIG. 3, the contamination penetration degree measurement result 1 measured by the contamination penetration measurement
Contamination removal technology 1 applied based on the degree of penetration of contamination from 7 to 18
The nuclide type or total radioactivity concentration (contained radioactivity amount/removed amount) 22 is evaluated from the amount of contaminants 20 removed by 9 and the amount of radioactivity contained in the removed portion 21. In addition, in the contamination penetration measurement, if it is assumed that there is crack-like contamination, an ultrasonic flaw detector and a radioactivity detector are used in combination to detect it. By evaluating the allowable surface radioactivity amount for each disposal in the disposal system of this embodiment, more rational discrimination of radioactive waste becomes possible.

【0018】[0018]

【発明の効果】本発明によれば、原子力発電所施設等の
管理区域内の残存放射能を効率的に測定・評価すること
ができ、膨大な量となる建屋構造物のコンクリート廃棄
物を短時間に効率よくその放射能レベルに応じ合理的に
処分することができる。その結果、放射性廃棄物量を大
幅に低減でき、且つ合理的な廃棄物の区分・弁別が可能
となる。これにより、作業時間の大幅な短縮をできると
共に、作業者および一般公衆の大幅な放射線被曝低減に
寄与し、廃棄物処分費用を低減できる。
[Effects of the Invention] According to the present invention, it is possible to efficiently measure and evaluate residual radioactivity in controlled areas of nuclear power plant facilities, etc., and to quickly reduce the enormous amount of concrete waste from building structures. It can be disposed of in a timely and efficient manner according to its radioactivity level. As a result, the amount of radioactive waste can be significantly reduced, and waste can be rationally classified and discriminated. This can significantly shorten working time, contribute to a significant reduction in radiation exposure for workers and the general public, and reduce waste disposal costs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る放射性廃棄物の処分システムの一
実施例を示す流れ図。
FIG. 1 is a flowchart showing an embodiment of a radioactive waste disposal system according to the present invention.

【図2】図1における処分システムをユニットとして装
置化した例を概略的に示す斜視図。
FIG. 2 is a perspective view schematically showing an example in which the disposal system in FIG. 1 is configured as a unit.

【図3】図1におけるシステムの放射能濃度の算出例を
示すブロック図。
FIG. 3 is a block diagram showing an example of calculation of radioactivity concentration of the system in FIG. 1.

【符号の説明】[Explanation of symbols]

1…放射性機器・配管撤去、2…放射能測定、3…各処
分判定レベル、4…表面状態測定、5…汚染状態の判定
、6…水ジェット,アイスブラスト等、7…スキャブラ
等、8…放射性廃棄物、9…容器詰め等、10…台車、
11…放射能検出器、12…超音波探傷検出器、13…
表面汚染除染装置、14…機械的表層剥離装置、15…
廃棄物収納容器、16…制御装置、17…汚染浸透度測
定結果、18…汚染浸透深さ、19…汚染除去適用技術
、20…剥離除去量、21…剥離部含有放射能量、22
…核種別または総放射能濃度。
1...Radioactive equipment/piping removal, 2...Radioactivity measurement, 3...Each disposal judgment level, 4...Surface condition measurement, 5...Contamination state judgment, 6...Water jet, ice blast, etc., 7...Scabler, etc., 8... Radioactive waste, 9... Container packing, etc., 10... Trolley,
11... Radioactivity detector, 12... Ultrasonic flaw detector, 13...
Surface contamination decontamination device, 14... Mechanical surface layer peeling device, 15...
Waste storage container, 16... Control device, 17... Contamination penetration measurement result, 18... Contamination penetration depth, 19... Contamination removal applied technology, 20... Amount removed by peeling, 21... Amount of radioactivity contained in the peeled part, 22
...Nuclide type or total radioactivity concentration.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  原子力発電施設内に設置された機器・
配管等を撤去した後の管理区域内のコンクリート建屋構
造物の床,壁,天井等の測定対象面に対して表面汚染放
射能量および汚染浸透度を測定して前記測定対象面が放
射性コンクリートか非放射性コンクリートかの判定を行
い、その判定結果に基づき前記測定対象面が放射性コン
クリートの場合には放射能の汚染形態が表面のみか、表
面から内部へ浸透しているか、または表面に存在するク
ラック等の中に入り込んだものかの汚染形態を判定し、
この汚染形態の判定に基づきそれぞれの汚染形態に応じ
た除染方法を適用してそれぞれの汚染部分を除去し、除
去した放射性コンクリート,除染廃液等は該放射性コン
クリート,除染廃液等が有する放射能レベルに応じて弁
別したのち、容器詰めし、汚染部分が除去された測定対
象面に対しては再度確認測定を行い非放射性コンクリー
トの確認を行うことを特徴とする放射性廃棄物の処分シ
ステム。
[Claim 1] Equipment installed in a nuclear power generation facility.
Measure the amount of surface contamination radioactivity and the degree of contamination penetration on the surfaces to be measured such as floors, walls, and ceilings of concrete building structures in the controlled area after removing piping, etc., and determine whether the surfaces to be measured are radioactive concrete or non-radioactive concrete. It is determined whether the concrete is radioactive or not, and based on the determination result, if the surface to be measured is radioactive concrete, it is determined whether the radioactive contamination is only on the surface, has penetrated from the surface to the inside, or whether there are cracks, etc. on the surface. Determine the form of contamination that has entered the
Based on this judgment of the contamination form, each contaminated part is removed by applying a decontamination method according to each contamination form, and the removed radioactive concrete, decontamination waste liquid, etc. A radioactive waste disposal system is characterized in that after being classified according to the radioactivity level, the waste is packed in containers, and the surface to be measured from which contaminated parts have been removed is subjected to confirmation measurement again to confirm that it is non-radioactive concrete.
JP1052591A 1991-01-31 1991-01-31 Disposal system of radioactive waste refuse Pending JPH04245000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052591A JPH04245000A (en) 1991-01-31 1991-01-31 Disposal system of radioactive waste refuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052591A JPH04245000A (en) 1991-01-31 1991-01-31 Disposal system of radioactive waste refuse

Publications (1)

Publication Number Publication Date
JPH04245000A true JPH04245000A (en) 1992-09-01

Family

ID=11752666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052591A Pending JPH04245000A (en) 1991-01-31 1991-01-31 Disposal system of radioactive waste refuse

Country Status (1)

Country Link
JP (1) JPH04245000A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102812A (en) * 2011-01-20 2011-05-26 Japan Atomic Energy Agency Method and device for decontaminating regions near the surface contaminated by radioactive isotope without remelting, re-diffusion and re-contamination due to athermal laser peeling
JP2012255742A (en) * 2011-06-10 2012-12-27 Hitachi-Ge Nuclear Energy Ltd Conveyance method of radioactive structure member
JP2013245947A (en) * 2012-05-23 2013-12-09 Kuriharanto:Kk Radioactive material decontamination agent and decontamination method
JP2014020900A (en) * 2012-07-18 2014-02-03 Ihi Construction Machinery Ltd Self-propelled dosimetry device
JP2014219324A (en) * 2013-05-09 2014-11-20 清水建設株式会社 Radioactive contamination depth simulation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102812A (en) * 2011-01-20 2011-05-26 Japan Atomic Energy Agency Method and device for decontaminating regions near the surface contaminated by radioactive isotope without remelting, re-diffusion and re-contamination due to athermal laser peeling
JP2012255742A (en) * 2011-06-10 2012-12-27 Hitachi-Ge Nuclear Energy Ltd Conveyance method of radioactive structure member
JP2013245947A (en) * 2012-05-23 2013-12-09 Kuriharanto:Kk Radioactive material decontamination agent and decontamination method
JP2014020900A (en) * 2012-07-18 2014-02-03 Ihi Construction Machinery Ltd Self-propelled dosimetry device
JP2014219324A (en) * 2013-05-09 2014-11-20 清水建設株式会社 Radioactive contamination depth simulation method

Similar Documents

Publication Publication Date Title
JPH04245000A (en) Disposal system of radioactive waste refuse
Teunckens et al. The Belgoprocess strategy in decommissioning and decontamination
Umezawa et al. Uranium waste engineering research at the Ningyo-toge Environmental Engineering Center of JAEA
JPH04235400A (en) Radioactive waste disposal system
JPH0545467A (en) Radioactive contamination measuring system
Brill et al. Building 7602 Decontamination and Decommissioning for Reuse by Spallation Neutron Source
Kuznetsov et al. Preparation for Decommissioning the U-5 Facility Building Complex at VNIINM
Baumann et al. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning
JP2507478B2 (en) Decontamination system for radioactive waste
Krause STUDSVIK's methods for treatment/free release of components and buildings structures from decommissioning of nuclear installations
Pritchard Decommissioning & Demolition of a Redundant UK Research Facility at AWE Aldermaston–12453
Koroll et al. Decommissioning of AECL Whiteshell Laboratories
Thierfeldt Decommissioning and Waste Management
Ponomarev-Stepnoi et al. Extraction of radioactive wastes and liquidation of old repositories at the Russian Science Center Kurchatov Institute
Teunckens et al. The Belgoprocess strategy relating to the management of materials from decommissioning
Gilis et al. Concrete Crushing and Sampling: A Methodology and Technology for the Unconditional Release of Concrete Material From Decommissioning
Rowland et al. Proposed radiation hardened mobile vehicle for Chernobyl dismantlement and nuclear accident response
Michiels Dismantling the nuclear research reactor Thetis
Ervin et al. Decommissioning Results and Lessons Learned at the University of Virginia Reactor Facility
Walthe´ ry et al. Progress and Experiences From the Decommissioning of the Eurochemic Reprocessing Plant
Park et al. Korea research reactor-1 & 2 decommissioning project in Korea
Teunckens et al. WHAT TO DO WITH THE MATERIAL FROM THE DECOMMISSIONING OF A REPROCESSING PLANT
Smith et al. Decontamination and dismantlement of the old hot laundry, CFA-669. Final report
Harper et al. Fixed-Price Subcontracting for Decontamination and Decommissioning of Small Facilities at Oak Ridge National Laboratory
Mikheikin et al. D&D of a Pu Extraction Facility in VNIINM