JPH0424490A - Capillary pump - Google Patents

Capillary pump

Info

Publication number
JPH0424490A
JPH0424490A JP12557590A JP12557590A JPH0424490A JP H0424490 A JPH0424490 A JP H0424490A JP 12557590 A JP12557590 A JP 12557590A JP 12557590 A JP12557590 A JP 12557590A JP H0424490 A JPH0424490 A JP H0424490A
Authority
JP
Japan
Prior art keywords
evaporating body
porous
porous evaporating
liquid
thermal bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12557590A
Other languages
Japanese (ja)
Inventor
Akira Akiyoshi
亮 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12557590A priority Critical patent/JPH0424490A/en
Publication of JPH0424490A publication Critical patent/JPH0424490A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To reduce a pressure loss when fluid passes through a part having capillary effect and increase the maximum heat transporting amount by a method wherein a porous evaporating body, having the capillary effect, is thinned while a vapor flow passage, enclosed by the porous evaporating body and a thermal bridge, transferring heat from the porous evaporating body and a heat absorbing surface to the porous evaporating body, is enlarged comparatively. CONSTITUTION:A capillary pump 1 is constituted of a thin porous evaporating body 9, a thermal bridge 11 transferring heat Q from a heat absorbing surface 10 to the porous evaporating body 9, a comparatively large vapor flow passage 12, enclosed by the porous evaporating body 9 and the thermal bridge 11, and a vapor outlet port 13, communicating a liquid reservoir 8 and a liquid inlet port 7, which are positioned at the opposite side of the vapor flow passage 12 of the porous evaporating body 9, with the vapor flow passage 12. Liquid, entered the liquid reservoir 8 through the liquid inlet port 7, soaks into the porous evaporating body 9 by capillary effect and is evaporated in the porous evaporating body 9 by heat, entered from the heat absorbing surface 10 through the thermal bridge 11. The evaporated vapor flows out of a vapor outlet port 13 through the vapor flow passage 12. Accordingly, the capillary effect is increased and a pressure loss, generated when the fluid is passed, is reduced remarkably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発熱体から液体がその熱を奪って他の個所で
その液体を蒸発させて放熱する熱制御装置などに用いら
れるキャピラリーポンプに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a capillary pump used in a heat control device, etc., in which a liquid takes heat from a heating element and evaporates the liquid in another location to release the heat. It is something.

〔従来の技術〕[Conventional technology]

従来のこの種のキャピラリーポンプは、たとえば、第4
図および第5図に示すような構成からなっている。
Conventional capillary pumps of this type, for example,
It has a configuration as shown in FIG. 5 and FIG.

第4図および第5図において、21は液注入管、22は
供給孔、23はリザーブ管、24は細孔、25はつ49
り、26はグループ管、27はグループ、28は基板、
29は蒸気管である。
4 and 5, 21 is a liquid injection pipe, 22 is a supply hole, 23 is a reserve pipe, 24 is a small hole, 25 is a hole 49
26 is a group tube, 27 is a group, 28 is a board,
29 is a steam pipe.

すなわち、作動液体は液注入管21を通って4個の供給
孔22からリザーブ管23八流入する。リザーブ管23
は360個の細孔24を持ち、作動液体はここからウィ
ック25に浸透する。そして、毛細管作用により作動液
体がウィック25の外周近傍に達すると、グループ管2
6の外表面から加えられた熱を作動液体が吸収して、液
体から気体に相変化し、つまり、蒸発し、第4図の矢印
で示すように、グループ27を通って蒸気管29へ流出
する。
That is, the working liquid passes through the liquid injection pipe 21 and flows into the reserve pipe 238 from the four supply holes 22. Reserve pipe 23
has 360 pores 24 through which the working liquid permeates into the wick 25. When the working liquid reaches the vicinity of the outer periphery of the wick 25 due to capillary action, the group tube 2
The working liquid absorbs the heat applied from the outer surface of 6, undergoes a phase change from liquid to gas, that is, evaporates, and flows out through group 27 to steam pipe 29, as shown by the arrow in FIG. do.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第4図および第5図に示しt従来のキャ
ピラリーポンプにおいては、浸透する液体の量を確保す
るために、ウィック25の川さおよび長さが大きくなっ
ており、さらに、るループ管26の内周面の一部がウィ
ック25のり周面に接して熱の伝達する部分と蒸発した
蒸うを通すグループ27とが必要であり、それら世者を
、ともに大きくすることができないため、一方のグルー
プ27を犠牲にして狭くしていシので、つ45り25の
中の流体が通過する際の社抗、つまり、圧力損失が大き
くなり、このたダ最大熱輸送量が小さいものとなってし
まうとしう問題点があった。
However, in the conventional capillary pump shown in FIG. 4 and FIG. A part of the inner circumferential surface of the wick 25 is in contact with the circumferential surface of the wick 25 to transmit heat, and a group 27 is required to allow evaporated steam to pass through. Since it is made narrower at the expense of the group 27 of the tube 45, the social resistance when the fluid in the tube 25 passes, that is, the pressure loss, increases, and the maximum heat transport amount of this column becomes small. There was a problem after all.

本発明は、上記のような問題点を解決しようとするもの
である。すなわち、本発明は、原註が毛細管作用する部
分を通過する際の圧力損ダを小さくして、最大熱輸送量
を大きくすることができるキャピラリーポンプを提供す
ること壱目的とするものである。
The present invention aims to solve the above problems. That is, one object of the present invention is to provide a capillary pump that can reduce the pressure loss when the material passes through a portion that acts as a capillary tube, and can increase the maximum amount of heat transport.

〔課題を解決するための手段〕 上記目的を達成するために、本発明のキャピラリーポン
プは、薄い多孔質蒸発体と、吸熱面からの熱を前記多孔
質蒸発体に伝えるサーマルブリッジと、前記多孔質蒸発
体と該サーマルブリッジで囲まれた比較的大きい蒸気流
路と、前記多孔質蒸発体の該蒸気流と反対側に設けられ
た液体流路とを備えているものとした。
[Means for Solving the Problems] In order to achieve the above object, the capillary pump of the present invention includes a thin porous evaporator, a thermal bridge that transfers heat from an endothermic surface to the porous evaporator, and a thin porous evaporator. The porous evaporator is provided with a relatively large vapor flow path surrounded by the porous evaporator and the thermal bridge, and a liquid flow path provided on the opposite side of the porous evaporator from the vapor flow.

〔作用〕[Effect]

本発明によれば、毛細管作用をする多孔質蒸発体が薄い
ものからなり、さらに、該多孔質蒸発体と吸熱面からの
熱を該多孔質蒸発体に伝えるサーマルブリッジとによっ
て囲まれる蒸気流路が比較的大きなものとなっているの
で、毛細管作用が大きくなるとともに、流体が通過する
際の圧力損失が著しく小さくなり、したがって、最大熱
輸送量の大きいキャピラリーポンプとなる。
According to the present invention, the porous evaporator that acts as a capillary tube is made of a thin material, and the vapor flow path is further surrounded by the porous evaporator and a thermal bridge that transfers heat from the endothermic surface to the porous evaporator. is relatively large, the capillary action is large, and the pressure drop when the fluid passes is significantly small, resulting in a capillary pump with a large maximum heat transfer amount.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示し、第2図はキャピラ
リーボンプループを示し、第3図は本発明の第2実施例
を示している。
FIG. 1 shows a first embodiment of the invention, FIG. 2 shows a capillary bomb loop, and FIG. 3 shows a second embodiment of the invention.

第2図において、1はキャピラリーポンプであり、この
キャピラリーポンプ1で蒸発した蒸気は蒸気配管2を経
て凝縮器3で凝縮し、液配管4を経てキャピラリーポン
プlへ戻る。さらに、ループ内の流体量を調節するアキ
ュミュレータ5と流体圧力を調節する圧力調節器6を有
している。
In FIG. 2, reference numeral 1 denotes a capillary pump. Steam evaporated by the capillary pump 1 passes through a steam pipe 2, is condensed in a condenser 3, and returns to the capillary pump 1 via a liquid pipe 4. Furthermore, it has an accumulator 5 that adjusts the amount of fluid in the loop and a pressure regulator 6 that adjusts the fluid pressure.

第1図において、7は液入口、8は液溜め、9は平板状
の薄い多孔質蒸発体、1oは吸熱面11はサーマルブリ
ッジ、12は蒸気流路、13は蒸気出口である。
In FIG. 1, 7 is a liquid inlet, 8 is a liquid reservoir, 9 is a flat plate-like thin porous evaporator, 1o is a heat absorption surface 11 is a thermal bridge, 12 is a vapor flow path, and 13 is a vapor outlet.

すなわち、キャピラリーポンプ1は、薄い多孔質蒸発体
9と、吸熱面lOがら熱Qを多孔質蒸発体9に伝えるサ
ーマルブリッジ11と、多孔質蒸発体9およびサーマル
ブリッジ11で囲まれる比較的大きい蒸気流路12と、
多孔質蒸発体9の蒸気流路12と反対側に位置する液溜
め8および液入ロアと、蒸気流路12に連通している蒸
気出口13とからなっている。
That is, the capillary pump 1 includes a thin porous evaporator 9, a thermal bridge 11 that transfers heat Q to the porous evaporator 9 through an endothermic surface 1O, and a relatively large vapor pump surrounded by the porous evaporator 9 and the thermal bridge 11. A flow path 12;
It consists of a liquid reservoir 8 and a lower liquid inlet located on the opposite side of the vapor flow path 12 of the porous evaporator 9, and a vapor outlet 13 communicating with the vapor flow path 12.

第1図に示すように構成されたキャピラリーポンプ1に
おいては、液入ロアがら液溜め8に流入した液体は多孔
質蒸発体9に毛細管作用で浸透する。この浸透した液体
は、吸熱面10がも入ってサーマルブリッジ11を経た
熱によって多孔質蒸発体9の中で蒸発する。この蒸発し
た蒸気は蒸気流路12を経て蒸気出口13から流出する
In the capillary pump 1 constructed as shown in FIG. 1, the liquid flowing into the liquid reservoir 8 from the liquid entry lower permeates into the porous evaporator 9 by capillary action. This permeated liquid is evaporated in the porous evaporator 9 by the heat that passes through the thermal bridge 11 which also includes the endothermic surface 10 . This evaporated steam passes through the steam flow path 12 and flows out from the steam outlet 13.

このように、毛細管作用をする多孔質体9が薄いものか
らなり、さらに、蒸気流路12が比較的大きなものから
なるので、毛細管作用が大きくなるとともに、流体が通
過する際の圧力損失が著しく小さくなり、したがって、
最大熱輸送量の大きなものとなる。
In this way, since the porous body 9 that acts as a capillary tube is made of a thin material, and the steam flow path 12 is made of a relatively large piece, the capillary action becomes large and the pressure loss when the fluid passes through it becomes significant. becomes smaller, therefore
The maximum heat transport amount is large.

第3図は本発明の第2実施例を示している。FIG. 3 shows a second embodiment of the invention.

この多孔質蒸発体9が薄肉のパイプ状のものがらなり、
この多孔質蒸発体9の内部が液流路14となっている。
This porous evaporator 9 is a thin-walled pipe-like object,
The interior of this porous evaporator 9 serves as a liquid flow path 14 .

したがって、液流路14がら液体は多孔質蒸発体9に毛
細管作用で浸透する。この液体は、吸熱面10から入っ
てサーマルブリッジ11を経た熱によって多孔質蒸発体
9の外表面で蒸発する。この蒸気は蒸気流路12を経て
図示されていない蒸気出口から流出する。
Therefore, the liquid permeates into the porous evaporator 9 through the liquid channel 14 by capillary action. This liquid is evaporated on the outer surface of the porous evaporator 9 by the heat that enters from the endothermic surface 10 and passes through the thermal bridge 11 . This steam flows out through a steam flow path 12 through a steam outlet (not shown).

この第2実施例においても、多孔質蒸発体9が肉薄であ
ることと、蒸気流路12が比較的に大きいので、前述の
第1実施例と同様な作用および効果がある。
In this second embodiment as well, since the porous evaporator 9 is thin and the vapor flow path 12 is relatively large, the same functions and effects as in the first embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、毛細管作用を薄
い多孔質蒸発体に持たせ、さらに、蒸気流路が比較的大
きいため、流体がキャピラリーポンプ内を通過する際の
圧力損失が小さく、また多孔質蒸発体の孔は細孔であっ
て毛細管作用が大きい。これらの理由により、最大熱輸
送量が大きいキャピラリーポンプとなる。
As explained above, according to the present invention, since the thin porous evaporator has capillary action and the vapor flow path is relatively large, the pressure loss when the fluid passes through the capillary pump is small. Further, the pores of the porous evaporator are fine pores and have a large capillary action. For these reasons, the capillary pump has a large maximum heat transport amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示した断面図、第2図は
キャピラリーボンプループの説明図、第3図は本発明の
第2実施例を示した断面図、第4図は従来の技術の一例
を示した縦断面図、第5図は第4図の切断線A−Aに沿
う横断面図である。 1・・・キャピラリーポンプ、7・・・液入口、8・・
・液溜め、9・・・多孔質蒸発体、10・・・吸熱面、
11・・・サーマルブリッジ、12・・・蒸気流路、1
3・・・蒸気出口、14・・・液流路。
Fig. 1 is a sectional view showing the first embodiment of the present invention, Fig. 2 is an explanatory diagram of a capillary bomb loop, Fig. 3 is a sectional view showing the second embodiment of the invention, and Fig. 4 is a conventional FIG. 5 is a longitudinal cross-sectional view showing an example of this technique, and FIG. 5 is a cross-sectional view taken along the cutting line A-A in FIG. 4. 1... Capillary pump, 7... Liquid inlet, 8...
・Liquid reservoir, 9... Porous evaporator, 10... Endothermic surface,
11... Thermal bridge, 12... Steam flow path, 1
3... Steam outlet, 14... Liquid flow path.

Claims (1)

【特許請求の範囲】 1、薄い多孔質蒸発体と、吸熱面からの熱を前記多孔質
蒸発体に伝えるサーマルブリッジと、前記多孔質蒸発体
と該サーマルブリッジで囲まれた比較的大きい蒸気流路
と、前記多孔質蒸発体の該蒸気流路と反対側に設けられ
た液流路とを備えていることを特徴とする、キャピラリ
ーポンプ。 2、多孔質蒸発体が平板形になっている請求項1記載の
キャピラリーポンプ。 3、多孔質蒸発体がパイプ形になっている請求項1記載
のキャピラリーポンプ。
[Claims] 1. A thin porous evaporator, a thermal bridge that transfers heat from an endothermic surface to the porous evaporator, and a relatively large vapor flow surrounded by the porous evaporator and the thermal bridge. and a liquid flow path provided on the opposite side of the vapor flow path of the porous evaporator. 2. The capillary pump according to claim 1, wherein the porous evaporator has a flat plate shape. 3. The capillary pump according to claim 1, wherein the porous evaporator is pipe-shaped.
JP12557590A 1990-05-17 1990-05-17 Capillary pump Pending JPH0424490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12557590A JPH0424490A (en) 1990-05-17 1990-05-17 Capillary pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12557590A JPH0424490A (en) 1990-05-17 1990-05-17 Capillary pump

Publications (1)

Publication Number Publication Date
JPH0424490A true JPH0424490A (en) 1992-01-28

Family

ID=14913577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12557590A Pending JPH0424490A (en) 1990-05-17 1990-05-17 Capillary pump

Country Status (1)

Country Link
JP (1) JPH0424490A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634864B1 (en) * 2002-02-19 2003-10-21 Vapore, Inc. High fluid flow and pressure in a capillary pump for vaporization of liquid
JP2007247931A (en) * 2006-03-14 2007-09-27 Fujikura Ltd Evaporator and loop-type heat pipe using the same
WO2007064909A3 (en) * 2005-12-01 2008-11-20 Vapore Inc Advanced capillary force vaporizers
WO2008138216A1 (en) * 2007-05-16 2008-11-20 Sun Yat-Sen University Uniform temperature loop heat pipe device
JP2011163751A (en) * 2010-02-12 2011-08-25 Micro Base Technology Corp Cooling device, and cooling-radiating system having the same
US8201752B2 (en) 2008-03-10 2012-06-19 Vapore, Inc. Low energy vaporization of liquids: apparatus and methods
JP2014070871A (en) * 2012-10-02 2014-04-21 Fujikura Ltd Loop-type heat pipe
EP1882100A4 (en) * 2005-05-16 2015-03-11 Vapore Llc Improved capillary force vaporizers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634864B1 (en) * 2002-02-19 2003-10-21 Vapore, Inc. High fluid flow and pressure in a capillary pump for vaporization of liquid
EP1882100A4 (en) * 2005-05-16 2015-03-11 Vapore Llc Improved capillary force vaporizers
WO2007064909A3 (en) * 2005-12-01 2008-11-20 Vapore Inc Advanced capillary force vaporizers
JP2007247931A (en) * 2006-03-14 2007-09-27 Fujikura Ltd Evaporator and loop-type heat pipe using the same
WO2008138216A1 (en) * 2007-05-16 2008-11-20 Sun Yat-Sen University Uniform temperature loop heat pipe device
AU2008250879B2 (en) * 2007-05-16 2010-03-04 Sun Yat-Sen University Uniform temperature loop heat pipe device
US8201752B2 (en) 2008-03-10 2012-06-19 Vapore, Inc. Low energy vaporization of liquids: apparatus and methods
JP2011163751A (en) * 2010-02-12 2011-08-25 Micro Base Technology Corp Cooling device, and cooling-radiating system having the same
JP2014070871A (en) * 2012-10-02 2014-04-21 Fujikura Ltd Loop-type heat pipe

Similar Documents

Publication Publication Date Title
US6994151B2 (en) Vapor escape microchannel heat exchanger
US4785875A (en) Heat pipe working liquid distribution system
US6450132B1 (en) Loop type heat pipe
JPH10246583A (en) Evaporator and loop type heat pipe employing it
JPH0424490A (en) Capillary pump
DE2739199B2 (en) Switchable and controllable heat pipe
EP0987509B1 (en) Heat transfer apparatus
US5016705A (en) Passenger compartment heating system, in particular bus heating system
JPS61122464A (en) Adsorption re-adsorption heat pump
US7900472B2 (en) Heat exchange and heat transfer device, in particular for a motor vehicle
US4300624A (en) Osmotic pumped heat pipe valve
JP2904199B2 (en) Evaporator for capillary pump loop and heat exchange method thereof
JPS6039958B2 (en) heat transfer device
JPH0231313B2 (en) BUNRIGATAHIITOPAIPUSHIKIKUKYONETSUKI
JPS5595091A (en) Heat-transfer element for plate type heat-exchanger
JPS62233686A (en) Heat transfer device
US4315539A (en) Self equalizing control mechanism for osmotically pumped heat pipes
JPH0724319Y2 (en) Flow control reservoir for two-phase exhaust heat loop
JP2004251522A (en) Loop type heat pipe
JPH051960U (en) Flat evaporator
JPH04126995A (en) Evaporator for capillary pump loop
JPS5919899Y2 (en) heat pipe
SU787875A1 (en) Heat transfer apparatus
JPS6196395A (en) Heat transfer device
SU668826A1 (en) Vehicle heater