JPH04244762A - Rotor shaft for rotary electric machine - Google Patents

Rotor shaft for rotary electric machine

Info

Publication number
JPH04244762A
JPH04244762A JP918490A JP849091A JPH04244762A JP H04244762 A JPH04244762 A JP H04244762A JP 918490 A JP918490 A JP 918490A JP 849091 A JP849091 A JP 849091A JP H04244762 A JPH04244762 A JP H04244762A
Authority
JP
Japan
Prior art keywords
rotor
electric machine
shaft
rotor shaft
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP918490A
Other languages
Japanese (ja)
Inventor
Takuma Satou
卓磨 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP918490A priority Critical patent/JPH04244762A/en
Publication of JPH04244762A publication Critical patent/JPH04244762A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft

Abstract

PURPOSE:To easily reduce an increase in a vibration due to a temperature rise by forming a plurality of passages axially on an outer periphery, and regulating the quantity of cooling air flowing in and out through the passages by a regulating plate. CONSTITUTION:In a rotor of a rotary electric machine, cooling air blown inside an inner blade 8 is substantially uniformly blown to vent grooves 2 formed on the outer periphery of the center of a rotor shaft as indicated by an arrow 9, and fed between the outer periphery of a rotor core 3 and a stator though vent holes 3a formed at the core 3 to cool the shaft 1 and the core 3. A regulating plate 10 is inserted to the groove 2 disposed at the upper center. Thus, the ventilation amount of the other side of the rotor bent at one side is regulated by a temperature rise due to energization to correct the bent of the shaft due to the temperature rise. Further, the plate 10 is hit to be fitted at the inner peripheral side in the groove 2, further clamped with a screw in the vicinity of its axial center, and hence there is no fear of loosening it by a centrifugal force.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、回転電機の回転子軸に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor shaft of a rotating electric machine.

【0002】0002

【従来の技術】回転電機においては、運転中に発生する
回転子の振動が過大になると、軸受の寿命が低下し軸受
の損傷や固定子側に取り付けられた風道及び端子箱など
の計装品の破損の要因にもなる。すると、この電動機が
例えば鉄鋼圧延工場や大形コンプレッサ或いはポンプな
どに使われたときには、設備全体の操業を停止しなけれ
ばならなくなるおそれもある。
[Prior Art] In rotating electric machines, when the vibration of the rotor that occurs during operation becomes excessive, the life of the bearings is shortened, damage to the bearings, and instrumentation of the air passages and terminal boxes attached to the stator side is reduced. It can also cause product damage. Then, when this electric motor is used, for example, in a steel rolling mill, a large compressor, or a pump, there is a possibility that the operation of the entire facility must be stopped.

【0003】このため、従来からこのような設備に使わ
れる大形電動機においては、組立及び試験の各段階にお
いて、運転時の回転子の過大な振動の要因となる軸心に
対する重心の偏りを調整して、回転による遠心力のアン
バランスを減らし、それに伴う振動の低下が図られてい
る。
[0003] For this reason, in large electric motors used in such equipment, it has been necessary to adjust the deviation of the center of gravity relative to the axis, which causes excessive vibration of the rotor during operation, at each stage of assembly and testing. This is intended to reduce the unbalance of centrifugal force caused by rotation and reduce vibration associated with it.

【0004】一方、電動機は、負荷の増加に伴って内部
の温度も上り、たとい無負荷状態では振動が小さくても
、負荷の増加に伴う回転子の膨張で図4に示すように曲
って、振動が大きくなるときがある。図5は、発明者が
測定した従来の誘導電動機の回転子の無負荷状態と定格
負荷で上昇温度が飽和したときの振動の大きさと方向を
示すグラフである。
On the other hand, as the load increases, the internal temperature of an electric motor increases, and even if the vibration is small under no-load conditions, the rotor expands as the load increases, causing it to bend as shown in FIG. Sometimes the vibration gets louder. FIG. 5 is a graph showing the magnitude and direction of vibration of the rotor of a conventional induction motor measured by the inventor in a no-load state and when the temperature rise is saturated at a rated load.

【0005】同図において、無負荷時で回転子の端部の
温度が18℃のときには、回転子のある一側を0゜とし
たとき198 ゜の方向に最大振幅20μm(注;振動
計で測定)を示していたものが、定格負荷に上げて15
分後には、振動の移相が180 ゜の方向に変って最大
振幅が10μmと減少し、更に15分経過後には振動の
移相が53゜の方向で最大振幅が20μmと無負荷時の
振幅に増えた。以後、20分毎に測定したが、最初の2
0分経過時には、42゜の方向に変化して最大振幅30
μmに増え、次の20分経過時には振動の移相の方向は
更に0゜の方向の37゜となって最大振幅も40μmに
増え、次の20分経過で温度上昇が60゜で飽和したと
きの振動の移相は35゜振幅は60μmであった。その
ため、従来から回転電機の回転軸は、仕上げ前に熱処理
されて温度上昇による歪が最小になるよう種々対策が採
られている。
In the figure, when there is no load and the temperature at the end of the rotor is 18°C, the maximum amplitude is 20 μm in the direction of 198° when one side of the rotor is 0°. The one that was showing 15% when the load was increased to the rated load
After 15 minutes, the phase shift of the vibration changes to 180 degrees and the maximum amplitude decreases to 10 μm, and after another 15 minutes, the phase shift of the vibration changes to 53 degrees and the maximum amplitude is 20 μm, which is the amplitude at no load. It increased to After that, measurements were taken every 20 minutes, but the first 2
When 0 minutes have elapsed, it changes in the direction of 42 degrees and reaches a maximum amplitude of 30 degrees.
After the next 20 minutes, the direction of the vibration phase shift further becomes 37 degrees in the direction of 0 degrees, and the maximum amplitude increases to 40 μm, and when the temperature rise reaches saturation at 60 degrees after the next 20 minutes. The phase shift of the vibration was 35° and the amplitude was 60 μm. For this reason, various measures have been conventionally taken to heat-treat the rotating shaft of a rotating electric machine before finishing to minimize distortion due to temperature rise.

【0006】[0006]

【発明が解決しようとする課題】ところが、電動機の回
転子軸には、回転子鉄心や導体などが取り付けられ、誘
導電動機では短絡環のろう付などの工程を経て組み立て
られるので、軸心に対する回転子鉄心及び導体の発熱や
放散は、完全に均一にはならないだけでなく、上述のよ
うに温度によって曲がる方向も変るときがある。
[Problem to be Solved by the Invention] However, the rotor core, conductors, etc. are attached to the rotor shaft of the electric motor, and induction motors are assembled through processes such as brazing short-circuit rings. Not only is the heat generation and dissipation of the child core and conductor not completely uniform, but the direction of bending may change depending on the temperature as described above.

【0007】このため、内扇の容量を上げて冷却効果を
上げる方法もあるが、騒音が増える欠点もある。又、軸
受の剛性を上げて強制的に振動を拘束する方法を採るこ
ともあるが、手間がかかる割には効果は少ない。そこで
、本発明の目的は、温度上昇による振動の増加を容易に
減らすことのできる回転電機の回転子軸を得ることであ
る。 [発明の構成]
[0007] For this reason, there is a method of increasing the cooling effect by increasing the capacity of the inner fan, but this has the drawback of increasing noise. Alternatively, a method of forcibly restraining vibration by increasing the rigidity of the bearing may be adopted, but this method is time-consuming and has little effect. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain a rotor shaft for a rotating electric machine that can easily reduce the increase in vibration due to temperature rise. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段と作用】本発明は、外周の
軸方向に複数の通風路が構成され、この通風路に冷却風
が強制される回転電機の回転子軸において、通風路に、
この通風路に通風される冷却風の風量を調節する調整板
を設けることで、通電による温度上昇で片側に湾曲する
回転子軸の他側の通風量を調整して、回転子軸の湾曲を
減らし重心の偏りによる振動を容易に減らすことのでき
る回転電機の回転子軸である。
[Means and Effects for Solving the Problems] The present invention provides a rotor shaft of a rotating electric machine in which a plurality of ventilation passages are formed in the axial direction of the outer periphery, and cooling air is forced into the ventilation passages.
By providing an adjustment plate that adjusts the amount of cooling air ventilated in this ventilation path, the amount of ventilation on the other side of the rotor shaft, which curves to one side due to temperature rise due to energization, can be adjusted, and the curvature of the rotor shaft can be prevented. This is a rotor shaft for rotating electric machines that can easily reduce vibrations caused by an unbalanced center of gravity.

【0009】[0009]

【実施例】以下、本発明の回転電機の回転軸の一実施例
を図面を参照して説明する。図1は、本発明の回転電機
の回転軸を示す縦断面図、図2は図1の回転軸1の中央
部の軸心と直交方向の切断面の拡大詳細図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the rotating shaft of a rotating electric machine according to the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view showing a rotating shaft of a rotating electric machine according to the present invention, and FIG. 2 is an enlarged detailed view of a cross section in a direction orthogonal to the central axis of the rotating shaft 1 of FIG. 1. As shown in FIG.

【0010】図1〜図2において、回転子軸1の中間部
には、外周の軸方向に図2に示すような通風溝2が45
゜間隔で形成されている。一方、回転子軸1の外周には
、積層珪素鋼板でなる回転子鉄心3が挿着され、この回
転子鉄心3には内周から外周に貫通した通風穴3aが軸
方向にほぼ等間隔に3箇所、図2の通風溝2と同様に4
5゜間隔に設けられ、これらの通風穴3aがそれぞれ通
風溝2のほぼ中央となるように挿入され、外周には軸方
向にU字状の複数の溝5が設けられ、この溝5には導体
6が両端を突き出して挿着され、この導体6の両端の内
周面には図1の図示しない側面図では環状の短絡環7が
ろう付されている。又、回転子鉄心3の両端には環状の
積層鉄心固定用フランジ4が挿着されて、その外側には
、図2で示すように長方形の板状の調整板10がボルト
10aで固定され、この調整板10の軸心側は通風溝1
0にたたき込まれている。更に、この調整板10の外側
には回転軸1の段付部に内扇8がそれぞれ挿着されてい
る。
In FIGS. 1 and 2, in the middle part of the rotor shaft 1, there are 45 ventilation grooves 2 in the axial direction of the outer circumference as shown in FIG.
They are formed at ゜ intervals. On the other hand, a rotor core 3 made of laminated silicon steel plates is inserted into the outer periphery of the rotor shaft 1, and the rotor core 3 has ventilation holes 3a penetrating from the inner periphery to the outer periphery at approximately equal intervals in the axial direction. 3 locations, 4 similar to ventilation groove 2 in Figure 2
These ventilation holes 3a are inserted at approximately the center of each ventilation groove 2, and a plurality of U-shaped grooves 5 are provided in the axial direction on the outer periphery. A conductor 6 is inserted with both ends protruding, and an annular shorting ring 7 is brazed to the inner circumferential surface of both ends of the conductor 6, as shown in a side view (not shown) of FIG. Further, an annular laminated core fixing flange 4 is inserted into both ends of the rotor core 3, and a rectangular plate-shaped adjusting plate 10 is fixed with bolts 10a on the outside thereof as shown in FIG. The shaft center side of this adjusting plate 10 has a ventilation groove 1
It is set to 0. Further, on the outside of this adjustment plate 10, inner fans 8 are inserted into stepped portions of the rotating shaft 1, respectively.

【0011】このように構成された回転電機の回転子に
おいては、内扇8で内側に吹き付けられた冷却風は、矢
印9で示すように回転子軸の中央外周に形成された各通
風溝2にほぼ均一に吹き付けられ、回転子鉄心3に設け
られた各通風穴3aを経て回転子鉄心3の外周と図示し
ない固定子間に流出して、回転子軸1と回転子鉄心3を
冷却する。
In the rotor of the rotating electric machine constructed in this manner, the cooling air blown inward by the inner fan 8 is directed through each ventilation groove 2 formed on the outer periphery of the center of the rotor shaft, as shown by an arrow 9. It is sprayed almost uniformly onto the rotor core 3 and flows out between the outer periphery of the rotor core 3 and a stator (not shown) through each ventilation hole 3a provided in the rotor core 3, thereby cooling the rotor shaft 1 and the rotor core 3. .

【0012】一方、通電によって回転子軸1が図4に示
すように下方に曲ったときには、調整板10は図2に示
すように上方中央に位置する通風溝2に挿着され、もし
、図5に示すように定格負荷時に上方に曲った回転子鉄
心のときには、下側に位置する通風溝2に挿着する。
On the other hand, when the rotor shaft 1 bends downward as shown in FIG. 4 due to energization, the adjustment plate 10 is inserted into the ventilation groove 2 located at the upper center as shown in FIG. 5, when the rotor core bends upward under rated load, it is inserted into the ventilation groove 2 located on the lower side.

【0013】又、もし、定格負荷のときの曲がりが少な
いときには、浅く挿入し、曲がりが大きいときには深く
挿入し、更に曲がりが大きいときには、例えば図5にお
いては下側の180 ゜とその右側の225 ゜及び更
にその右側の270 ゜の位置の通風溝2に挿入し、2
70 ゜の位置の調整板10はやや浅く取付けることで
、回転軸1の外周の角度による冷却効果を変えて歪を補
正する。
Also, if there is little bending at the rated load, insert it shallowly, if the bend is large, insert it deeply, and if the bend is even larger, for example, in FIG. Insert it into the ventilation groove 2 at a position of 270° to the right of the
By installing the adjustment plate 10 at a position of 70 degrees slightly shallower, the cooling effect depending on the angle of the outer periphery of the rotating shaft 1 is changed to correct distortion.

【0014】図3は、図5のような熱歪み特性が得られ
た誘導電動機の回転子軸に対して、同図 225゜の位
置の通風溝に調整板10を挿着したときの温度上昇時の
歪の補正効果を示すグラフである。
FIG. 3 shows the temperature rise when the adjusting plate 10 is inserted into the ventilation groove at a position of 225° with respect to the rotor shaft of an induction motor that has obtained the thermal distortion characteristics as shown in FIG. 5. It is a graph showing the correction effect of time distortion.

【0015】同図において、回転子軸は、定格負荷で温
度上昇が60℃となって飽和したときの振動は最大振幅
で約10μmで、図5で示す調整板10を挿着する以前
の50μmに比べて20%に減っている。
In the same figure, the rotor shaft vibrates at a maximum amplitude of about 10 μm when the temperature rise reaches 60° C. and saturates under the rated load, and it is 50 μm before inserting the adjustment plate 10 shown in FIG. This is a decrease of 20% compared to the previous year.

【0016】すなわち、無負荷時において195 ゜の
方向に13.5μmの最大振幅を示した回転軸は、定格
負荷を加えて15分経過後には同じ方向に20μmの最
大振幅を示し、次の15分経過後には205 ゜の方向
で同じ振幅を示した。更に次の15分経過後には歪が大
幅に減少して180 ゜の方向に6μmとなり次の15
分後には90゜の方向に変って同じく6μm、次の20
分経過後には45゜の方向に11μm、次の20分後に
は46゜の方向で16μm、次の20分経過後は方向が
反転して67゜の方向で13μmと減り、更に次の20
分後に90゜の方向で12μmと更に減り、次の20分
で60℃で飽和した時点では125 ゜の方向に10μ
mの振幅で一定となった。
In other words, the rotating shaft that showed a maximum amplitude of 13.5 μm in the 195° direction when no load was applied, showed a maximum amplitude of 20 μm in the same direction 15 minutes after applying the rated load, and then After a minute had passed, the same amplitude was shown in the 205° direction. Furthermore, after the next 15 minutes, the strain decreased significantly and became 6 μm in the 180° direction.
After a minute, it changes to a 90° direction and the same 6 μm, then 20
After one minute, it decreases to 11 μm in the 45° direction, the next 20 minutes, it decreases to 16 μm in the 46° direction, and after the next 20 minutes, the direction reverses and decreases to 13 μm in the 67° direction, and then the next 20 minutes.
Minutes later, it further decreased to 12 μm in the 90° direction, and in the next 20 minutes, when it was saturated at 60°C, it decreased to 10 μm in the 125° direction.
The amplitude became constant at m.

【0017】なお、上記試験時には、図5において 2
25゜の位置の通風溝に調整板10を挿着したが180
 ゜の位置の通風溝にもわずかに突出させた調整板10
を設けることで、図3で示す振幅の折線を右にずらして
、定格負荷のときの振幅を更に減少させることができる
。したがって、図3及び図5に示すような熱特性デ―タ
を型式別定格別の回転機毎に蓄積することで、調整板1
0の取付位置や取付深さを決めることができる。
[0017] In addition, during the above test, in Fig. 5 2
The adjustment plate 10 was inserted into the ventilation groove at the 25° position, but the angle was 180°.
Adjustment plate 10 slightly protruding from the ventilation groove at the ° position
By providing this, the amplitude broken line shown in FIG. 3 can be shifted to the right to further reduce the amplitude at the rated load. Therefore, by accumulating thermal characteristic data as shown in Figs. 3 and 5 for each rotating machine by type and rating, the adjustment plate 1
0 installation position and installation depth can be determined.

【0018】この結果、このように構成された回転電機
の回転子においては、例えば回転子積層鉄心固定用フラ
ンジ4の外面にめねじを形成しておねじを形成した重心
偏心補正用部品の挿着と同様、調整板10は内周側が通
風溝2にたたき込まれていて軸心寄りに更にねじ止めで
取り付けられているので、遠心力でゆるむおそれもなく
、板金加工で製作でき製作が容易な回転電機の回転子と
なる。なお、上記実施例において、調整板10の固定用
のボルト穴は長円形にして、調整容易にしてもよい。
As a result, in the rotor of the rotating electric machine constructed as described above, it is possible to insert a component for correcting the eccentricity of the center of gravity, for example, by forming a female thread on the outer surface of the rotor laminated core fixing flange 4 and forming a male thread on the outer surface of the rotor laminated core fixing flange 4. As with the case, the adjustment plate 10 has its inner circumferential side folded into the ventilation groove 2 and is further attached with screws closer to the axis, so there is no risk of it loosening due to centrifugal force, and it can be manufactured using sheet metal processing, making it easy to manufacture. It becomes the rotor of a rotating electric machine. In the above embodiment, the bolt holes for fixing the adjustment plate 10 may be oval to facilitate adjustment.

【0019】又、上記実施例では、かご形誘導電動機の
例で説明したが、回転子軸と回転子鉄心との間に軸方向
に冷却通風風路が形成された回転機であれば適用するこ
とができる。
Furthermore, although the above embodiments have been explained using an example of a squirrel-cage induction motor, the present invention can be applied to any rotating machine in which a cooling ventilation air passage is formed in the axial direction between the rotor shaft and the rotor core. be able to.

【0020】[0020]

【発明の効果】以上、本発明によれば、外周の軸方向に
複数の通風路が形成され、この通風路に冷却風が流出入
する回転電機の回転軸において、通風路に内部を流出入
する冷却風の風量を調整する調整板を設けることで、通
電による温度上昇で片側に湾曲する回転子の他側の通風
量を調整し温度上昇による回転子軸の曲がりを補正した
ので、回転子軸の曲がりを減らし振幅を容易に減らすこ
とのできる回転電機の回転子を得ることができる。
As described above, according to the present invention, in a rotating shaft of a rotating electric machine in which a plurality of ventilation passages are formed in the axial direction of the outer periphery, and cooling air flows in and out of the ventilation passages, cooling air flows inside and out of the ventilation passages. By installing an adjustment plate to adjust the amount of cooling air, the amount of airflow on the other side of the rotor, which curves to one side due to temperature rise due to energization, is adjusted, and the bending of the rotor shaft due to temperature rise is corrected. It is possible to obtain a rotor for a rotating electric machine that can reduce the bending of the shaft and easily reduce the amplitude.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の回転電機の回転子軸の一実施例を示す
縦断面図。
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of a rotor shaft of a rotating electric machine according to the present invention.

【図2】本発明の回転電機の回転子軸の軸心と直交方向
の断面拡大図。
FIG. 2 is an enlarged cross-sectional view in a direction orthogonal to the axis of the rotor shaft of the rotating electric machine of the present invention.

【図3】本発明の回転電機の回転子軸の作用を示すグラ
フ。
FIG. 3 is a graph showing the action of the rotor shaft of the rotating electric machine of the present invention.

【図4】従来の回転電機の回転子軸の一例を示す図。FIG. 4 is a diagram showing an example of a rotor shaft of a conventional rotating electric machine.

【図5】従来の回転電機の回転子軸の作用を示すグラフ
FIG. 5 is a graph showing the action of the rotor shaft of a conventional rotating electric machine.

【符号の説明】[Explanation of symbols]

1…回転子軸                2…通
風溝3…回転子鉄心              8…
内扇10…調整板
1... Rotor shaft 2... Ventilation groove 3... Rotor core 8...
Inner fan 10...adjustment plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  外周の軸方向に複数の通風路が形成さ
れ、この通風路に冷却風が強制通風される回転電機の回
転子軸において、前記通風路に、この通風路に強制通風
される前記冷却風の風量を調節する調整板を設けたこと
を特徴とする回転電機の回転子軸。
[Claim 1] In a rotor shaft of a rotating electrical machine in which a plurality of ventilation passages are formed in the axial direction of the outer periphery, and cooling air is forced through the ventilation passages, forced ventilation is forced into the ventilation passages. A rotor shaft for a rotating electric machine, characterized in that an adjustment plate is provided to adjust the volume of the cooling air.
JP918490A 1991-01-28 1991-01-28 Rotor shaft for rotary electric machine Pending JPH04244762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP918490A JPH04244762A (en) 1991-01-28 1991-01-28 Rotor shaft for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP918490A JPH04244762A (en) 1991-01-28 1991-01-28 Rotor shaft for rotary electric machine

Publications (1)

Publication Number Publication Date
JPH04244762A true JPH04244762A (en) 1992-09-01

Family

ID=11694561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP918490A Pending JPH04244762A (en) 1991-01-28 1991-01-28 Rotor shaft for rotary electric machine

Country Status (1)

Country Link
JP (1) JPH04244762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829885A1 (en) * 2001-09-14 2003-03-21 Valeo Equip Electr Moteur Cooling system for vehicle alternator, includes two fans mounted on either side of rotor contributing to common axial air flow
US7759829B2 (en) * 2003-06-26 2010-07-20 Siemens Industry, Inc. Industrial motor assembly comprising a vented rotor shaft
US8319388B2 (en) 2008-01-25 2012-11-27 Mitsubishi Electric Corporation Induction motor and hermetic compressor
US8344581B2 (en) 2007-12-27 2013-01-01 Mitsubishi Electric Corporation Induction motor rotor core having shaped slots
US8740584B2 (en) 2008-08-05 2014-06-03 Mitsubishi Electric Corporation Induction motor and hermetic compressor
EP3951187A1 (en) * 2016-03-17 2022-02-09 Daikin Applied Americas Inc. Compressor wherein motor coolant circulates in axial grooves between the shaft and the electric rotor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829885A1 (en) * 2001-09-14 2003-03-21 Valeo Equip Electr Moteur Cooling system for vehicle alternator, includes two fans mounted on either side of rotor contributing to common axial air flow
WO2003026099A1 (en) * 2001-09-14 2003-03-27 Valeo Equipements Electriques Moteur Ventilating device for rotating electrical machine and electrical machine equipped with same
US7759829B2 (en) * 2003-06-26 2010-07-20 Siemens Industry, Inc. Industrial motor assembly comprising a vented rotor shaft
US8344581B2 (en) 2007-12-27 2013-01-01 Mitsubishi Electric Corporation Induction motor rotor core having shaped slots
US8466597B2 (en) 2007-12-27 2013-06-18 Mitsubishi Electric Corporation Induction motor rotor core having shaped slots
US8319388B2 (en) 2008-01-25 2012-11-27 Mitsubishi Electric Corporation Induction motor and hermetic compressor
US8740584B2 (en) 2008-08-05 2014-06-03 Mitsubishi Electric Corporation Induction motor and hermetic compressor
EP3951187A1 (en) * 2016-03-17 2022-02-09 Daikin Applied Americas Inc. Compressor wherein motor coolant circulates in axial grooves between the shaft and the electric rotor

Similar Documents

Publication Publication Date Title
US6522045B2 (en) Vehicular AC generator
US5365132A (en) Lamination for a dynamoelectric machine with improved cooling capacity
US3997803A (en) Rotor member for dynamoelectric machines with longitudinal passages of decreasing area communicating with radial core vents
US5495133A (en) Electric motor with high power and high rotational speed
WO2017046859A1 (en) Vehicular ac power generator
JPH04244762A (en) Rotor shaft for rotary electric machine
US6617717B2 (en) Alternator
JP3266768B2 (en) Cage induction motor rotor and cage induction motor
US20220077737A1 (en) Joining a laminated core to a shaft
US3154705A (en) Balance weight arrangement for dynamoelectric machines
JP3128416B2 (en) Rotating electric machine
JP6944418B2 (en) Rotating machine and rotor
JP3752781B2 (en) Cage type rotating electrical machine rotor
US2795713A (en) End bracket for dynamoelectric machines
JP6666303B2 (en) Balance adjustment method
JP2580212Y2 (en) Rotating electric machine rotor
US3832584A (en) Rotor for dynamoelectric machines
US3234419A (en) Cast rotor for a dynamoelectric machine
US2809307A (en) Dynamoelectric machine
US7619336B2 (en) Vehicle-use generator with reduced fan noise
US3238401A (en) Dynamoelectric machine
JPH05336704A (en) Ac generator for vehicle
JPWO2014155631A1 (en) Mold motor and air conditioner outdoor unit
US11973397B2 (en) Dynamo-electric machine
JP3147731B2 (en) Rotating electric machine and its rotor