JPH074763A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH074763A
JPH074763A JP14886393A JP14886393A JPH074763A JP H074763 A JPH074763 A JP H074763A JP 14886393 A JP14886393 A JP 14886393A JP 14886393 A JP14886393 A JP 14886393A JP H074763 A JPH074763 A JP H074763A
Authority
JP
Japan
Prior art keywords
pistons
piston
amplitude
reciprocating movement
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14886393A
Other languages
Japanese (ja)
Inventor
Yusuke Ueda
勇輔 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14886393A priority Critical patent/JPH074763A/en
Publication of JPH074763A publication Critical patent/JPH074763A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To eliminate the restriction of two pistons in their reciprocating movement and in the central position of the reciprocating movement at the compressing parts by a method wherein oppositely arranged first and second pistons are magnetically levitated by magnetic bearings and driven by linear reciprocating motors. CONSTITUTION:Oppositely arranged first and second pistons 1a and 1b are driven by the linear motors which, together with magnetic bearing 4a and 4b, magnetically levitate and move their respective piston shafts 2a and 2b. To accomplish this, a means is provided which controls the displacement detecting means 5a and 5b for both the pistons and the electricity input components for the linear reciprocating motors in order to completely keep the pistons and the body of the refrigerating machine out of contact and to permit adjustment of the central position of the reciprocating movement and this reciprocal movement of both the pistons at the oppositely positioned compressing parts. This can eliminate the restriction of the two pistons in their reciprocating movement and in the central position of the reciprocating movement at the compressing parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機に係り、特に、
宇宙ステーションでの実験に用いられる汎用スターリン
グ冷凍機のように冷凍能力を調整する必要がある冷凍機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator, and more particularly to a refrigerator.
The present invention relates to a refrigerator whose refrigerating capacity needs to be adjusted like a general-purpose Stirling refrigerator used in experiments at a space station.

【0002】[0002]

【従来の技術】以下、スターリング冷凍機を例に、従来
の技術の説明を行う。図3にスターリング冷凍機の模式
図を示し、図4にその熱力学的サイクルを示す。まず、
これらの図を基に動作原理を説明する。スターリング冷
凍機は、基本的にはディスプレーサ,ピストン,蓄冷器
より構成されている。図4では、蓄冷器は、ディスプレ
ーサ内部に収納された構造になっているが、圧縮空間と
膨張空間を導通させる位置であればシリンダ外部に設置
してもよい。→の行程は圧縮行程であり、ピストン
が図中上方に移動しガスを圧縮する。このとき発生する
圧縮熱は水あるいは空気等の媒体を用い、シリンダ外部
に排出される。したがって、圧縮は等温的に行われるこ
とになる。→の行程は等容行程であり、ディスプレ
ーサのみが下方に移動し、ガスは、蓄冷器を通り圧縮空
間から膨張空間に移動する。→の行程は膨張行程で
あり、ディスプレーサとピストンの両者が下方に移動す
るため、膨張空間内のガスは膨張し、温度が低下するこ
とになる。熱力学的サイクル上は、この変化は等温変化
であり一定の熱負荷を外部から加えることにより実現す
ることができるが、これが冷凍能力に相当する。→
の行程は等容行程であり、ディスプレーサが上方に移動
し、→の行程とは逆にガスは蓄冷器を通り、膨張空
間から圧縮空間に移動する。このとき、まだ冷凍能力を
有するガスは、蓄冷器との熱交換により蓄冷器を冷却し
圧縮空間に移動することになる。それ故、→の行程
で、ガスは圧縮空間から膨張空間に移動する時に、蓄冷
器部での熱交換により冷却されることになる。このよう
なサイクルを繰り返すことにより一定の冷凍能力を有す
る冷凍機を実現することができる。この変化は瞬時に起
こるという前提で原理的には構成されているが、現実に
はこのような変化は起こり得ず、実際はピストンおよび
ディスプレーサを位相差を持った有限時間の正弦波形で
動かすことにより本サイクルを形成している。
2. Description of the Related Art A conventional technique will be described below by taking a Stirling refrigerator as an example. FIG. 3 shows a schematic diagram of the Stirling refrigerator, and FIG. 4 shows its thermodynamic cycle. First,
The operation principle will be described based on these figures. The Stirling refrigerator is basically composed of a displacer, a piston, and a regenerator. In FIG. 4, the regenerator is structured to be housed inside the displacer, but may be installed outside the cylinder at any position where the compression space and the expansion space are electrically connected. The stroke of → is the compression stroke, and the piston moves upward in the figure to compress the gas. The compression heat generated at this time is discharged to the outside of the cylinder using a medium such as water or air. Therefore, the compression will be performed isothermally. The stroke of → is an equal volume stroke, only the displacer moves downward, and the gas moves from the compression space to the expansion space through the regenerator. The process of → is an expansion process and both the displacer and the piston move downward, so the gas in the expansion space expands and the temperature drops. On the thermodynamic cycle, this change is an isothermal change and can be realized by externally applying a constant heat load, which corresponds to the refrigerating capacity. →
The stroke of is the same volume stroke, the displacer moves upward, and contrary to the stroke of →, the gas passes through the regenerator and moves from the expansion space to the compression space. At this time, the gas that still has the refrigerating capacity is cooled in the regenerator by heat exchange with the regenerator and moves to the compression space. Therefore, in the process of →, when the gas moves from the compression space to the expansion space, the gas is cooled by heat exchange in the regenerator section. By repeating such a cycle, a refrigerator having a certain refrigerating capacity can be realized. Although this change is theoretically constructed on the assumption that it occurs instantaneously, such a change cannot occur in reality, but in practice, by moving the piston and displacer with a finite time sine waveform with a phase difference. Forming this cycle.

【0003】上記に示す冷凍サイクルを用い、対向型圧
縮部を備えた従来のスターリング冷凍機は、例えば、特
開平1ー200158 号公報に開示されている。これは、図5
に模式的に示されるように、水平方向に往復動する第一
ピストン1a:第一ピストンと水平対向的に配置され第
一ピストンと逆位相で往復動する第二ピストン1b:第
一ピストンに作用的に連結される第一クランク部13a
と逆位相をなす第二クランク部13bが形成されたクラ
ンクシャフト14を備え、前記の両ピストンを駆動する
クランク機構を有するものであり、圧縮部の振動低減を
目的としている。
A conventional Stirling refrigerating machine using the refrigerating cycle described above and provided with an opposed compression section is disclosed in, for example, Japanese Patent Application Laid-Open No. 1-200158. This is
As schematically shown in Fig. 1, a first piston 1a that horizontally reciprocates: a second piston 1b that is arranged horizontally opposite to the first piston and that reciprocates in an opposite phase to the first piston: acts on the first piston. First crank portion 13a that is electrically connected
It is provided with a crankshaft 14 having a second crank portion 13b having a phase opposite to that of the above, and has a crank mechanism for driving both pistons, and is intended to reduce vibration of the compression portion.

【0004】[0004]

【発明が解決しようとする課題】宇宙ステーションで利
用される汎用スターリング冷凍機にはその実験対象にあ
わせ冷凍能力の制御ができるような機構が要求される
が、従来装置では、圧縮部のピストンがクランクシャフ
トに固定されておりスターリング冷凍機の冷凍能力を変
化させるための圧縮空間の圧力および排気容積を調整で
きないという問題があった。
A general-purpose Stirling refrigerator used in a space station is required to have a mechanism capable of controlling the refrigerating capacity according to the object of the experiment. There is a problem in that the pressure of the compression space and the exhaust volume for changing the refrigerating capacity of the Stirling refrigerator, which is fixed to the crankshaft, cannot be adjusted.

【0005】本発明の目的は、圧縮部の両ピストンの振
幅の制限および振幅中心位置の制限を削除することで排
気容積が変化でき、冷凍能力の幅広い適用が可能な対向
圧縮部を備える冷凍機を提供することにある。すなわ
ち、圧縮空間の圧力および排気容積を調整することによ
り冷凍能力を制御する対向型圧縮部を備える冷凍機を提
供することにある。
It is an object of the present invention to eliminate the restriction of the amplitude of both pistons of the compression section and the restriction of the center position of the amplitude so that the exhaust volume can be changed and the refrigerator having an opposed compression section which can be applied to a wide range of refrigerating capacity. To provide. That is, it is an object of the present invention to provide a refrigerator provided with an opposed compression unit that controls the refrigerating capacity by adjusting the pressure and exhaust volume of the compression space.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明は対向的に配置する第一ピストンと第二ピス
トンそれぞれのピストンシャフトを磁気軸受とリニアモ
ータにより、磁気的に浮上,駆動させ、ピストンをリニ
アモータで駆動することで、ピストンと本体を完全非接
触とし、対向型圧縮部内の両ピストンの振幅中心位置お
よび振幅を調整できるよう両ピストンの変位検出手段と
リニア往復動電動機の電気入力成分を制御する手段を備
えたものである。
In order to achieve the above object, the present invention magnetically levitates and drives the piston shafts of a first piston and a second piston, which are opposed to each other, by a magnetic bearing and a linear motor. , By driving the piston with a linear motor, the piston and the main body are made completely non-contact, and the displacement center of both pistons in the opposed compression unit and the amplitude of the linear reciprocating motor can be adjusted so that the amplitude can be adjusted. It is provided with means for controlling the input component.

【0007】[0007]

【作用】本発明によれば、第一ピストンと第二ピストン
を磁気軸受により磁気的に浮上させ且つリニア往復動電
動機で駆動されるため、圧縮部の両ピストンの振幅の制
限および振幅中心位置の制限を削除できる。さらに、両
ピストンの振幅中心位置および振幅を両ピストンの変位
検出手段で検出し、その検出値にリンクしてリニア往復
動電動機の電気入力成分を調整することにより、冷凍機
の冷凍能力を制御することが可能となるので上記の目的
が達成される。
According to the present invention, since the first piston and the second piston are magnetically levitated by the magnetic bearings and driven by the linear reciprocating motor, the amplitude limitation and the amplitude center position of both pistons in the compression section are suppressed. You can remove the restrictions. Furthermore, the refrigerating capacity of the refrigerator is controlled by detecting the amplitude center position and amplitude of both pistons by means of displacement detection means of both pistons and linking to the detected value to adjust the electric input component of the linear reciprocating motor. It is possible to achieve the above object.

【0008】[0008]

【実施例】以下に、本発明の実施例を図面により説明す
る。図1に示すように本実施例では、冷凍機を構成する
第一圧縮部がシリンダ7a内部中央に設置した第一ピス
トン1a、そのピストンを支持するための第一ピストン
のシャフト2a,ピストンのシャフト2aを磁気的に浮
上させるためにステータとコイルを組合せた磁気軸受4
a,ピストンのシャフト2aと同軸上でシリンダ7a端
部に設置する軸方向変位検出手段5a,ピストンのシャ
フト2aの中央に取付られた永久磁石6a,永久磁石を
往復動させるためにシリンダ7aに取付られたリニアモ
ータコイル3aより構成される。そして、第一圧縮部を
継手フランジ12を介し、第一圧縮部と同一構成の第二
圧縮部が対向的に設置され、継手フランジ12の流路で
第一と第二圧縮部の作動媒体が流通可能になっている。
また、継手フランジ12の流路と連通して装着されてい
る連絡管を介して蓄冷器を装着したディスプレーサ部8
が接続されている。そして、両リニアモータコイル3
a,3bに電流を供給するリニアモータ電源9がある。
又、両変位測定手段5a,5bの信号をもとにリニアモ
ータ電源9を制御する制御部10を有している。両磁気
軸受4a,4bに電流を供給する磁気軸受電源11があ
る。本実施例は、上記記載のように構成されているスタ
ーリング冷凍機である。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, in the present embodiment, a first piston 1a in which a first compression part constituting a refrigerator is installed in the center of the inside of a cylinder 7a, a shaft 2a of the first piston for supporting the piston, and a shaft of the piston. Magnetic bearing 4 combining stator and coil to magnetically levitate 2a
a, an axial displacement detecting means 5a installed coaxially with the shaft 2a of the piston at the end of the cylinder 7a, a permanent magnet 6a mounted at the center of the shaft 2a of the piston, and a cylinder 7a for reciprocating the permanent magnet. The linear motor coil 3a. Then, the second compression section having the same structure as the first compression section is installed opposite to the first compression section via the joint flange 12, and the working medium of the first and second compression sections is provided in the flow path of the joint flange 12. It is available for distribution.
In addition, the displacer portion 8 equipped with the regenerator via a connecting pipe that is mounted in communication with the flow path of the joint flange 12
Are connected. And both linear motor coils 3
There is a linear motor power supply 9 that supplies current to a and 3b.
Further, it has a control unit 10 for controlling the linear motor power supply 9 based on the signals of both displacement measuring means 5a, 5b. There is a magnetic bearing power supply 11 that supplies current to both magnetic bearings 4a, 4b. The present embodiment is a Stirling refrigerator configured as described above.

【0009】次に、本実施例の構成による動作を以下に
説明する。磁気軸受電源11の電源を入れることによ
り、両ピストンシャフト1a,1bは、磁気浮上し、完
全非接触状態となる。そこで、リニアモータコイル3
a,3bにリニアモータ電源より交流電流を流すことで
両ピストン1a,1bを往復動させ、作動媒体の断熱膨
張を行うための膨張空間を持つディスプレーサ部8に必
要な圧力および排気容積を提供する。
The operation of the configuration of this embodiment will be described below. When the magnetic bearing power supply 11 is turned on, both piston shafts 1a and 1b are magnetically levitated and are in a completely non-contact state. Therefore, the linear motor coil 3
By supplying an alternating current from a linear motor power source to a and 3b, both pistons 1a and 1b are reciprocated, and a necessary pressure and exhaust volume are provided to a displacer portion 8 having an expansion space for adiabatic expansion of the working medium. .

【0010】次に、本装置を用い冷凍サイクルの冷凍能
力を調整する場合について、図2に示す制御フローチャ
ートに従い説明する。まず、操作者が負荷に見合った冷
凍能力を制御部に命令15、制御部で、必要な冷凍能力
を得るための圧力および排気容積を演算器16で演算
し、その演算結果を基に目標振幅および目標振幅中心位
置を演算器17で演算し、変位測定手段より出力される
現在の振幅と目標振幅との偏差d1を演算器18で演算
し、比較器20のd1が0となるまでリニアモータ電源
の直流成分を調整するよう制御する(ステップ22)。
また、制御部では、振幅中心位置と目標値との偏差d2
も演算器19で演算し、比較器21のd2が0となるま
でリニアモータ電源の交流成分を調整するよう制御する
(ステップ23)。また、変位検出手段は、常に両ピス
トンの変位を検出し、制御部に信号を出力する(ステッ
プ24)。
Next, the case of adjusting the refrigerating capacity of the refrigerating cycle using this apparatus will be described with reference to the control flow chart shown in FIG. First, the operator gives the control unit a refrigerating capacity corresponding to the load 15, and the control unit calculates the pressure and the exhaust volume for obtaining the necessary refrigerating capacity by the calculator 16, and based on the calculation result, the target amplitude is calculated. And the target amplitude center position is calculated by the calculator 17, the deviation d1 between the current amplitude output from the displacement measuring means and the target amplitude is calculated by the calculator 18, and the linear motor is operated until d1 of the comparator 20 becomes zero. Control is performed to adjust the DC component of the power supply (step 22).
Further, in the control unit, the deviation d2 between the amplitude center position and the target value is
Is also calculated by the calculator 19, and control is performed to adjust the AC component of the linear motor power supply until d2 of the comparator 21 becomes 0 (step 23). Further, the displacement detection means always detects the displacement of both pistons and outputs a signal to the control unit (step 24).

【0011】本実施例によれば、両ピストンを磁気浮上
させることにより、振幅の制限および振幅中心位置の制
限を削除している。更に、本装置では、それぞれのピス
トンを同位相で往復動させるために取付けられたリニア
モータコイルへの入力成分を調整することによって、振
幅および振幅中心位置を自由に制御できる。これは、圧
縮部の圧力および排気容積を調整することであり、冷凍
サイクルにおける冷凍能力を制御することを可能とし
た。
According to the present embodiment, both pistons are magnetically levitated, thereby eliminating the amplitude limitation and the amplitude center position limitation. Further, in the present apparatus, the amplitude and the center position of the amplitude can be freely controlled by adjusting the input components to the linear motor coils mounted to reciprocate the respective pistons in the same phase. This is to adjust the pressure of the compressor and the exhaust volume, and it was possible to control the refrigerating capacity in the refrigerating cycle.

【0012】[0012]

【発明の効果】本発明によれば、対向的に配置する第一
ピストンと第二ピストンを磁気軸受により磁気的に浮上
させ且つリニア往復動電動機で駆動されるため、圧縮部
の両ピストンの振幅の制限および振幅中心位置の制限を
削除できる。さらに、両ピストンの振幅中心位置および
振幅を両ピストンの変位検出手段で検出し、その検出値
にリンクしてリニア往復動電動機の電気入力成分を調整
することにより、冷凍機の冷凍能力を制御することが可
能となる。
According to the present invention, since the first piston and the second piston, which are arranged opposite to each other, are magnetically levitated by the magnetic bearing and are driven by the linear reciprocating electric motor, the amplitude of both pistons in the compression section is increased. The limit of and the limit of the amplitude center position can be deleted. Furthermore, the refrigerating capacity of the refrigerator is controlled by detecting the amplitude center position and amplitude of both pistons by means of displacement detection means of both pistons and linking to the detected value to adjust the electric input component of the linear reciprocating motor. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍機の実施例を示す説明図。FIG. 1 is an explanatory view showing an embodiment of a refrigerator of the present invention.

【図2】同実施例の制御フローチャート。FIG. 2 is a control flowchart of the embodiment.

【図3】スターリング冷凍サイクルの説明図。FIG. 3 is an explanatory diagram of a Stirling refrigeration cycle.

【図4】その熱力学的サイクルの説明図。FIG. 4 is an explanatory view of the thermodynamic cycle.

【図5】従来の対向型圧縮部のブロック図。FIG. 5 is a block diagram of a conventional opposed compression unit.

【符号の説明】[Explanation of symbols]

1a…第一ピストン、1b…第二ピストン、2a…第一
ピストンシャフト、2b…第二ピストンシャフト、3
a,3b…リニアモータコイル、4a,4b…磁気軸
受、5a,5b…変位測定手段、6a,6b…可動永久
磁石、7a,7b…シリンダ、8…ディスプレーサ、9
…リニアモータ電源、10…制御部、11…磁気軸受電
源、12…継手フランジ。
1a ... 1st piston, 1b ... 2nd piston, 2a ... 1st piston shaft, 2b ... 2nd piston shaft, 3
a, 3b ... Linear motor coil, 4a, 4b ... Magnetic bearing, 5a, 5b ... Displacement measuring means, 6a, 6b ... Movable permanent magnet, 7a, 7b ... Cylinder, 8 ... Displacer, 9
... linear motor power supply, 10 ... control unit, 11 ... magnetic bearing power supply, 12 ... joint flange.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】対向的に配置された第一ピストンと第二ピ
ストンをリニア往復動電動機により同期駆動させる圧縮
部,両ピストンと位相差を持ち往復動するディスプレー
サ,作動媒体を予冷するための蓄冷器より構成される冷
凍機において、第一ピストンと第二ピストンをリニア往
復動電動機で駆動し、両ピストンの変位検出手段で検出
した検出値にリンクして、リニア往復動電動機の電気入
力成分を調整することにより、両ピストンの振幅中心及
び振幅を調整できるようにしたことを特徴とする冷凍
機。
1. A compression unit for synchronously driving a first piston and a second piston, which are arranged opposite to each other, by a linear reciprocating electric motor, a displacer reciprocating with a phase difference between both pistons, and a cold storage for precooling a working medium. In a refrigerator composed of a reactor, the first piston and the second piston are driven by a linear reciprocating electric motor, and the electric input components of the linear reciprocating electric motor are linked by linking the detected values detected by the displacement detecting means of both pistons. A refrigerator characterized in that the center of amplitude and the amplitude of both pistons can be adjusted by adjusting.
JP14886393A 1993-06-21 1993-06-21 Refrigerating device Pending JPH074763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14886393A JPH074763A (en) 1993-06-21 1993-06-21 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14886393A JPH074763A (en) 1993-06-21 1993-06-21 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH074763A true JPH074763A (en) 1995-01-10

Family

ID=15462425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14886393A Pending JPH074763A (en) 1993-06-21 1993-06-21 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH074763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161863A (en) * 2000-11-30 2002-06-07 Matsushita Electric Ind Co Ltd Piston collision prevention control method for linear compressor
US6868686B2 (en) 2002-04-04 2005-03-22 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
JP2015004275A (en) * 2013-06-19 2015-01-08 株式会社前川製作所 Superconduction non-contact compression equipment
JP2016093019A (en) * 2014-11-07 2016-05-23 株式会社日立製作所 Linear motor, compressor including the same, and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161863A (en) * 2000-11-30 2002-06-07 Matsushita Electric Ind Co Ltd Piston collision prevention control method for linear compressor
US6868686B2 (en) 2002-04-04 2005-03-22 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
JP2015004275A (en) * 2013-06-19 2015-01-08 株式会社前川製作所 Superconduction non-contact compression equipment
JP2016093019A (en) * 2014-11-07 2016-05-23 株式会社日立製作所 Linear motor, compressor including the same, and apparatus
US10371144B2 (en) 2014-11-07 2019-08-06 Hitachi, Ltd. Linear motor, compressor equipped with linear motor and equipment equipped with linear motor

Similar Documents

Publication Publication Date Title
CA1178073A (en) Stirling cycle cryogenic cooler
US6094912A (en) Apparatus and method for adaptively controlling moving members within a closed cycle thermal regenerative machine
KR100504319B1 (en) Linear compressor
EP0043249A2 (en) Improvements in or relating to Stirling cycle machines
WO2002053991A1 (en) Stirling refrigerator and method of controlling operation of the refrigerator
JP2550492B2 (en) Gas compressor
JPH0721361B2 (en) refrigerator
Park et al. The effect of operating parameters in the Stirling cryocooler
JPH074763A (en) Refrigerating device
EP0335643B1 (en) Gas refrigerator
JP2007298219A (en) Stirling refrigerating machine
Park et al. An experimental study on the phase shift between piston and displacer in the Stirling cryocooler
GB2078863A (en) Improvements in or relating to stirling cycle machines
Gaunekar et al. Dynamic and thermodynamic analysis of doubly motorized miniature Stirling cryocooler using double coil linear motors
JPH11132585A (en) Oscillatory compressor
JP2559839B2 (en) Free piston type Stirling refrigerator
JPH06207757A (en) Stirling cycle freezer
JPS61153348A (en) Free piston type starling refrigerator
JP2661483B2 (en) Stirling refrigerator vibration control device
JP2978005B2 (en) Stirling refrigerator
JPH116660A (en) Reciprocating movement-type refrigerator
JPH03253778A (en) Vibration isolating device for reciprocating compressor of refrigerator
JPH01114673A (en) Cooling machine
KR20230161000A (en) Multi-stage stirling chillers using multiple independent displacers
KR101503753B1 (en) Apparatus and system for controlling cpu cooling