JPH04244560A - Freezer device - Google Patents

Freezer device

Info

Publication number
JPH04244560A
JPH04244560A JP941291A JP941291A JPH04244560A JP H04244560 A JPH04244560 A JP H04244560A JP 941291 A JP941291 A JP 941291A JP 941291 A JP941291 A JP 941291A JP H04244560 A JPH04244560 A JP H04244560A
Authority
JP
Japan
Prior art keywords
piston
expansion
compression
linear motor
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP941291A
Other languages
Japanese (ja)
Inventor
Yoshio Kawasaki
川崎 吉男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP941291A priority Critical patent/JPH04244560A/en
Publication of JPH04244560A publication Critical patent/JPH04244560A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To provide an anti-acceleration characteristic when a space rocket is launched by a method wherein each of movable coils in a driving linear motor for a compression piston and an expansion piston of a freezer under an inverse Stirling cycle is short circuited. CONSTITUTION:Means 33 is provided for short circuiting each of a movable coil 9 of a driving linear motor 10 for a compression piston 1 and a movable coil 17 for a driving linear motor 18 for an expansion piston 3. This short circuiting means 33 is operated such that when a space rocket is launched, each of driving motors 10 and 18 is separated from each of difference signal amplifiers 15 and 21, the movable coils 9 and 17 are short circuited and after completion of the launching, the short circuiting means is returned back to its original position, the movable coils 9 and 17 are released from their short circuited states and then a normal operation is started. Accordingly, the movements of the pistons 1 and 3 are restricted with an electromagnetic force caused by the short-circuit of the movable coils 9 and 17 and then influence caused by the high acceleration during a launching can be eliminated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は極低温の発生に用いられ
る逆スターリングサイクルによる冷凍装置,特にその防
振機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a reverse Stirling cycle used to generate extremely low temperatures, and more particularly to a vibration isolation mechanism thereof.

【0002】0002

【従来の技術】ヘリウム, 水素, 窒素など低温で液
化しにくい気体を冷媒として用いる極低温発生用の冷凍
装置として、逆スターリングサイクルを利用したものが
知られており、従来技術による構成の一例を図3に示す
。この冷凍装置は圧縮ピストン1を内蔵した圧縮シリン
ダ2と、膨張ピストン3を内蔵した膨張シリンダ4とを
備えており、膨張シリンダ4の先端部に冷却部5を形成
する。また、膨張ピストン3の内部にはステンレス製の
金網の類で形成された蓄冷器6が設けられている。圧縮
シリンダ2と膨張シリンダ4とは熱交換器13と蓄冷器
6とを介して連通管7で連通されている。圧縮ピストン
1は円環状の空隙を備えた永久磁石8とその空隙内を軸
方向に直線運動の可能な可動コイル9とで構成されたリ
ニアモータ10に結合され、リニアモータ10にはさら
に圧縮ピストン1の位置を検出する、例えば、差動トラ
ンスのような位置検出器11が結合されている。これら
圧縮ピストン1,可動コイル9および位置検出器11の
可動部は支持ばね12によって支持されている。リニア
モータ10による圧縮ピストン1の駆動は前記の位置検
出器11, 信号の比較手段としての比較回路14およ
び偏差信号増幅器15により構成されるサーボ系により
行われる。膨張ピストン3の駆動も同様に永久磁石16
と可動コイル17とで構成されたリニアモータ18, 
位置検出器19, 信号比較回路20および偏差信号増
幅器21により構成されるサーボ系により行われる。膨
張ピストン3の駆動信号22は正弦波発生装置23によ
って与えられる正弦波であり、圧縮ピストン1の駆動信
号24は遅延回路25により駆動信号22に所定の位相
遅れが与えられたものである。これによって圧縮ピスト
ン1は膨張ピストン3の往復運動に対して常に一定の位
相差を保った往復運動を行う。
[Prior Art] Refrigeration equipment that utilizes a reverse Stirling cycle is known as a cryogenic refrigeration system that uses gases that are difficult to liquefy at low temperatures, such as helium, hydrogen, and nitrogen, as refrigerants. Shown in Figure 3. This refrigeration system includes a compression cylinder 2 having a built-in compression piston 1 and an expansion cylinder 4 having a built-in expansion piston 3, and a cooling part 5 is formed at the tip of the expansion cylinder 4. Further, inside the expansion piston 3, a regenerator 6 made of stainless steel wire mesh or the like is provided. The compression cylinder 2 and the expansion cylinder 4 are communicated through a communication pipe 7 via a heat exchanger 13 and a regenerator 6. The compression piston 1 is coupled to a linear motor 10 composed of a permanent magnet 8 having an annular gap and a moving coil 9 capable of linear movement in the axial direction within the gap.The linear motor 10 further includes a compression piston. A position detector 11, for example a differential transformer, is coupled to detect the position of one. The movable parts of the compression piston 1, movable coil 9, and position detector 11 are supported by a support spring 12. The compression piston 1 is driven by the linear motor 10 by a servo system comprising the position detector 11, a comparison circuit 14 serving as signal comparison means, and a deviation signal amplifier 15. The expansion piston 3 is also driven by a permanent magnet 16.
and a moving coil 17.
This is performed by a servo system composed of a position detector 19, a signal comparison circuit 20, and a deviation signal amplifier 21. The drive signal 22 for the expansion piston 3 is a sine wave given by a sine wave generator 23, and the drive signal 24 for the compression piston 1 is the drive signal 22 given a predetermined phase delay by a delay circuit 25. As a result, the compression piston 1 reciprocates while always maintaining a constant phase difference with respect to the reciprocating movement of the expansion piston 3.

【0003】圧縮ピストン1と膨張ピストン3とが一定
の位相差を保って往復運動を行うと、圧縮シリンダ2で
圧縮された冷媒気体は膨張シリンダ4の先端部で膨張を
繰り返し冷却部5に低温を発生する。冷却部5に膨張の
都度発生する低温は蓄冷器6に蓄えられ、冷却部5の温
度は一定の低温となる。
When the compression piston 1 and the expansion piston 3 reciprocate while maintaining a constant phase difference, the refrigerant gas compressed in the compression cylinder 2 repeatedly expands at the tip of the expansion cylinder 4 and returns to the cooling unit 5 at a low temperature. occurs. The low temperature generated in the cooling unit 5 each time it expands is stored in the regenerator 6, and the temperature of the cooling unit 5 becomes a constant low temperature.

【0004】0004

【発明が解決しようとする課題】前述の冷凍装置が、例
えば、宇宙用ロケットに搭載される場合、打ち上げの際
に加わる大きな加速度によって圧縮ピストンあるいは膨
張ピストンはその許容範囲、すなわち、ピストンのスト
ローク以上に振らされてしまい、それぞれのシリンダヘ
ッドに激突し破損する可能性が高い。このために、前記
加速度に対抗し、これらピストンの振動を抑えるため、
これら振動系のばね常数あるいはピストンに作用する冷
媒ガスの圧力を増加するなどの方法が考えられるが、冷
凍装置の構成諸元が著しく変わり、例えば、装置重量の
増大、入力の増加などを引き起こし、結果として、冷凍
装置に要求される性能が満足できなくなる。
[Problem to be Solved by the Invention] When the above-mentioned refrigeration system is mounted on a space rocket, for example, the compression piston or the expansion piston may exceed its permissible range, that is, the stroke of the piston due to the large acceleration applied during launch. There is a high possibility that the cylinder head will be hit and damaged. To this end, in order to counteract the acceleration and suppress the vibrations of these pistons,
Methods such as increasing the spring constant of these vibration systems or the pressure of the refrigerant gas acting on the piston can be considered, but the structural specifications of the refrigeration system will change significantly, resulting in an increase in the weight of the system, an increase in input power, etc. As a result, the performance required of the refrigeration system cannot be satisfied.

【0005】本発明の目的は前述の問題点を解決し、冷
凍装置が、例えば、宇宙ロケットに搭載された場合、打
ち上げの際に加わる大きな加速度に耐える冷凍装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a refrigeration system that can withstand large accelerations applied during launch when the refrigeration system is mounted on, for example, a space rocket.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、圧縮シリンダと、冷却部が形成された膨張シリンダ
とを熱交換器と蓄冷器とを介して連通し、冷媒ガスを封
入したそれぞれのシリンダに内蔵された圧縮ピストンと
膨張ピストンとが相互に位相差が与えられて周期的に往
復運動することにより、圧縮シリンダで圧縮された温度
の高い冷媒ガスを熱交換器での放熱と蓄冷器での冷却を
経て温度の低い膨張シリンダに移送し、膨張シリンダで
膨張させてさらに冷却温度にまで低下させた後に再び同
一の経路を逆行させて圧縮シリンダへ戻す逆スターリン
ダサイクルによる冷凍装置であって、圧縮ピストンと膨
張ピストンはそれぞれ空隙内に形成された磁場とこの空
隙内を軸方向に直線運動の可能な可動コイルとで構成さ
れたリニアモータによって、相互に位相差が与えられて
周期的に往復運動する冷凍装置において、前記圧縮ピス
トン駆動用のリニアモータの可動コイルおよび前記膨張
ピストン駆動用のリニアモータの可動コイルをそれぞれ
短絡する手段を設けるようにする。
[Means for Solving the Problems] In order to achieve the above object, a compression cylinder and an expansion cylinder in which a cooling section is formed are connected through a heat exchanger and a regenerator, and each of them is filled with refrigerant gas. By periodically reciprocating the compression piston and expansion piston built into the cylinder with a mutual phase difference, the high-temperature refrigerant gas compressed in the compression cylinder is used for heat radiation and cold storage in the heat exchanger. This is a refrigeration system using a reverse star-linda cycle in which the material is cooled in a container, transferred to a low-temperature expansion cylinder, expanded in the expansion cylinder, lowered to the cooling temperature, and then returned to the compression cylinder through the same path. The compression piston and the expansion piston are each given a phase difference to each other by a linear motor composed of a magnetic field formed in an air gap and a moving coil capable of linear movement in the axial direction within this air gap. In a refrigeration system that reciprocates, means is provided for short-circuiting the moving coil of the linear motor for driving the compression piston and the moving coil of the linear motor for driving the expansion piston.

【0007】[0007]

【作用】本発明の冷凍装置においては、圧縮ピストンあ
るいは膨張ピストン駆動用のそれぞれのリニアモータの
可動コイルを短絡する手段を設け、例えば、宇宙ロケッ
ト打ち上げの際のように大きな加速度が加わる際に短絡
するようにしたので、この際に加わる加速度によって圧
縮ピストンあるいは膨張ピストンが動き始めると、これ
らに結合されたリニアモータの可動コイルは空隙の磁場
内を動きこれによって短絡された可動コイルには短絡電
流が流れる。この短絡電流と空隙の磁場によって生じる
電磁力は可動コイルの動きを妨げるよう作用するので、
可動コイルに結合された圧縮ピストンあるいは膨張ピス
トンの動きは抑えられ、大きな加速度に耐えることがで
きる。
[Operation] In the refrigeration system of the present invention, a means is provided to short-circuit the moving coils of the linear motors for driving the compression piston or the expansion piston. Therefore, when the compression piston or expansion piston starts to move due to the acceleration applied at this time, the moving coil of the linear motor connected to them moves within the magnetic field of the air gap, and as a result, the short-circuited moving coil receives a short-circuit current. flows. The electromagnetic force generated by this short circuit current and the magnetic field of the air gap acts to hinder the movement of the moving coil.
The movement of the compression or expansion piston coupled to the moving coil is constrained and can withstand large accelerations.

【0008】[0008]

【実施例】図1は本発明の冷凍装置の一実施例における
構成を示す一部断面構造を含む系統図であり、図3に示
す従来の冷凍装置との相異点は圧縮ピストン1の駆動用
リニアモータ10の可動コイル9と膨張ピストン3の駆
動用リニアモータ18の可動コイル17とをそれぞれ短
絡する手段33を設けたことにある。この短絡手段33
は宇宙ロケット打ち上げの際、圧縮ピストン1の駆動用
リニアモータ10および膨張ピストン3の駆動用リニア
モータ18をそれぞれの偏差信号増幅器15および21
から切り離し、これらリニアモータ10および18の可
動コイル9および17をそれぞれ短絡する。宇宙ロケッ
トの打ち上げが完了すると、この短絡手段33を元に戻
し、可動コイル9および17を短絡から開放し、それぞ
れの偏差信号増幅器15に接続し正常な運転に入れるよ
うにする。
[Embodiment] FIG. 1 is a system diagram including a partially sectional structure showing the configuration of an embodiment of the refrigeration system of the present invention.The difference from the conventional refrigeration system shown in FIG. A means 33 is provided for short-circuiting the moving coil 9 of the linear motor 10 for driving the expansion piston 3 and the moving coil 17 of the linear motor 18 for driving the expansion piston 3. This short circuit means 33
When launching a space rocket, the linear motor 10 for driving the compression piston 1 and the linear motor 18 for driving the expansion piston 3 are connected to the respective deviation signal amplifiers 15 and 21.
The moving coils 9 and 17 of these linear motors 10 and 18 are short-circuited. When the launch of the space rocket is completed, the shorting means 33 is returned to its original state, the movable coils 9 and 17 are released from the short circuit, and are connected to the respective deviation signal amplifiers 15 to enable normal operation.

【0009】図2は本発明の防振効果を説明するための
圧縮ピストン1あるいは膨張ピストン3の振動系をモデ
ル化した構成図で、以下、圧縮シリンダ1について述べ
るが、膨張ピストン3についても同様である。図2にお
いて圧縮ピストン1の可動質量, 正確には圧縮ピスト
ンおよびこれに結合された可動コイル9, 位置検出器
11の可動部などの可動質量をMpとし、これらの支持
ばね12のばね常数をKpとし、冷媒ガスが圧縮ピスト
ン1に作用する力を圧縮ピストン1の変位に比例するも
のとし、その比例常数をガス定数Cyとする。さらに、
圧縮ピストン1の速度に比例する粘性力があり、これを
粘性係数Cvとする。この振動系モデルより運動方程式
を導くと次式のように表わされる。
FIG. 2 is a block diagram modeling the vibration system of the compression piston 1 or the expansion piston 3 to explain the vibration damping effect of the present invention.The compression cylinder 1 will be described below, but the same applies to the expansion piston 3. It is. In FIG. 2, the movable mass of the compression piston 1, more precisely, the movable mass of the compression piston, the movable coil 9 coupled thereto, the movable parts of the position detector 11, etc. is Mp, and the spring constant of these support springs 12 is Kp. The force exerted by the refrigerant gas on the compression piston 1 is assumed to be proportional to the displacement of the compression piston 1, and its proportionality constant is defined as a gas constant Cy. moreover,
There is a viscous force proportional to the speed of the compression piston 1, and this is defined as the viscosity coefficient Cv. The equation of motion derived from this vibration system model is expressed as the following equation.

【0010】0010

【数1】[Math 1]

【0011】ここでtは時間でy(t) は圧縮ピスト
ンの時間に対する軸方向の変位であり、A(t) は初
期時における変位を示す。この方程式を解くことにより
圧縮ピストンの動きを知ることでできる。計算の結果で
は加速度が十数Gの場合、圧縮ピストンは三十数ミリメ
ータ動かされるが、本発明の防振機構を用いると数ミリ
メータに抑えられ、圧縮ピストンの動きを正規のストロ
ーク内に収めることが可能となる。
Here, t is time, y(t) is the axial displacement of the compression piston with respect to time, and A(t) indicates the initial displacement. By solving this equation, we can find out the movement of the compression piston. According to calculation results, when the acceleration is more than 10 G, the compression piston is moved more than 30 millimeters, but by using the vibration isolation mechanism of the present invention, this can be suppressed to a few millimeters, making it possible to keep the movement of the compression piston within the normal stroke. becomes possible.

【0012】なお、前述の説明は宇宙ロケットに搭載し
た例について述べたが、同様な加速度の加わるすべての
用途について適用できる。
[0012] Although the above explanation has been made regarding an example in which the device is mounted on a space rocket, it can be applied to all applications where similar acceleration is applied.

【0013】[0013]

【発明の効果】本発明によれば、圧縮ピストンあるいは
膨張ピストン駆動用のそれぞれのリニアモータの可動コ
イルを短絡する手段を設け、宇宙用ロケット打ち上げの
際は短絡するようにし、この短絡によって生じる電磁力
で圧縮ピストンあるいは膨張ピストンの動きを抑えるよ
うにしたので、打ち上げの際加わる十数Gの大きな加速
度に対して圧縮ピストンの動きは圧縮ピストンの正規の
ストローク内の数ミリメータに抑えられ、しかも、冷凍
装置の性能には影響がなくその実用性は極めて大きい。
According to the present invention, a means is provided for short-circuiting the moving coils of the linear motors for driving the compression piston or the expansion piston, so that the short-circuit is performed during space rocket launch, and the electromagnetic force generated by this short-circuit is reduced. Since the movement of the compression piston or the expansion piston was suppressed by force, the movement of the compression piston was suppressed to a few millimeters within the normal stroke of the compression piston against the large acceleration of more than 10 G applied during launch. It has no effect on the performance of the refrigeration equipment and is extremely practical.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の冷凍装置の一実施例における構成を示
す一部断面構造を含む系統図
FIG. 1 is a system diagram including a partially cross-sectional structure showing the configuration of an embodiment of the refrigeration system of the present invention.

【図2】図1に示す本発明の冷凍装置の防振効果を説明
するための圧縮ピストンあるいは膨張ピストンの振動系
をモデル化した構成図
[Fig. 2] A configuration diagram modeling the vibration system of a compression piston or an expansion piston to explain the vibration isolation effect of the refrigeration system of the present invention shown in Fig. 1.

【図3】従来の冷凍装置の構成例を示す一部断面構造を
含む系統図
[Figure 3] System diagram including a partial cross-sectional structure showing an example of the configuration of a conventional refrigeration system

【符号の説明】[Explanation of symbols]

1    圧縮ピストン 2    圧縮シリンダ 3    膨張ピストン 4    膨張シリンダ 5    冷却部 6    蓄冷器 7    連通管 8    永久磁石 9    可動コイル 10    リニアモータ(圧縮ピストン駆動用の)1
1    位置検出器(圧縮ピストン用の)13   
 熱交換器 14    信号比較回路(圧縮ピストン駆動系の)1
5    偏差信号増幅器(圧縮ピストン駆動系の)1
6    永久磁石 17    可動コイル 18    リニアモータ(膨張ピストン駆動用の)1
9    位置検出器(膨張ピストン用の)20   
 信号比較回路(膨張ピストン駆動系の)21    
偏差信号増幅器(膨張ピストン駆動系の)23    
正弦波発生器(膨張ピストンの駆動信号)25    
遅延回路 33    短絡手段
1 Compression piston 2 Compression cylinder 3 Expansion piston 4 Expansion cylinder 5 Cooling section 6 Regenerator 7 Communication tube 8 Permanent magnet 9 Moving coil 10 Linear motor (for driving the compression piston) 1
1 Position detector (for compression piston) 13
Heat exchanger 14 Signal comparison circuit (compression piston drive system) 1
5 Deviation signal amplifier (compression piston drive system) 1
6 Permanent magnet 17 Moving coil 18 Linear motor (for driving the expansion piston) 1
9 Position detector (for expansion piston) 20
Signal comparison circuit (of expansion piston drive system) 21
Deviation signal amplifier (of expansion piston drive system) 23
Sine wave generator (expansion piston drive signal) 25
Delay circuit 33 short circuit means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮シリンダと、冷却部が形成された膨張
シリンダとを熱交換器と蓄冷器とを介して連通し、冷媒
ガスを封入したそれぞれのシリンダに内蔵された圧縮ピ
ストンと膨張ピストンとが相互に位相差が与えられて周
期的に往復運動することにより、圧縮シリンダで圧縮さ
れた温度の高い冷媒ガスを熱交換器での放熱と蓄冷器で
の冷却を経て温度の低い膨張シリンダに移送し、膨張シ
リンダで膨張させてさらに冷却温度にまで低下させた後
に再び同一の経路を逆行させて圧縮シリンダへ戻す逆ス
ターリングサイクルによる冷凍装置であって、圧縮ピス
トンと膨張ピストンはそれぞれ空隙内に形成された磁場
とこの空隙内を軸方向に直線運動の可能な可動コイルと
で構成されたリニアモータによって、相互に位相差が与
えられて周期的に往復運動する冷凍装置において、前記
圧縮ピストン駆動用のリニアモータの可動コイルおよび
前記膨張ピストン駆動用のリニアモータの可動コイルを
それぞれ短絡する手段を設けたことを特徴とする冷凍装
置。
Claim 1: A compression cylinder and an expansion cylinder in which a cooling section is formed are connected through a heat exchanger and a regenerator, and a compression piston and an expansion piston built in each cylinder filled with refrigerant gas are connected to each other through a heat exchanger and a regenerator. By periodically reciprocating with a mutual phase difference, the high-temperature refrigerant gas compressed in the compression cylinder is transferred to the low-temperature expansion cylinder through heat radiation in the heat exchanger and cooling in the regenerator. This is a refrigeration system using a reverse Stirling cycle, in which the air is transferred, expanded in an expansion cylinder, lowered to a cooling temperature, and then returned to the compression cylinder through the same path, with the compression piston and expansion piston each placed in a cavity. In the refrigeration system, the compressor piston is driven by a linear motor that is configured of a magnetic field that is formed and a moving coil that can move linearly in the axial direction within this gap, and that reciprocates periodically with a mutual phase difference. A refrigeration system comprising means for short-circuiting a moving coil of a linear motor for driving the expansion piston and a moving coil of the linear motor for driving the expansion piston.
【請求項2】請求項1記載の冷凍装置において、圧縮ピ
ストン駆動用リニアモータには圧縮ピストン位置検出器
が結合され、膨張ピストン駆動用リニアモータには膨張
ピストン位置検出器が結合され、膨張ピストンの駆動は
別途与えられる駆動信号と膨張ピストン位置検出器の位
置信号との偏差信号によって行われ、圧縮ピストンの駆
動は膨張ピストンの駆動信号に所定の位相遅れが与えら
れた駆動信号と圧縮ピストン位置検出器の位置信号との
偏差信号によって行われることを特徴とする冷凍装置。
2. The refrigeration system according to claim 1, wherein the compression piston drive linear motor is coupled to a compression piston position detector, the expansion piston drive linear motor is coupled to an expansion piston position detector, and the expansion piston drive linear motor is coupled to an expansion piston position detector. is driven by a deviation signal between a separately given drive signal and the position signal of the expansion piston position detector, and the compression piston is driven by a drive signal with a predetermined phase delay from the expansion piston drive signal and the compression piston position. A refrigeration system characterized in that the refrigeration is performed using a deviation signal from a position signal of a detector.
【請求項3】請求項1もしくは請求項2記載の冷凍装置
において、宇宙ロケット搭載用として用いられることを
特徴とする冷凍装置。
3. A refrigeration system according to claim 1 or 2, characterized in that the refrigeration system is used for mounting on a space rocket.
JP941291A 1991-01-30 1991-01-30 Freezer device Pending JPH04244560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP941291A JPH04244560A (en) 1991-01-30 1991-01-30 Freezer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP941291A JPH04244560A (en) 1991-01-30 1991-01-30 Freezer device

Publications (1)

Publication Number Publication Date
JPH04244560A true JPH04244560A (en) 1992-09-01

Family

ID=11719683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP941291A Pending JPH04244560A (en) 1991-01-30 1991-01-30 Freezer device

Country Status (1)

Country Link
JP (1) JPH04244560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510617A (en) * 1991-07-01 1993-01-19 Mitsubishi Electric Corp Refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047126B2 (en) * 1980-08-29 1985-10-19 日産自動車株式会社 vehicle roof structure
JPS62242772A (en) * 1986-04-15 1987-10-23 富士電機株式会社 Refrigerator
JPH0191567A (en) * 1987-06-08 1989-04-11 Ricoh Co Ltd Color original reader
JPH0244664B2 (en) * 1983-05-27 1990-10-04 Toyoda Machine Works Ltd

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047126B2 (en) * 1980-08-29 1985-10-19 日産自動車株式会社 vehicle roof structure
JPH0244664B2 (en) * 1983-05-27 1990-10-04 Toyoda Machine Works Ltd
JPS62242772A (en) * 1986-04-15 1987-10-23 富士電機株式会社 Refrigerator
JPH0191567A (en) * 1987-06-08 1989-04-11 Ricoh Co Ltd Color original reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510617A (en) * 1991-07-01 1993-01-19 Mitsubishi Electric Corp Refrigerator

Similar Documents

Publication Publication Date Title
Davey Review of the Oxford cryocooler
US3220201A (en) Cryogenic refrigerator operating on the stirling cycle
WO1984000579A1 (en) Resonant free-piston stirling engine having virtual rod displacer and displacer linear electrodynamic machine control of displacer drive/damping
JPH10148410A (en) Pulse tube refrigerator
EP4004458A1 (en) Cryogenic stirling refrigerator with a pneumatic expander
JPH0721361B2 (en) refrigerator
AU2004316920B2 (en) Transient temperature control system and method for preventing destructive collisions in free piston machines
US11384964B2 (en) Cryogenic stirling refrigerator with mechanically driven expander
JPH04244560A (en) Freezer device
JP3104387B2 (en) Stirling refrigerator
JP2969124B2 (en) Wave type refrigerator
Yin et al. The Study on High Efficiency and Low Vibration Flexure Bearing Stirling Cryocooler
Xi et al. Vibration analysis of linear motor driven Stirling cryocooler coupled with a pneumatically driven expander
JP2556939B2 (en) refrigerator
JPH074763A (en) Refrigerating device
JPH0579720A (en) Refrigerator
JPH112468A (en) Stirling refrigerating machine
JPH01114673A (en) Cooling machine
JPH055569A (en) Refrigerator
KR20230161000A (en) Multi-stage stirling chillers using multiple independent displacers
JPH1096563A (en) Refrigerator
JPH0791759A (en) Driving device of stirling refrigerating machine
JPH04143554A (en) Refrigerator
JPH0554967U (en) refrigerator
JPH03177752A (en) Refrigerator