JPH0424485B2 - - Google Patents
Info
- Publication number
- JPH0424485B2 JPH0424485B2 JP848884A JP848884A JPH0424485B2 JP H0424485 B2 JPH0424485 B2 JP H0424485B2 JP 848884 A JP848884 A JP 848884A JP 848884 A JP848884 A JP 848884A JP H0424485 B2 JPH0424485 B2 JP H0424485B2
- Authority
- JP
- Japan
- Prior art keywords
- bridge
- flat plate
- cross
- main structure
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000002265 prevention Effects 0.000 claims description 4
- 239000000725 suspension Substances 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 2
- 230000003796 beauty Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Bridges Or Land Bridges (AREA)
Description
トラス構造吊橋においては第1図に示すよう
に、図示されていない主塔間に張設された主ケー
ブルaにトラス構造の補剛桁bがハンガロープc
を介して懸吊され、同補剛桁b上に桁dを介して
床板eが支持され、更に同床板eの中央分離帯近
傍と側部とにグレーチングfが配設されている。
このような橋梁においては一般にフラツタ振動
が発生し、破壊による落橋の危険性がある。
従来このフラツタ振動を制振するか、または振
動が発生し始める発生風速を高める方法として、
第2図に示すように床板eの中央分離帯部にほぼ
その長手方向の全長に亘りスタビライザgを設置
したり、また第3図に示すように中央分離帯のグ
レーチングfの下方に中高断面形状の部材hを設
置したものが提案されている。
しかしながら第2図に示すようにスタビライザ
gを設置した場合、同スタビライザgの高さは
1.5m程度必要であり、これを中央分離帯のほぼ
全長に亘つて設置することは吊橋の美観を損ね、
吊橋を通行する車や歩行者の視界を妨げるばかり
でなく、風向きに対してほぼ直角に設置されてい
るため、吊橋全体の空気抵抗が増大する。
また第3図に示すように中高断面形状の部材h
を設置した場合、一辺の長さが1.5m程度必要で
あり、これを吊橋の長手方向に設置すると可成り
重量が増大する。
このように吊橋の空気抵抗が増加したり、重量
が増大すると吊橋の強度向上が必要となり、工費
が崇む。
本発明はこのような問題点を解放するために提
案されたもので、四隅に配設された主構とともに
形成されたトラス構造の上に、橋軸方向に延びる
複数の桁を列設し、同桁上に床板を載架した橋梁
断面において、前記主構のうち上部の主構に一端
縁が接し、他端縁が橋軸に指向して突出した平板
を前記床板の端縁と重合しない範囲に設けてなる
ことを特徴とするフラツタ防止装置の配設された
橋梁に係るものである。
本発明においては前記したように、橋梁断面の
トラス構造の四隅に配設された主構のうち上部主
構に一端縁が接し、他端縁が橋軸に指向して突出
した平板を、前記トラス構造上に列設された橋軸
方向に延びる複数の桁上に載架された床板の端縁
と重合しない範囲に配設したので、このように上
部主構と床板との間に配置された平板によつて、
床板の前縁に当る流れの角度が前記平板を設けな
いときより小さくなり、流れの剥離状態が変り、
フラツタ振動の発生風速が高くなり、橋梁の安全
性が大幅に向上する。しかも前記平板は流れにほ
ぼ平行に配置されるため空気抵抗の増加も殆んど
なく、設置も容易であり、また前記平板によつて
吊橋を通行する車や歩行者の視界を妨げることが
ない等、本発明は多くの利点を有するものであ
る。
以下本発明を図示の実施例について説明する。
1は主塔間に張設された主ケーブル2よりハン
ガロープ3を介して懸吊されたトラス構造の補剛
桁で、同補剛桁1上に列設された橋軸方向に延び
る桁4上に床板5が載架されている。
而して前記トラス構造の四隅に配設された主構
6のうち、上部の主構6と床板5との間に橋軸方
向に延びる水平の平板7が介装され、同平板7の
一端縁は上部の主構6に接し、他端縁が橋軸に指
向して突出し、且つ床板5と上下方向に重合しな
い範囲に配設されている。
図示の実施例は前記したように構成されている
ので、主構6と床板5との間に配設された平板7
によつて床板5の前縁に当る流れの角度が平板7
を設けないときより小さくなり、流れの剥離状態
が変り、フラツタ振動の発生風速が高くなり、橋
梁の安全性が向上する。
次に前記平板7のない従来の橋梁と、平板7を
設けた本発明に係る橋梁との実験例を挙げる。
第6図は前記平板7を設けない従来型式の橋梁
の模型の断面を示し、第7図は前記平板7を設け
た本発明に係る橋梁の模型の断面を示し、下記表
1に示す条件で実験を行ない、第5図に示すよう
な実験結果を得た。
In a truss structure suspension bridge, as shown in Figure 1, a truss structure stiffening girder b is attached to a hanger rope c to a main cable a stretched between main towers (not shown).
A floor plate e is supported on the stiffening girder b via a girder d, and gratings f are provided near the median strip and on the sides of the floor plate e. In such bridges, flutter vibrations generally occur, and there is a risk of the bridge collapsing due to destruction. Conventionally, as a method of suppressing this flutter vibration or increasing the wind speed at which vibration begins to occur,
As shown in Fig. 2, a stabilizer g is installed on the median strip of the floor plate e over almost its entire length in the longitudinal direction, and as shown in Fig. 3, a stabilizer g is installed below the grating f of the median strip with a mid-height cross section. It has been proposed that a member h is installed. However, when the stabilizer g is installed as shown in Figure 2, the height of the stabilizer g is
Approximately 1.5m is required, and installing this over almost the entire length of the median strip will spoil the beauty of the suspension bridge.
Not only do they obstruct the view of cars and pedestrians passing through the suspension bridge, but because they are installed almost perpendicular to the direction of the wind, the air resistance of the entire suspension bridge increases. In addition, as shown in Fig. 3, a member h with a medium-high cross-sectional shape
When installed, the length of each side needs to be about 1.5m, and if it is installed in the longitudinal direction of the suspension bridge, the weight will increase considerably. As the air resistance of the suspension bridge increases and the weight increases, the strength of the suspension bridge must be improved, which increases construction costs. The present invention was proposed to solve these problems, and consists of arranging a plurality of girders extending in the axial direction of the bridge on a truss structure formed with the main structure arranged at the four corners. In the cross section of a bridge with floor plates mounted on the same girder, one edge of the main structure touches the upper main structure, and the other edge protrudes toward the bridge axis, so that the flat plate does not overlap with the edge of the floor plate. This invention relates to a bridge equipped with a flutter prevention device, which is characterized in that it is provided within a range. In the present invention, as described above, among the main structures arranged at the four corners of the truss structure of the bridge cross section, one edge is in contact with the upper main structure and the other edge is protruding toward the bridge axis. It was placed in a range that did not overlap with the edge of the floor plate, which was placed on multiple girders extending in the axial direction of the bridge installed in a row on the truss structure, so it was placed between the upper main structure and the floor plate. By means of a flat plate,
The angle of the flow hitting the front edge of the floor plate becomes smaller than when the flat plate is not provided, and the separation state of the flow changes,
The wind speed at which flutter vibrations occur will increase, greatly improving bridge safety. Moreover, since the flat plate is arranged almost parallel to the flow, there is almost no increase in air resistance, and installation is easy, and the flat plate does not obstruct the view of cars and pedestrians passing on the suspension bridge. The present invention has many advantages. The present invention will be described below with reference to the illustrated embodiments. 1 is a truss-structured stiffening girder suspended from a main cable 2 stretched between the main towers via a hanger rope 3, and a girder 4 extending in the bridge axis direction is installed on the stiffening girder 1. A floorboard 5 is mounted on the floorboard 5. Among the main structures 6 disposed at the four corners of the truss structure, a horizontal flat plate 7 extending in the bridge axis direction is interposed between the upper main structure 6 and the floor plate 5, and one end of the flat plate 7 is interposed between the upper main structure 6 and the floor plate 5. The edge contacts the upper main structure 6, and the other edge protrudes toward the bridge axis, and is disposed within a range that does not overlap the floorboard 5 in the vertical direction. Since the illustrated embodiment is constructed as described above, the flat plate 7 disposed between the main structure 6 and the floor plate 5
The angle of the flow hitting the front edge of the floor plate 5 is equal to that of the flat plate 7.
is smaller than when not provided, the flow separation state changes, the wind speed at which flutter vibration occurs increases, and the safety of the bridge improves. Next, an experimental example of a conventional bridge without the flat plate 7 and a bridge according to the present invention provided with the flat plate 7 will be given. FIG. 6 shows a cross section of a conventional bridge model without the flat plate 7, and FIG. 7 shows a cross section of a bridge model according to the present invention with the flat plate 7 provided, under the conditions shown in Table 1 below. An experiment was conducted and the experimental results shown in FIG. 5 were obtained.
【表】
第5図中、曲線Aが迎角(橋梁全体の傾斜角)
0゜、曲線Bが迎角3゜の場合の第6図示す平板7の
ない従来型式の橋梁断面の実験結果を示し、曲線
Cが迎角0゜、曲線Dが迎角3゜の場合の第7図に示
す平板7の附設された本発明に係る橋梁断面の実
験結果を示す。
前記実験結果によれば従来型式の橋梁断面の振
動発生風速は0゜で48.5m/s、迎角3゜で36m/s
であり、本発明に係る橋梁断面の振動発生風速
は、迎角0゜で96m/s、迎角3゜で100.5m/sであ
る。従つて本発明に係る橋梁断面の振動発生風速
は従来型式の橋梁断面の場合に比して約2倍高い
方で発生することが判つた。
以上本発明を実施例について説明したが、本発
明は勿論このような実施例だけ局限されるもので
はなく、本発明の精神を逸脱しない範囲内で種々
の設計の改変を施しうるものである。[Table] In Figure 5, curve A is the angle of attack (angle of inclination of the entire bridge)
0°, curve B shows the experimental results of the cross section of a conventional bridge without a flat plate 7 shown in Figure 6 when the angle of attack is 3°, curve C shows the experimental results when the angle of attack is 0°, and curve D when the angle of attack is 3°. FIG. 7 shows experimental results of a cross section of a bridge according to the present invention equipped with a flat plate 7 shown in FIG. According to the above experimental results, the wind speed at which vibration occurs in the cross section of a conventional bridge is 48.5 m/s at 0° and 36 m/s at an angle of attack of 3°.
The wind speed at which vibration occurs in the cross section of the bridge according to the present invention is 96 m/s at an angle of attack of 0° and 100.5 m/s at an angle of attack of 3°. Therefore, it has been found that the vibration-generating wind speed of the bridge cross section according to the present invention is approximately twice as high as that of the conventional bridge cross section. Although the present invention has been described above with reference to embodiments, the present invention is, of course, not limited to such embodiments, and can be modified in various ways without departing from the spirit of the present invention.
第1図は本発明の適用される橋梁の縦断面図、
第2図及び第3図は夫々従来のフラツタ防止装置
の配設された橋梁の縦断面図、第4図は本発明に
係るフラツタ防止装置の配設された橋梁の一実施
例を示す縦断面図、第5図は本発明に係る橋梁と
従来の橋梁との実験結果を示す図表、第6図及び
第7図は夫々前記実験に供せられた従来の橋梁並
に本発明に係る橋梁の各模型の縦断面図である。
1……補剛桁、4……桁、5……床板、6……
主構、7……平板。
FIG. 1 is a longitudinal cross-sectional view of a bridge to which the present invention is applied;
2 and 3 are longitudinal cross-sectional views of a bridge equipped with a conventional flutter prevention device, respectively, and FIG. 4 is a vertical cross-section showing an embodiment of a bridge equipped with a flutter prevention device according to the present invention. Figure 5 is a chart showing the experimental results of the bridge according to the present invention and a conventional bridge, and Figures 6 and 7 are graphs showing the results of the experiment of the conventional bridge used in the above experiment and the bridge according to the present invention, respectively. It is a longitudinal cross-sectional view of each model. 1... Stiffening girder, 4... Girder, 5... Floor board, 6...
Main structure, 7... flat plate.
Claims (1)
ラス構造の上に、橋軸方向に延びる複数の桁を列
設し、同桁上に床板を載架した橋梁断面におい
て、前記主構のうち上部の主構に一端縁が接し、
他端縁が橋軸に指向して突出した平板を前記床板
の端縁と重合しない範囲に設けてなることを特徴
とするフラツタ防止装置の配設された橋梁。1. In the cross section of a bridge where a plurality of girders extending in the bridge axis direction are installed in a row on a truss structure formed with the main structure arranged at the four corners, and the floor plate is mounted on the girder, the main structure is One edge touches the upper main structure,
1. A bridge equipped with a flutter prevention device, characterized in that a flat plate whose other edge protrudes toward the bridge axis is provided in a range that does not overlap the edge of the floor plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP848884A JPS60152705A (en) | 1984-01-23 | 1984-01-23 | Bridge provided with flutter preventing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP848884A JPS60152705A (en) | 1984-01-23 | 1984-01-23 | Bridge provided with flutter preventing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60152705A JPS60152705A (en) | 1985-08-12 |
JPH0424485B2 true JPH0424485B2 (en) | 1992-04-27 |
Family
ID=11694496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP848884A Granted JPS60152705A (en) | 1984-01-23 | 1984-01-23 | Bridge provided with flutter preventing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60152705A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421847Y2 (en) * | 1986-02-21 | 1992-05-19 |
-
1984
- 1984-01-23 JP JP848884A patent/JPS60152705A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60152705A (en) | 1985-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0424485B2 (en) | ||
EP0666942B1 (en) | Windbreak barrier for a suspension bridge structure, comprising flutter damping means | |
JPH0421847Y2 (en) | ||
US4451950A (en) | Long-span bridges | |
JP2512875Y2 (en) | Wind resistance stabilizer for bridge | |
JP3663700B2 (en) | Wind resistant structure | |
JP3430690B2 (en) | Suspension bridge | |
JPH0452324Y2 (en) | ||
JP3697055B2 (en) | Bridge | |
JPS5914482Y2 (en) | Wind-resistant vibration damping bridge | |
JP2642953B2 (en) | Bridge damping device | |
JPH0629485B2 (en) | Truss girder suspension bridge | |
SU1006683A1 (en) | Industrial building | |
JP2650595B2 (en) | Floating type PC cable stayed bridge | |
SU969856A1 (en) | Production building with membrane roof | |
JP3118185B2 (en) | Long suspension bridge with cable system | |
JPH0230491Y2 (en) | ||
JPS5821041B2 (en) | Wind stabilization device when constructing long bridges | |
JPH09137408A (en) | Suspension bridge | |
JPH0449211Y2 (en) | ||
JPH0421848Y2 (en) | ||
JPH02171403A (en) | Stiffening beam of long large bridge | |
JPH04108605U (en) | Bridge wind and vibration isolation device | |
JP2925829B2 (en) | Double wall sheet extruded from synthetic resin | |
JP3254613B2 (en) | String beam structure |