JP3752781B2 - Cage type rotating electrical machine rotor - Google Patents

Cage type rotating electrical machine rotor Download PDF

Info

Publication number
JP3752781B2
JP3752781B2 JP13187797A JP13187797A JP3752781B2 JP 3752781 B2 JP3752781 B2 JP 3752781B2 JP 13187797 A JP13187797 A JP 13187797A JP 13187797 A JP13187797 A JP 13187797A JP 3752781 B2 JP3752781 B2 JP 3752781B2
Authority
JP
Japan
Prior art keywords
conductor bar
rotor
core
end ring
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13187797A
Other languages
Japanese (ja)
Other versions
JPH10322990A (en
Inventor
友博 成瀬
敏雄 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13187797A priority Critical patent/JP3752781B2/en
Publication of JPH10322990A publication Critical patent/JPH10322990A/en
Application granted granted Critical
Publication of JP3752781B2 publication Critical patent/JP3752781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Induction Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導電動機のかご型回転子に係わり、特にアルミニュウムダイカスト鋳造によって製造されるかご型回転子に関するものである。
【0002】
【従来の技術】
従来この種のかご型回転子を図2〜図4にもとづき説明する。
【0003】
かご型誘導電動機においては、回転子は、円形の薄鉄板の外周に図3に示すように複数個のスロット2を持つように打抜き等によって加工したコア1を複数枚積層した後、図2に示すようにスロット2内に導体バー3と積層両端面にリング状のエンドリング4と冷却フィン5とをアルミニュウムダイカストを一体整形することによって、かご型巻線を形成して構成される。
【0004】
従来、このような構造を持つ回転子においては、同一形状を持つコア1を積層しており、軸方向にスロット形状が等しい形状となっていた(特開平3−198641 号)。
【0005】
【発明が解決しようとする課題】
ところで、誘導電動機においては、通常の始動には、アルミ導体に電流が流れ始めることにより、導体バー3とエンドリング4に急激な温度上昇が生じ、同時に回転による遠心力が負荷される。また、回転軸が拘束されているような異常起動状態においては、回転による遠心力の負荷はないが、通常始動よりもアルミ導体に大電流が流れる時間が長く、導体バー3とエンドリング4により大きな温度上昇を生じる。これら両者の変形状態を図4に示す。図4(a)は初期状態(起動前)、(b)は起動後の変形状況を表す。まず導体バーについては、温度上昇にともなう熱変形によって軸方向に膨張する。また、エンドリングについては、温度上昇によって径方向に膨張し、また回転変形をともなう始動時には、遠心力による径方向への膨張が同時に生じる。導体バーが膨張し、エンドリングとコアの間6にすきまが生じると、エンドリングは、図4(b)に示すように軸方向に角度をもってたわむ変形をすることが可能となる。そのため、エンドリングの膨張変形を吸収するために導体バーがエンドリング膨張方向に引張られ図4(b)に示すように導体バーに曲げ変形を生じる。この曲げ変形によって、導体バーの底面7には図6に示すような応力を生じ、バーのエンドリング付け根部8には大きな引張応力が発生する。この引張荷重が、起動停止および異常起動の繰返しによって、繰返し負荷されるため、導体バーの疲労破壊の原因となっていた。
【0006】
本発明は、この導体バーとエンドリング付け根部8に生じる高い引張応力を低減し、疲労強度の高いかご型回転子を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
上記目的円形薄板の外周に導体バーの形状で開けられたスロットを持つコアを積層し、そのスロット内に導体バーとその両端面にリング状のエンドリングと冷却フィンを一体鋳造によって形成するようなかご型回転電機の回転子において、
導体バーの軸方向変形をコアに拘束させるべく、前記導体バーとコアに凹凸を設けて噛み合わせる構造とするとともに、前記導体バーの前記凸はテーパで形成したことを特徴とするかご型回転電機の回転子ことにより達成される
【0009】
【発明の実施の形態】
本発明の実施例を図1,図6〜図11にもとづいて説明する。
【0010】
図1はエンドリング付近にスリットを大きくして導体バーに1つの凸部9を設けたものである。この時の変形状態を表したものが図5である。この凸部9によって導体バーの軸方向変形がコアによって拘束され、エンドリングとコアの間のすき間が生じていない。そのため導体バーの曲げ変形が起こらずに、バーとエンドリングの付け根部8は引張状態とならない。このときの応力分布を図6に示している。付け根部の引張応力は低減し、エンドリングのたわみが拘束されることで、むしろ圧縮応力が生じている。
【0011】
この構造の他の実施例に対する利点としては、コアを打ち抜き加工する際に、数枚のコアについてスリット形状を少し大きくした打ち抜き型により製作し、コアを積み重ねたときにこれらの大きめのスリット形状を持つコアを導体バー凸部を形成する層に積み重ね、アルミニュウムダイカストによって一体整形することのみで導体バーの凸部分を簡単につくり出すことができる。しかしながら、この場合凸部角10,11にあたるところにも応力集中が起こり圧縮の応力が大きくなる問題がある。
【0012】
図7は前実施例の凸部9の片側をテーパ状にしたもので、前実施例同様にバーの軸方向膨張を拘束し、付け根部の引張応力の発生を抑制できる。また、全実施例に対して、凸部分をテーパとすることで角部に生じる応力集中を防ぐことができる。しかしながら、このようなテーパを設けるには、前実施例のような打ち抜き加工方法のみでは困難であり、コアを積み重ねる時点で機械加工を必要とし、工数が増えるという難点がある。
【0013】
図8は図7同様のテーパを凸部の両側としたものである。また、図9は、凸部の角にRをもたしたものである。これらは、前記図7の実施例同様図1の実施例での角部の応力集中部の応力が低減されるが、機械加工が必要となり工数が増えてしまう。
【0014】
図10は凸部分を複数にしたものである。付け根部応力低減効果は前記実施例と同様である上に、凸部分を複数にすることで実施例図1の応力集中を分散させることができる。また、加工についてもスリットの大きさの違うコアを交互に積み重ねてダイカスト鋳造するのみで加工が可能となる。図11は、バーの下側のみを凸にした実施例である。
【0015】
このように、導体バーの軸方向変形をコアに拘束することを目的としているので、実施例と逆に導体バーを凹型としてもよい。
【0016】
【発明の効果】
以上の説明からも明らかなように本発明によれば、導体バーの軸方向変形をコアに拘束するような、凸部または凹部を導体バーに設けることで、導体バーのバーとエンドリングの付け根部に発生する高い引張応力を低減し、疲労強度の高いかご型回転子を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例の一つで回転子の断面図。
【図2】本発明の実施例である回転子構造を示す図。
【図3】本発明の実施例である回転子コアの断面図。
【図4】(a)及び(b)は従来構造を表す断面図。
【図5】(a)及び(b)は本発明の実施例である回転子の断面図。
【図6】導体バー底部の応力分布を従来構造と発明構造で比較した特性図。
【図7】本発明のいくつかの実施例を示したもので回転子の断面図。
【図8】本発明のいくつかの実施例を示したもので回転子の断面図。
【図9】本発明のいくつかの実施例を示したもので回転子の断面図。
【図10】本発明のいくつかの実施例を示したもので回転子の断面図。
【図11】本発明のいくつかの実施例を示したもので回転子の断面図。
【符号の説明】
1…コア、2…スリット、3…導体バー、4…エンドリング、5…冷却フィン、6…エンドリングとコアのすき間、7…導体バー底面、8…導体バーとエンドリングの付け根部、9…凸部、10…凸部角1、11…凸部角2。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a squirrel-cage rotor of an induction motor, and more particularly to a squirrel-cage rotor manufactured by aluminum die casting.
[0002]
[Prior art]
Conventionally, a cage rotor of this type will be described with reference to FIGS.
[0003]
In the squirrel-cage induction motor, the rotor is formed by stacking a plurality of cores 1 processed by punching or the like so as to have a plurality of slots 2 as shown in FIG. As shown in the figure, a conductor bar 3 and ring-shaped end rings 4 and cooling fins 5 are integrally formed in an aluminum die casting in a slot 2 to form a squirrel-cage winding.
[0004]
Conventionally, in a rotor having such a structure, cores 1 having the same shape are laminated, and the slot shape is equal in the axial direction (Japanese Patent Laid-Open No. 3-198641).
[0005]
[Problems to be solved by the invention]
By the way, in an induction motor, in a normal start, a current starts to flow through the aluminum conductor, so that a sudden temperature rise occurs in the conductor bar 3 and the end ring 4, and at the same time, centrifugal force due to rotation is loaded. In an abnormally activated state where the rotating shaft is constrained, there is no centrifugal force load due to rotation, but the time during which a large current flows through the aluminum conductor is longer than in normal starting, and the conductor bar 3 and end ring 4 A large temperature rise occurs. The deformation state of both of these is shown in FIG. FIG. 4A shows an initial state (before starting), and FIG. 4B shows a deformation state after starting. First, the conductor bar expands in the axial direction due to thermal deformation accompanying temperature rise. Further, the end ring expands in the radial direction due to a temperature rise, and at the same time as starting with rotational deformation, expansion in the radial direction due to centrifugal force occurs simultaneously. When the conductor bar expands and a gap is generated between the end ring and the core 6, the end ring can be deformed to bend at an angle in the axial direction as shown in FIG. Therefore, in order to absorb the expansion deformation of the end ring, the conductor bar is pulled in the end ring expansion direction, and the conductor bar is bent and deformed as shown in FIG. Due to this bending deformation, a stress as shown in FIG. 6 is generated on the bottom surface 7 of the conductor bar, and a large tensile stress is generated at the end ring root 8 of the bar. Since this tensile load is repeatedly applied by repeated starting and stopping and abnormal starting, it causes fatigue breakage of the conductor bar.
[0006]
The object of the present invention is to provide a cage rotor having high fatigue strength by reducing the high tensile stress generated in the conductor bar and the end ring root portion 8.
[0007]
[Means for Solving the Problems]
A core having a slot opened in the shape of a conductor bar is laminated on the outer periphery of the above-described circular thin plate, and a conductor bar, a ring-shaped end ring and cooling fins are formed in the slot by integral casting. In the rotor of a cage type rotating electrical machine,
In order to constrain the deformation of the conductor bar in the axial direction to the core, a squirrel-cage electric rotating machine having a structure in which the conductor bar and the core are provided with protrusions and recesses and the protrusions of the conductor bar are tapered. This can be achieved by a rotor .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. 1 and 6 to 11.
[0010]
In FIG. 1, a slit is enlarged in the vicinity of the end ring, and one conductor 9 is provided on the conductor bar. FIG. 5 shows the deformation state at this time. The convex portion 9 restrains the axial deformation of the conductor bar by the core, and no gap is formed between the end ring and the core. Therefore, bending deformation of the conductor bar does not occur, and the base portion 8 of the bar and the end ring is not in a tensile state. The stress distribution at this time is shown in FIG. The tensile stress at the base is reduced, and the deflection of the end ring is constrained to generate compressive stress.
[0011]
The advantage of this structure over other embodiments is that when punching the core, several cores are manufactured with a punching die with a slightly larger slit shape, and these larger slit shapes are formed when the cores are stacked. The convex portion of the conductor bar can be easily created simply by stacking the core having the layer on the layer forming the convex portion of the conductor bar and integrally shaping with aluminum die casting. However, in this case, there is a problem that stress concentration also occurs at the locations corresponding to the convex portion angles 10 and 11, and the compressive stress increases.
[0012]
FIG. 7 shows a taper shape on one side of the convex portion 9 of the previous embodiment, which restrains the axial expansion of the bar as in the previous embodiment and can suppress the generation of tensile stress at the base portion. Moreover, the stress concentration which arises in a corner | angular part can be prevented by tapering a convex part with respect to all the Examples. However, it is difficult to provide such a taper only by the punching method as in the previous embodiment, and machining is required at the time of stacking the cores, which increases the number of steps.
[0013]
FIG. 8 shows the same taper on both sides of the convex portion as in FIG. In addition, FIG. 9 has R at the corner of the convex portion. These reduce the stress at the stress concentration portion of the corner portion in the embodiment of FIG. 1 as in the embodiment of FIG. 7, but require machining and increase the number of steps.
[0014]
FIG. 10 shows a plurality of convex portions. The root stress reduction effect is the same as that of the above embodiment, and the stress concentration in the embodiment of FIG. 1 can be dispersed by using a plurality of convex portions. In addition, processing can be performed only by stacking cores having different slit sizes alternately and die casting. FIG. 11 shows an embodiment in which only the lower side of the bar is convex.
[0015]
Thus, since it aims at constraining the axial deformation | transformation of a conductor bar to a core, it is good also considering a conductor bar as a concave shape contrary to an Example.
[0016]
【The invention's effect】
As is clear from the above description, according to the present invention, by providing the conductor bar with a convex portion or a concave portion that restricts the axial deformation of the conductor bar to the core, the base of the bar and end ring of the conductor bar is provided. High tensile stress generated in the part can be reduced, and a cage rotor with high fatigue strength can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view of a rotor in one embodiment of the present invention.
FIG. 2 is a diagram showing a rotor structure that is an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a rotor core that is an embodiment of the present invention.
4A and 4B are cross-sectional views showing a conventional structure.
5A and 5B are cross-sectional views of a rotor according to an embodiment of the present invention.
FIG. 6 is a characteristic diagram comparing the stress distribution at the bottom of the conductor bar between the conventional structure and the inventive structure.
FIG. 7 is a cross-sectional view of a rotor showing some embodiments of the present invention.
FIG. 8 is a cross-sectional view of a rotor showing some embodiments of the present invention.
FIG. 9 is a sectional view of a rotor showing some embodiments of the present invention.
FIG. 10 is a cross-sectional view of a rotor showing some embodiments of the present invention.
FIG. 11 is a cross-sectional view of a rotor showing some embodiments of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Core, 2 ... Slit, 3 ... Conductor bar, 4 ... End ring, 5 ... Cooling fin, 6 ... Gap between end ring and core, 7 ... Bottom surface of conductor bar, 8 ... Base part of conductor bar and end ring, 9 ... convex part, 10 ... convex part angle 1, 11 ... convex part angle 2.

Claims (1)

円形薄板の外周に導体バーの形状で開けられたスロットを持つコアを積層し、そのスロット内に導体バーとその両端面にリング状のエンドリングと冷却フィンを一体鋳造によって形成するようなかご型回転電機の回転子において、
導体バーの軸方向変形をコアに拘束させるべく、前記導体バーとコアに凹凸を設けて噛み合わせる構造とするとともに、前記導体バーの前記凸はテーパで形成したことを特徴とするかご型回転電機の回転子。
A cage type in which a core having a slot opened in the shape of a conductor bar is laminated on the outer periphery of a circular thin plate, and a conductor bar, a ring-shaped end ring and cooling fins are formed by integral casting in the slot. In the rotor of a rotating electrical machine,
In order to constrain the deformation of the conductor bar in the axial direction to the core, a squirrel-cage electric rotating machine having a structure in which the conductor bar and the core are provided with protrusions and recesses and the protrusions of the conductor bar are tapered. Rotor.
JP13187797A 1997-05-22 1997-05-22 Cage type rotating electrical machine rotor Expired - Fee Related JP3752781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13187797A JP3752781B2 (en) 1997-05-22 1997-05-22 Cage type rotating electrical machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13187797A JP3752781B2 (en) 1997-05-22 1997-05-22 Cage type rotating electrical machine rotor

Publications (2)

Publication Number Publication Date
JPH10322990A JPH10322990A (en) 1998-12-04
JP3752781B2 true JP3752781B2 (en) 2006-03-08

Family

ID=15068238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13187797A Expired - Fee Related JP3752781B2 (en) 1997-05-22 1997-05-22 Cage type rotating electrical machine rotor

Country Status (1)

Country Link
JP (1) JP3752781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116438A1 (en) 2017-12-12 2019-06-20 東芝三菱電機産業システム株式会社 Squirrel-cage induction rotating electric machine, solid rotor, and squirrel-cage induction rotating electric machine design method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7495364B2 (en) * 2004-12-03 2009-02-24 Emerson Electric Co. Cryogenic pumping systems, rotors and methods for pumping cryogenic fluids
DE102005030377A1 (en) * 2005-06-29 2007-01-11 Siemens Ag asynchronous
JP5129518B2 (en) * 2007-06-27 2013-01-30 日立オートモティブシステムズ株式会社 Rotating electric machine
EP2296258A1 (en) 2009-09-09 2011-03-16 ANSALDOBREDA S.p.A. Squirrel-cage rotor for asynchronous motors
EP2606560B1 (en) * 2010-09-30 2015-10-28 Siemens Aktiengesellschaft Squirrel-cage rotor bar
DE112014004337T5 (en) * 2013-12-16 2016-06-02 Mitsubishi Electric Corporation Manufacturing method for a basket-type rotor and basket-type rotor
EP3249790B1 (en) * 2015-01-19 2022-04-13 Mitsubishi Electric Corporation Squirrel-cage induction motor, and method for manufacturing squirrel-cage induction motor
CN107370319B (en) * 2017-07-28 2024-03-01 卧龙电气南阳防爆集团股份有限公司 Novel high-starting torque three-phase asynchronous motor
DE102019122336A1 (en) * 2019-08-20 2021-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the construction of a pre-module for use in the manufacture of a rotor of an electric asynchronous machine
DE102019122335A1 (en) * 2019-08-20 2021-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for manufacturing a rotor for an electrical asynchronous machine and rotor
DE102019122334A1 (en) * 2019-08-20 2021-02-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Rotor for an electric asynchronous machine and pre-module for use in its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116438A1 (en) 2017-12-12 2019-06-20 東芝三菱電機産業システム株式会社 Squirrel-cage induction rotating electric machine, solid rotor, and squirrel-cage induction rotating electric machine design method
US11489424B2 (en) 2017-12-12 2022-11-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation Squirrel-cage induction rotating electrical machine, solid rotor, and design method for squirrel-cage induction rotating electrical machine

Also Published As

Publication number Publication date
JPH10322990A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
JP3752781B2 (en) Cage type rotating electrical machine rotor
CA1121852A (en) Rotor for a rotary machine and a method of making the same
US10181775B2 (en) Rotor of an asynchronous machine
WO1999021265A1 (en) Ac generator for vehicle
EP0618662A1 (en) Cage rotor for high-speed induction motor
JPH10174394A (en) Rundle core type rotating electric machine
JP4485262B2 (en) Electric motor stator
JP4098939B2 (en) Reluctance motor
JP3266768B2 (en) Cage induction motor rotor and cage induction motor
US20070290565A1 (en) Rotor Structure of Rotating Electric Machine
JP3650351B2 (en) Cage type induction motor rotor and cage type induction motor
US11316393B2 (en) Magnetic sheet for rotor with a non-through shaft, method of obtaining such a sheet and associated rotor
JP5664936B2 (en) Rotating electric machine and rotor
JP4544309B2 (en) AC alternator rotor for vehicles
JP7468372B2 (en) Armature manufacturing method and armature
JP2015139319A (en) Rotor, electric motor, manufacturing method of rotor and manufacturing method of electric motor
JP5129518B2 (en) Rotating electric machine
KR100370026B1 (en) rotor of induction motor for high-speed operation
JP2003244884A (en) Rotor for dynamo-electric machine
JP2012080764A (en) Dynamoelectric machine coil space block having flow deflecting structure in coil facing surface thereof
WO2000016466A1 (en) Rotating electric machine
JPH0819230A (en) High frequency motor
JPH10117468A (en) Rotor for dynamo-electric machine
EP3537580B1 (en) Rotor of ac generator for vehicle
JP7452272B2 (en) Armature manufacturing method and armature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

LAPS Cancellation because of no payment of annual fees