JPH04244728A - Reactive power relay device - Google Patents

Reactive power relay device

Info

Publication number
JPH04244728A
JPH04244728A JP3008597A JP859791A JPH04244728A JP H04244728 A JPH04244728 A JP H04244728A JP 3008597 A JP3008597 A JP 3008597A JP 859791 A JP859791 A JP 859791A JP H04244728 A JPH04244728 A JP H04244728A
Authority
JP
Japan
Prior art keywords
power
reactive power
separation point
load
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3008597A
Other languages
Japanese (ja)
Other versions
JP2856923B2 (en
Inventor
Osamu Kamimura
修 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3008597A priority Critical patent/JP2856923B2/en
Publication of JPH04244728A publication Critical patent/JPH04244728A/en
Application granted granted Critical
Publication of JP2856923B2 publication Critical patent/JP2856923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To eliminate unnecessary operations due to a wrong operating procedure or an abrupt change in load amount by only detecting reactive power flowing out to a commercial power system except the reactive power consumed by a load. CONSTITUTION:Received effective power RP and bus effective power GP detected by power detecting elements 18 and 19 are sent to effective power ratio discriminating elements 22 and 23 and the ratio of the power PR to the power GP is computed. The elements 22 and 23 respectively perform arithmetic operations on Inequalities I and II by using a set effective power ratio factor SETK and, when the inequalities hold, respectively send operation commands to a received reactive power operation detecting element 24 and bus reactive power operation detecting element 25. The element 24 and 25 respectively send signals to an output element 26 when Inequality III holds against a set reactive power operation value SETQ and when Inequality IV holds between a set load power phase angle value SET and the set reactive power operation value SETQ. The output element 26 outputs an operating signal when the element 26 receives either one of the signals.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、複数の電源設備を並列
運用する電力系統の電力供給のバランス状態に応じて系
統分離点を選択し、電力系統に異常が発生したとき選択
された系統分離点を遮断して電源系統を分離する系統分
離システムに適用される無効電力継電装置に関するもの
である。
[Industrial Application Field] The present invention selects a system separation point according to the balanced state of power supply in a power system in which multiple power supply facilities are operated in parallel, and selects a system separation point when an abnormality occurs in the power system. The present invention relates to a reactive power relay device applied to a power system separation system that isolates power systems by interrupting points.

【0003】0003

【従来の技術】発電設備や配電設備が複雑に入り組んで
構成された受変電設備では、高速度で商用電源系統の事
故を検出して商用電源系と発電設備電源系との系統を分
離する系統分離保護方式が採用されており、商用電源系
の事故検出の手段として無効電力継電装置(以下DRP
Rと呼ぶ)が設けられている。
[Background Art] In power receiving and substation equipment that is composed of complex power generation equipment and power distribution equipment, a system is used to detect faults in the commercial power system at high speed and separate the commercial power system and the power generation equipment power system. A separate protection system is adopted, and a reactive power relay device (hereinafter referred to as DRP) is used as a means of detecting accidents in commercial power supply systems.
(referred to as R) is provided.

【0004】DRPRを適用した受変電設備系統図の従
来の一例を図4に示す。図4において、商用電源1は遮
断器2を介して母線6に接続され、発電機電源5は遮断
器4を介して母線7に接続され母線6と母線7は遮断器
3を介して接続され、これによって商用電源1と発電機
設備電源5とが並列運用され、それぞれ母線6および母
線7に接続された負荷Aおよび負荷Bへの電力は、商用
電源1と発電機設備電源5とが分担して供給する。
FIG. 4 shows an example of a conventional power receiving and transforming equipment system diagram to which DRPR is applied. In FIG. 4, a commercial power source 1 is connected to a bus 6 via a circuit breaker 2, a generator power source 5 is connected to a bus 7 via a circuit breaker 4, and a bus 6 and a bus 7 are connected via a circuit breaker 3. As a result, the commercial power source 1 and the generator equipment power source 5 are operated in parallel, and the power to the load A and the load B connected to the bus bar 6 and the bus bar 7, respectively, is shared between the commercial power source 1 and the generator equipment power source 5. and supply it.

【0005】このような構成においては、商用電源に異
常が発生した場合に、負荷設備の停電範囲とその影響を
最少にとどめ、発電機電源5の電力供給能力を有効に活
用するために、負荷Aおよび負荷Bの運用状態と発電機
設備5の電力供給量(出力)に応じて、商用電源1と発
電機設備5との分離点を、あらかじめ遮断器2または3
に設定している。
[0005] In such a configuration, when an abnormality occurs in the commercial power supply, the load Depending on the operating status of A and load B and the power supply amount (output) of the generator equipment 5, the separation point between the commercial power supply 1 and the generator equipment 5 is set in advance by the circuit breaker 2 or 3.
It is set to .

【0006】DRPR11および12はそれぞれ遮断器
2および遮断器3を通って商用電源系統側へ流出する無
効電力の流出量を検出しており、商用電源の異常または
事故によって遮断器2および遮断器3を介してDRPR
11および12の各設定値を超える無効電力が流出した
ときに動作する。
The DRPRs 11 and 12 detect the amount of reactive power flowing out to the commercial power supply system through the circuit breaker 2 and the circuit breaker 3, respectively. DRPR via
It operates when reactive power exceeding each set value of 11 and 12 flows out.

【0007】図5は系統分離信号の出力回路であり、前
述の分離点設定に応じて、遮断器2が分離点に設定され
ているときは設定スイッチ13−aが閉路して13−b
は開路し、遮断器3が分離点に設定されているときは設
定スイッチ13−aが開路して13−bは閉路し、これ
ら設定スイッチの設定に応じて遮断器2および3へのト
リップ信号がDRPR11および12の各動作接点11
−aおよび12−aと上記設定スイッチ13−aおよび
13−bの各閉路条件との直列回路によって出力される
FIG. 5 shows an output circuit for the system separation signal, and when the circuit breaker 2 is set at the separation point, the setting switch 13-a is closed and the circuit 13-b is turned on.
is opened, and when circuit breaker 3 is set at the separation point, setting switch 13-a is opened and 13-b is closed, and a trip signal is sent to circuit breakers 2 and 3 according to the settings of these setting switches. is each operating contact 11 of DRPR11 and 12
-a and 12-a and each closing condition of the setting switches 13-a and 13-b are outputted by a series circuit.

【0008】同様に、負荷Aおよび負荷Bへの電力が共
に発電機5から供給されるときは、遮断器2が系統分離
点に設定されており、遮断器2を介して商用電源1へ流
出する無効電力がDRPR11の整定値を超えると遮断
器2がトリップする。
Similarly, when power to load A and load B are both supplied from the generator 5, the circuit breaker 2 is set as the system separation point, and the power flows through the circuit breaker 2 to the commercial power supply 1. When the reactive power exceeds the set value of the DRPR 11, the circuit breaker 2 trips.

【0009】一方負荷Aへの電力が商用電源1から、負
荷Bへの消費電力が発電機5から供給されるときは、遮
断器3が系統分離点に設定され、遮断器3を介して商用
電源系(母線6方向)へ流出する無効電力がDPRP1
2の整定値を超えると遮断器3がトリップして商用電源
1と発電機5との系統分離が行われる。
On the other hand, when power to load A is supplied from the commercial power supply 1 and power consumption to load B is supplied from the generator 5, the circuit breaker 3 is set as the system separation point, and the The reactive power flowing out to the power supply system (6 bus directions) is DPRP1
When the set value of 2 is exceeded, the circuit breaker 3 is tripped, and the commercial power source 1 and the generator 5 are separated from each other.

【0010】上記の構成において、DRPR11および
12は商用電源系の異常を商用電源系へ流出する無効電
力の大きさから検出しており、DRPR11および12
の整定値は同じ値とされるのが通常である。しかしなが
ら遮断器2が系統分離点に設定されているときは、負荷
Aへの電力は遮断器3を介して発電機5から供給されて
おり、負荷Aで消費する無効電力が遮断器3を介して常
時母線6方向へ流出するので次のような問題が発生する
。 (1) 系統分離点での無効電力は、一般負荷の場合に
は商用電源側からの流入が通常であり、流出すること自
体が商用電源系の異常と判断されるのでDRPR11,
12は共に比較的小さな値に整定されるのが普通である
。一方、遮断器2が系統分離点に設定されているときは
、通常状態では負荷Aの消費する無効電力が流出し、こ
のためDRPR12は通常状態で不安定動作あるいは継
続動作となる。従って、負荷Aと負荷Bとの負荷量の調
整、あるいは発電機5の出力の調整操作と系統分離点の
切換操作との手順を誤まると、系統分離点を遮断器3に
設定した状態で発電機5の出力を母線6方向へ流出させ
、DRPR12が動作して遮断器3を誤遮断させる危険
がある。 (2) 上述のように、DRPRの不安定動作あるいは
継続動作が頻繁に行われると、接点部の摩耗や接触不良
を招く恐れがある。 (3) 負荷Bの消費電力と発電機5の出力電力がバラ
ンスして商用電源1と並列運用されているときは、遮断
器3が系統分離点に設定されており、負荷Bの消費電力
と発電機5の出力電力がバランスしているので、通常運
転中に遮断器3を介して母線6方向へ電力が流出するこ
とはないが、負荷Bの消費電力が人為的操作あるいは負
荷の保護遮断などによって遮断されると、遮断された電
力は負荷Aで消費るされることになるので、遮断器3を
介して母線6方向へ電力が流出し、DRPR12が動作
して遮断器3の不用な遮断を招く。
In the above configuration, the DRPRs 11 and 12 detect an abnormality in the commercial power supply system from the magnitude of reactive power flowing into the commercial power supply system.
The setting values of are usually set to the same value. However, when circuit breaker 2 is set at the system separation point, power to load A is supplied from generator 5 via circuit breaker 3, and reactive power consumed by load A is supplied via circuit breaker 3. Since the oil always flows out in the direction of the bus bar 6, the following problem occurs. (1) Reactive power at the grid separation point normally flows in from the commercial power supply side in the case of general loads, and the outflow itself is considered to be an abnormality in the commercial power supply system, so DRPR11,
12 are usually both set to relatively small values. On the other hand, when the circuit breaker 2 is set at the system separation point, the reactive power consumed by the load A flows out in the normal state, and therefore the DRPR 12 operates unstablely or continuously in the normal state. Therefore, if you make a mistake in adjusting the load amounts of load A and load B, or adjusting the output of the generator 5 and switching the system separation point, the system separation point will be set to the circuit breaker 3. There is a risk that the output of the generator 5 will flow out in the direction of the bus bar 6, causing the DRPR 12 to operate and causing the circuit breaker 3 to be erroneously shut off. (2) As mentioned above, if the DRPR operates unstable or continues frequently, there is a risk of wear of the contact portions and poor contact. (3) When the power consumption of load B and the output power of the generator 5 are balanced and operated in parallel with the commercial power supply 1, the circuit breaker 3 is set at the grid separation point, and the power consumption of load B and the output power of the generator 5 are balanced. Since the output power of the generator 5 is balanced, power will not flow out to the bus bar 6 via the circuit breaker 3 during normal operation, but if the power consumption of the load B is due to human operation or protective shutdown of the load. If the circuit breaker 3 is shut off, the shut off power will be consumed by the load A, so the power will flow through the circuit breaker 3 toward the bus bar 6, and the DRPR 12 will operate, causing the circuit breaker 3 to become unnecessary. leading to a blockage.

【0011】[0011]

【発明が解決しようとする課題】本発明は、負荷Aある
いは負荷Bの消費電力と発電機5の出力電力とのバラン
ス状態に応じて、遮断器3を介して母線6方向へ流出す
る無効電力に応動することなく、商用電源1の異常時に
遮断器3を介して母線6方向へ流出する無効電力のみを
検出し、これによって前述の問題を解決できるようにし
た無効電力継電装置を提供することを目的としている。 [発明の構成]
[Problems to be Solved by the Invention] The present invention is directed to reducing reactive power flowing out in the direction of the bus bar 6 via the circuit breaker 3 depending on the balance state between the power consumption of the load A or the load B and the output power of the generator 5. To provide a reactive power relay device capable of solving the above-mentioned problem by detecting only the reactive power flowing out to a bus bar 6 direction via a circuit breaker 3 when a commercial power source 1 is abnormal without reacting to the problem. The purpose is to [Structure of the invention]

【0012】0012

【課題を解決するための手段と作用】本発明は、複数の
電源設備を並列運用する電力系統の電力供給のバランス
に応じて遮断すべき系統分離点を選択すると共に、電力
系統の異常を無効電力の変化によって検出し、選択され
た系統分離点を遮断する系統分離システムの無効電力継
電装置において、それぞれの系統分離点を通過する有効
電力および無効電力を求める分離点通過有効電力検出手
段および分離点通過無効電力検出手段と、上記各分離点
通過有効電力の比と予じめ設定した有効電力比係数とを
比較して遮断すべき系統分離点を選択する遮断分離点選
択手段と、上記選択された系統分離点を通過する有効電
力と予じめ設定した負荷の電力位相角設定値とから負荷
供給無効電力を推定し、これを上記選択された系統分離
点を通過する無効電力から減算して補正し、この補正さ
れた分離点通過無効電力が設定値以上になったとき動作
信号を発生する無効電力動作検出手段を備え、特に商用
電源の異常時に流出する無効電力のみを検出して確実に
系統の分離遮断が行えるようにしたものである。
[Means and effects for solving the problems] The present invention selects a system separation point to be cut off according to the balance of power supply in a power system in which a plurality of power supply facilities are operated in parallel, and also disables abnormalities in the power system. In a reactive power relay device for a grid separation system that detects a change in power and shuts off a selected grid separation point, a separation point passing active power detection means for determining active power and reactive power passing through each grid separation point; separation point passing reactive power detection means; cutoff separation point selection means for selecting a system separation point to be cut off by comparing the ratio of the active power passing through each separation point with a preset active power ratio coefficient; The load supply reactive power is estimated from the active power passing through the selected grid separation point and the preset power phase angle setting value of the load, and this is subtracted from the reactive power passing through the selected grid separation point. The device is equipped with a reactive power operation detection means that corrects the reactive power passing through the separation point and generates an operation signal when the corrected reactive power passing through the separation point exceeds a set value. This ensures that the system can be separated and shut off reliably.

【0013】[0013]

【実施例】本発明の一実施例を図1および図2に示す。 図1は本発明の無効電力方向継電装置14を適用した電
力系統の構成図であり、図2は本発明の無効電力継電装
置14の内部構成図である。また、図2における入力電
流I1 ,I2 およひ入力電圧Vは図1における受電
点および母線に接続それた計器用変流器8および10を
介して入力される受電遮断器2および母線遮断器3の各
系統電流および計器用変圧器9を介して入力される系統
電圧である。
Embodiment An embodiment of the present invention is shown in FIGS. 1 and 2. FIG. 1 is a configuration diagram of a power system to which a reactive power directional relay device 14 of the present invention is applied, and FIG. 2 is an internal configuration diagram of the reactive power relay device 14 of the present invention. In addition, the input currents I1 and I2 and the input voltage V in FIG. 2 are input to the power receiving circuit breaker 2 and the bus circuit breaker which are input through the instrument current transformers 8 and 10 connected to the power receiving point and the bus in FIG. 3 and the system voltage inputted through the potential transformer 9.

【0014】上記各入力電流I1 ,I2 および入力
電圧Vはそれぞれアナログ/ディジタル変換器15,1
6,17を介してディジタル変換され、電力検出要素1
8,19およ無効電力検出要素20,21へ送られる。 電力検出要素18は受電遮断器2を介して流入する受電
有効電力RPを検出し、電力検出要素19は母線遮断器
3を介して母線6方向へ流れる母線有効電力GPを検出
し、無効電力検出要素20は受電遮断器2を介して商用
電源へ流出する受電無効電力RQを検出し、無効電力検
出要素21は母線遮断器3を介して母線方向へ流れる母
線無効電力GQを検出している。
The input currents I1 and I2 and the input voltage V are connected to analog/digital converters 15 and 1, respectively.
6, 17, and the power detection element 1
8, 19 and reactive power detection elements 20, 21. The power detection element 18 detects the received active power RP flowing in via the power receiving circuit breaker 2, and the power detection element 19 detects the bus active power GP flowing in the bus bar 6 direction via the bus circuit breaker 3, and detects reactive power. The element 20 detects the received reactive power RQ flowing out to the commercial power source via the power receiving circuit breaker 2, and the reactive power detection element 21 detects the bus reactive power GQ flowing toward the bus bar via the bus circuit breaker 3.

【0015】図2において、電力検出要素18で検出さ
れた受電有効電力RPと電力検出要素19で検出された
母線有効電力GPは有効電力比判定要素22,23へ送
られ、ここで母線有効電力GPに対する受電有効電力の
比が演算される。
In FIG. 2, the received active power RP detected by the power detection element 18 and the bus active power GP detected by the power detection element 19 are sent to active power ratio determination elements 22 and 23, where the bus active power A ratio of received active power to GP is calculated.

【0016】さらに、有効電力比判定要素22は予じめ
設定された有効電力比係数SETKとの比較判定を行い
、例えば下記(1) 式が成立しているとき、受電無効
電力動作検出要素24へ演算実行命令DRを送る。 SETK≧RP/GP      …(1) 有効電力
比判定要素23も同様に、予じめ設定された有効電力係
数SETKとの比較判定を行い、例えば下記(2) 式
が成立しているとき、母線無効電力動作検出要素25に
演算実行命令DBを送る。 SETK<RP/GP      …(2) 受電無効
電力動作検出要素24は、電力検出要素20で検出され
た受電無効電力RQと予じめ設定された無効電力動作設
定値SETQとの比較判定を行い、下記(3) 式が成
立した時に動作検出信号R1を出力要素26へ送る。 SETQ≦RQ      …(3) また母線無効電
力動作検出要素25は、電力検出要素19および21の
それぞれから送られる母線有効電力GPおよび母線無効
電力GQ、予じめ設定されている負荷電力位相角設定値
SETφおよび無効電力動作設定値SETQとから動作
検出値の演算と比較判定を行い、例えば下記(4) 式
が成立した時に動作検出信号B1を出力要素26へ送る
。 SETQ≦GQ−(GPtan φ)    …(4)
 出力要素26はOR回路として構成され、上記受電無
効電力動作要素24または母線無効電力動作検出要素2
5のいずれかの動作検出信号が送られてきた時、無効電
力方向継電装置としての動作信号を出力する。
Further, the active power ratio determination element 22 performs a comparison determination with a preset active power ratio coefficient SETK, and for example, when the following formula (1) holds, the received reactive power operation detection element 24 Sends an operation execution command DR to. SETK≧RP/GP...(1) Similarly, the active power ratio determination element 23 also performs a comparison determination with the preset active power coefficient SETK. For example, when the following formula (2) holds true, the bus bar The calculation execution command DB is sent to the reactive power operation detection element 25. SETK<RP/GP...(2) The received reactive power operation detection element 24 compares and determines the received reactive power RQ detected by the power detection element 20 with a preset reactive power operation set value SETQ, When the following formula (3) is satisfied, a motion detection signal R1 is sent to the output element 26. SETQ≦RQ (3) The bus reactive power operation detection element 25 also detects the bus active power GP and bus reactive power GQ sent from the power detection elements 19 and 21, respectively, and the preset load power phase angle setting. The operation detection value is calculated and compared from the value SETφ and the reactive power operation setting value SETQ, and when, for example, the following equation (4) is satisfied, the operation detection signal B1 is sent to the output element 26. SETQ≦GQ−(GPtanφ)…(4)
The output element 26 is configured as an OR circuit, and is connected to the received reactive power operation element 24 or the bus reactive power operation detection element 2.
When any of the operation detection signals No. 5 is sent, an operation signal as a reactive power directional relay device is output.

【0017】図3は本発明による無効電力方向継電装置
14の動作特性図の一例を示したもので、LVAは図1
における負荷Aで消費される皮相電力ポイントであり、
負荷Aの電力は受電遮断器2を介して商用電源1から流
入する受電有効電力RPおよび受電無効電力RQと母線
遮断器3を介して発電機5から流入する母線有効電力G
Pおよび母線無効電力GQとの和に相当する。
FIG. 3 shows an example of an operating characteristic diagram of the reactive power directional relay device 14 according to the present invention, and the LVA is as shown in FIG.
is the apparent power point consumed by load A in
The power of load A is composed of received active power RP and received reactive power RQ flowing from the commercial power supply 1 via the receiving circuit breaker 2 and bus active power G flowing from the generator 5 via the bus circuit breaker 3.
P and bus reactive power GQ.

【0018】また、動作特性線R1は受電無効電力動作
検出要素24の動作特性を示すもので、受電遮断器2を
介して商用電源1へ流出する受電無効電力RQが予じめ
設定した無効電力動作設定値SETQ以上となった時に
動作することを示している。
Further, the operating characteristic line R1 shows the operating characteristic of the received reactive power operation detection element 24, and shows that the received reactive power RQ flowing out to the commercial power source 1 via the receiving circuit breaker 2 is equal to the preset reactive power. This indicates that the operation is performed when the operation setting value SETQ is exceeded.

【0019】また、動作特性線B1は母線無効電力動作
検出要素25の動作特性を示すもので、母線遮断器3を
介して母線6の方向へ発電機5から供給される無効電力
GQから負荷Aで消費される無効電力(=GP×tan
φ)を差し引いた値が予じめ設定された無効電力動作設
定値SETQ以上となった時に動作することを示してい
る。
An operating characteristic line B1 indicates an operating characteristic of the bus reactive power operation detecting element 25, in which reactive power GQ supplied from the generator 5 in the direction of the bus 6 via the bus circuit breaker 3 is detected by the load A. Reactive power consumed by (=GP×tan
φ) is greater than or equal to a preset reactive power operation setting value SETQ.

【0020】すなわち、負荷量の大小にかかわらず、常
に負荷で消費される無効電力は予じめ設定された負荷電
力位相角設定値SETφと負荷消費の有効電力GPに応
じて除外されるので、受電無効電力動作検出要素24と
同様に、商用電源系の異常発生時流出する無効電力に対
して常に一定値で動作することが可能となる。
That is, regardless of the magnitude of the load, the reactive power consumed by the load is always excluded according to the preset load power phase angle set value SETφ and the active power GP of the load consumption. Similar to the received reactive power operation detection element 24, it is possible to always operate at a constant value with respect to the reactive power that flows out when an abnormality occurs in the commercial power supply system.

【0021】また、有効電力比係数SETKは負荷Aで
消費される有効電力の商用電源1と発電機電源5の供給
分担比に応じて、商用電源系の異常時に発電機系電力供
給安定の確保に対して最も適切な系統分離点での無効電
力検出を行うために予じめ設定される。すなわち負荷A
への電力のほとんどを発電機5が供給している場合は受
電点から流出する無効電力を検出し、逆に負荷Aへの電
力のほとんどを商用電源1が供給している場合は、母線
遮断器6から商用系へ流出する無効電力を検出するよう
に作用させる。
In addition, the active power ratio coefficient SETK is determined according to the supply sharing ratio of the active power consumed by the load A between the commercial power source 1 and the generator power source 5, and is used to ensure stable power supply to the generator system in the event of an abnormality in the commercial power source system. It is set in advance to perform reactive power detection at the most appropriate system separation point. That is, load A
If the generator 5 supplies most of the power to the load A, reactive power flowing out from the power receiving point is detected; conversely, if the commercial power supply 1 supplies most of the power to the load A, the bus is shut off. It acts to detect the reactive power flowing out from the device 6 to the commercial system.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、い
ずれの系統分離点における無効電力の検出においても、
負荷で消費される無効電力を除いて商用電源系へ流出す
る無効電力分のみを検出することができるので、発電機
5の出力または負荷消費電力などを調整して系統分離点
を切換える際の操作手順誤りや、負荷量の急変などによ
る方向無効電力継電装置の不用動作の危険性が解消され
、商用系の異常発生の検出をより確実に行うことが可能
となる。
[Effects of the Invention] As explained above, according to the present invention, in detecting reactive power at any system separation point,
Since it is possible to detect only the reactive power flowing out to the commercial power system, excluding the reactive power consumed by the load, it is possible to detect the reactive power that flows out to the commercial power system, so it is easy to operate when adjusting the output of the generator 5 or the load power consumption, etc. and switching the system separation point. The risk of unnecessary operation of the directional reactive power relay device due to procedural errors or sudden changes in load is eliminated, and it becomes possible to more reliably detect the occurrence of abnormalities in the commercial system.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による無効電力継電装置を適用した電力
系統の一例を示す系統図。
FIG. 1 is a system diagram showing an example of a power system to which a reactive power relay device according to the present invention is applied.

【図2】本発明による無効電力継電装置の一実施例を示
す構成図。
FIG. 2 is a configuration diagram showing an embodiment of a reactive power relay device according to the present invention.

【図3】本発明による無効電力継電装置の動作特性の一
例を示す図。
FIG. 3 is a diagram showing an example of the operating characteristics of the reactive power relay device according to the present invention.

【図4】従来の無効電力継電装置を適用した電力系統の
一例を示す系統図。
FIG. 4 is a system diagram showing an example of a power system to which a conventional reactive power relay device is applied.

【図5】従来の無効電力継電装置の動作の一例を示す回
路図。
FIG. 5 is a circuit diagram showing an example of the operation of a conventional reactive power relay device.

【符号の説明】[Explanation of symbols]

1…商用電源、2…受電遮断器、3…母線遮断器、4…
発電機遮断器、5…発電機電源、6,7…母線、8,1
0…計器用変流器、9…計器用変圧器、11,12…無
効電力継電器、13…系統分離点設定スイッチ、14…
無効電力継電装置、15,16,17…アナログ/ディ
ジタル変換器、18,19…有効電力検出要素、20,
21…無効電力検出要素、22,23…有効電力比判定
要素、24…受電無効電力動作検出要素、25…母線無
効電力動作検出要素、26…出力要素、27…有効電力
比設定係数記憶要素、28…無効電力動作設定値記憶要
素、29…負荷電力位相角設定値記憶要素。
1...Commercial power supply, 2...Power receiving circuit breaker, 3...Bus bar circuit breaker, 4...
Generator circuit breaker, 5... Generator power supply, 6, 7... Bus bar, 8, 1
0... Instrument current transformer, 9... Instrument transformer, 11, 12... Reactive power relay, 13... System separation point setting switch, 14...
Reactive power relay device, 15, 16, 17... Analog/digital converter, 18, 19... Active power detection element, 20,
21... Reactive power detection element, 22, 23... Active power ratio determination element, 24... Received reactive power operation detection element, 25... Bus bar reactive power operation detection element, 26... Output element, 27... Active power ratio setting coefficient storage element, 28... Reactive power operation setting value storage element, 29... Load power phase angle setting value storage element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数の電源設備を並列運用する電力系
統の電力供給のバランスに応じて遮断すべき系統分離点
を選択すると共に、電力系統の異常を無効電力の変化に
よって検出し、選択された系統分離点を遮断する系統分
離システムの無効電力継電装置において、それぞれの系
統分離点を通過する有効電力および無効電力を求める分
離点通過有効電力検出手段および分離点通過無効電力検
出手段と、上記各分離点通過有効電力の比と予じめ設定
した有効電力比係数とを比較して遮断すべき系統分離点
を選択する遮断分離点選択手段と、上記選択された系統
分離点を通過する有効電力と予じめ設定した負荷の電力
位相角設定値とから負荷供給無効電力を推定し、これを
上記選択された系統分離点を通過する無効電力から減算
して補正し、この補正された分離点通過無効電力が設定
値以上になったとき動作信号を発生する無効電力動作検
出手段、を備えたことを特徴とする無効電力継電装置。
[Claim 1] A grid separation point to be cut off is selected according to the power supply balance of a power system in which multiple power supply facilities are operated in parallel, and an abnormality in the power system is detected by a change in reactive power. In a reactive power relay device for a grid separation system that interrupts a grid separation point, a separation point passing active power detection means and a separation point passing reactive power detection means for determining active power and reactive power passing through each grid separation point, and the above-mentioned A cutoff separation point selection means for selecting a system separation point to be cut off by comparing the ratio of active power passing through each separation point with a preset active power ratio coefficient; The load supply reactive power is estimated from the power and the preset power phase angle setting value of the load, and this is corrected by subtracting it from the reactive power passing through the selected system separation point, and this corrected separation is performed. 1. A reactive power relay device comprising reactive power operation detection means that generates an operation signal when point-passing reactive power exceeds a set value.
JP3008597A 1991-01-28 1991-01-28 Reactive power relay Expired - Lifetime JP2856923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008597A JP2856923B2 (en) 1991-01-28 1991-01-28 Reactive power relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008597A JP2856923B2 (en) 1991-01-28 1991-01-28 Reactive power relay

Publications (2)

Publication Number Publication Date
JPH04244728A true JPH04244728A (en) 1992-09-01
JP2856923B2 JP2856923B2 (en) 1999-02-10

Family

ID=11697381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008597A Expired - Lifetime JP2856923B2 (en) 1991-01-28 1991-01-28 Reactive power relay

Country Status (1)

Country Link
JP (1) JP2856923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061903A (en) * 2009-09-07 2011-03-24 Toshiba Corp Grounding protection system for distribution unit substation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061903A (en) * 2009-09-07 2011-03-24 Toshiba Corp Grounding protection system for distribution unit substation

Also Published As

Publication number Publication date
JP2856923B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
EP1939999B1 (en) Circuit protection system
US6785105B2 (en) Ground fault detection system for ungrounded power systems
EP0736949B1 (en) Protective equipment in a bipolar HVDC station
JP5094062B2 (en) Short-circuit current reduction system and short-circuit current reduction method for power transmission and distribution system
JPH04244728A (en) Reactive power relay device
KR20030042222A (en) Sub-system connecting device in power supply system
JP5137226B2 (en) Circuit breaker
KR100891162B1 (en) An electric power system had Double Circuit Breaker
WO2004042883A1 (en) Protective relay
JP2020188593A (en) Vehicle charging system
JP2010039797A (en) Overcurrent protection system of dc feeding power source
JP4072961B2 (en) Control device with system interconnection protection function of SOG switch
KR102700740B1 (en) Motor protection relay and motor protection system comprising the same
JPH05122835A (en) Reverse power flow preventer for power system
JPH04275029A (en) Load interrupting device at time of parallel off fault
JPH06233459A (en) Power system protective system
WO2024189891A1 (en) Dc circuit breaker
WO2024105742A1 (en) Breaking device, power supply system, control device, setting value determination method, and program
JP2024072728A (en) Reverse power interruption relay and reverse power interruption method for reverse power interruption relay
JPH0837730A (en) Bus protective relay
JP3666845B2 (en) Spot network power receiving equipment
JP2640628B2 (en) Grid connection protection device
JPH099488A (en) Frequency relay device
JPS6347052B2 (en)
US20120169121A1 (en) Method and device for the high-speed automatic activation of a backup consumer electrical power supply