JPH0424404A - Pulverized-coal burner - Google Patents

Pulverized-coal burner

Info

Publication number
JPH0424404A
JPH0424404A JP12916090A JP12916090A JPH0424404A JP H0424404 A JPH0424404 A JP H0424404A JP 12916090 A JP12916090 A JP 12916090A JP 12916090 A JP12916090 A JP 12916090A JP H0424404 A JPH0424404 A JP H0424404A
Authority
JP
Japan
Prior art keywords
pulverized coal
flow path
pulverized
concentration
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12916090A
Other languages
Japanese (ja)
Other versions
JP2954659B2 (en
Inventor
Kunio Okiura
沖浦 邦夫
Akira Baba
彰 馬場
Noriyuki Oyatsu
紀之 大谷津
Hiroyuki Kako
宏行 加来
Shigeki Morita
茂樹 森田
Yoshinobu Kobayashi
啓信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12916090A priority Critical patent/JP2954659B2/en
Publication of JPH0424404A publication Critical patent/JPH0424404A/en
Application granted granted Critical
Publication of JP2954659B2 publication Critical patent/JP2954659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the consumption of auxiliary fuel and improve the igniting stability of a pulverized-coal burner to allow performing high frequent start-and-stop operation (DSS) at a low load by a method wherein during start-up of a mill and low load operation, a flow path is changed so as to close a pulverized coal nozzle, so that a high concentration pulverized coal flow is formed inside inlet and outlet ducts, and the igniting stability is maintained by a low load operation flame stabilizer, and also. CONSTITUTION:During high load operation, a high-concentration pulverized-coal flow path 23 is located outside an inlet duct 18 and an outlet duct 19, and a low-concentration pulverized coal flow path 24 is located inside the inlet and outlet ducts 18 and 19. Therefore, the pulverized coal in a pulverized-coal flow path 25 flows along the high-concentration pulverized-coal flow path 23 at a high concentration, and along the low-concentration pulverized coal flow path 24 at a low concentration, so that a stable combustion is maintained by a high-load operation flame stabilizer 15. On the other hand, during very low load operation, a nozzle 21 is moved toward a boiler furnace 4 side until the nozzle 21 comes in contact with the inlet duct 18, so that the high-concentration pulverized-coal flow path 23 is located inside the inlet and outlet ducts 18 and 19 and the low-concentration pulverized coal flow flow path 24 is located outside the inlet and outlet ducts 18 and 19. As a result, the pulverized coal in the pulverized-coal flow path 25 flows along the high-concentration pulverized-coal flow path 23 at a high concentration, and along the low-concentration pulverized coal flow flow path 24 at a low concentration, so that a stable combustion is maintained by a low load operation flame stabilizer 20, allowing DSS operation.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は微粉炭の燃焼装置に係り、特にミルと微粉炭バ
ーナを直接連結して運転する燃焼システムにおける負荷
変化の運用幅を拡大するのに好適な微粉炭バーナに関す
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a pulverized coal combustion device, and particularly to a combustion system in which a mill and a pulverized coal burner are directly connected and operated to expand the operating range of load changes. The present invention relates to a pulverized coal burner suitable for.

[従来の技術] 近年、我が国においては重油供給量のひっ迫から、石油
依存度の是正を計るために、従来の重油専焼から石炭専
焼へと燃料を変換しつつあり、特に事業用火力発電ボイ
ラにおいては、石炭専焼の大容量火力発電所が建設され
ている。
[Conventional technology] In recent years, in Japan, due to the tight supply of heavy oil, in order to correct the dependence on oil, there has been a shift from traditional heavy oil-burning to coal-burning, especially in commercial thermal power generation boilers. A large-capacity coal-fired thermal power plant is being constructed.

一方、最近の電力需要の特徴として、原子力発電の伸び
と共に、負荷の最大、最小差も増加し、火力発電用ボイ
ラをベースロード用から負荷調整用へと移行する傾向に
あり、この火力発電用ボイラを負荷に応じて圧力を変化
させて変圧運転する。
On the other hand, as a feature of recent electricity demand, with the growth of nuclear power generation, the difference between the maximum and minimum loads has also increased, and there is a tendency to shift boilers for thermal power generation from base load use to load adjustment use. The boiler is operated under variable pressure by changing the pressure according to the load.

いわゆる全負荷運転では超臨界圧域、部分負荷運転では
亜臨界圧域で運転する変圧運転ボイラとすることによっ
て、部分負荷運転での発電効率を数%向上させることが
できる。
By using a variable pressure boiler that operates in a supercritical pressure region during so-called full load operation and in a subcritical pressure region during partial load operation, the power generation efficiency during partial load operation can be improved by several percent.

このためにこの石炭専焼火力においては、ボイラ負荷が
常に全負荷で運転されるものは少なく、負荷を昼間は7
5%負荷、50%負荷、25%負荷、15%負荷へと負
荷を上げ、下げして運転したり、あるいは夜間は運転を
停止するなど、いわゆる高頻度起動停止(Daily 
5tart 5top以下単にDDSという)運転を行
なって中間負荷を担う石炭専焼火力へと移行しつつある
For this reason, in these coal-fired thermal power plants, there are few cases in which the boiler load is always operated at full load, and the load is reduced to 75% during the day.
Frequent startup and shutdown operations include increasing and decreasing the load to 5% load, 50% load, 25% load, 15% load, or stopping operation at night.
There is a transition to coal-fired thermal power that handles intermediate loads through 5 tart and 5 top (simply referred to as DDS) operations.

またDDS運転を行なう石炭専焼ボイラにおいては、起
動時から全負荷に至るまで微粉炭のみで全負荷帯を運転
するものは少なく、石炭専焼ボイラといえども起動時、
低負荷時には微粉炭以外の軽油2重油、ガス等を補助燃
料として用いている。
Furthermore, among coal-fired boilers that perform DDS operation, there are few that operate the entire load range from startup to full load using only pulverized coal;
At low loads, light oil, double fuel oil, gas, etc. other than pulverized coal are used as auxiliary fuel.

それは起動時においては石炭専焼ボイラからミルウオー
ミング用の排ガス、加熱空気が得られず、このためにミ
ルを運転することができないので石炭を微粉炭に粉砕す
ることができないからである。
This is because, at startup, exhaust gas and heated air for mill warming cannot be obtained from the coal-fired boiler, and therefore the mill cannot be operated and the coal cannot be pulverized into pulverized coal.

また、低負荷時にはミルのターンダウン比がとれないこ
と、微粉炭自体の着火性が悪いことなどの理由によって
軽油1重油、ガス等が用いられている。
Furthermore, light oil, single heavy fuel oil, gas, etc. are used because the turndown ratio of the mill cannot be maintained at low loads, and the ignitability of pulverized coal itself is poor.

例えば起動時に補助燃料として軽油2重油を用いる場合
には、起動時から15%負荷までは軽油を補助燃料とし
てボイラを焚き上げ、15%負荷から40%負荷までは
軽油から重油へ補助燃料を変更して焚き上げ、40%負
荷以上になると補助燃料の重油と主燃料の微粉炭を混焼
して順次補助燃料の重油量を少なくするとともに主燃料
の微粉炭量を多くして微粉炭の混焼比率を上げて実質的
な石炭専焼へと移行する。
For example, when using light oil and double fuel oil as auxiliary fuel at start-up, the boiler is heated up using light oil as auxiliary fuel from the time of startup until 15% load, and from 15% load to 40% load the auxiliary fuel is changed from light oil to heavy oil. When the load reaches 40% or more, the auxiliary fuel heavy oil and the main fuel pulverized coal are co-fired, and the amount of auxiliary fuel heavy oil is gradually reduced, while the main fuel pulverized coal amount is increased to increase the pulverized coal co-firing ratio. As a result, there will be a transition to virtually exclusive coal combustion.

以下、第10図および第11図を用いて微粉炭焚ボイラ
の起動時における概要について説明する。
Hereinafter, an overview of the startup of the pulverized coal-fired boiler will be explained using FIG. 10 and FIG. 11.

第10図及び第11図は微粉炭焚ボイラの概略系統図お
よび従来の微粉炭バーナの拡大断面図である。
FIGS. 10 and 11 are a schematic system diagram of a pulverized coal-fired boiler and an enlarged sectional view of a conventional pulverized coal burner.

第10図に示す微粉炭焚ボイラ1をコールドスタートす
る際は、まず第11図に示す微粉炭バーナ7の軽油点火
バーナ2により、ボイラ負荷の15%まで焚き上げる。
When cold-starting the pulverized coal-fired boiler 1 shown in FIG. 10, first, the light oil ignition burner 2 of the pulverized coal burner 7 shown in FIG. 11 is used to heat up to 15% of the boiler load.

その後に重油起動用バーナ3を点火する。そして、重油
起動用バーナ3のみで、ボイラ負荷の25〜35%まで
焚き上げる。その後にボイラ火炉4の火炉内温度が十分
に上った時点で、第10図に示すミル5から第11図に
示す微粉炭供給管6.微粉炭バーナ7へ微粉炭燃料を供
給して微粉炭ノズル8からボイラ火炉4内へ送り、微粉
炭専焼へと切り換える。
After that, the heavy oil starting burner 3 is ignited. Then, only the heavy oil starting burner 3 is used to heat up to 25 to 35% of the boiler load. Thereafter, when the temperature inside the boiler furnace 4 has risen sufficiently, the pulverized coal supply pipe 6 shown in FIG. 11 is connected to the mill 5 shown in FIG. Pulverized coal fuel is supplied to the pulverized coal burner 7, sent through the pulverized coal nozzle 8 into the boiler furnace 4, and switched to pulverized coal exclusive combustion.

微粉炭の搬送用媒体は、第10図に示すエアヒータ9に
よって、ボイラ排ガスと熱交換された後ミル5に送られ
、コールバンカ10から供給される塊炭に付着した水分
の除去と、ミル5に内蔵した図示していない分級器の分
級エアとして、さらには、ミル5で粉砕された微粉炭を
微粉炭バーナ7まで搬送するための搬送用空気として使
用される。
The medium for transporting the pulverized coal undergoes heat exchange with the boiler exhaust gas by the air heater 9 shown in FIG. It is used as classification air for a built-in classifier (not shown), and also as transport air for transporting the pulverized coal pulverized in the mill 5 to the pulverized coal burner 7.

第11図には従来技術の微粉炭バーナ7を示しているが
この微粉炭バーナ7には、軽油点火バーナ2と重油起動
用バーナ3が取り付けられており、微粉炭バーナ7を構
成している。風箱11内の燃焼用空気は、二次エアレジ
スタ12と三次エアレジスタ13により、旋回が加えら
れた後、ボイラ火炉4内に投入される。一方、微粉炭は
微粉炭供給管6を通り微粉炭バーナ7の微粉炭ノズル8
へ送られるが、その間にベンチュリー14を通過するの
みで、はぼ自由噴流に近い状態でボイラ火炉4内に吹き
込まれる。この微粉炭バーナ7には高負荷用保炎器15
が設けられ、燃焼用空気の旋回によって、逆流域が生じ
、火炎の伝播速度以下の流速域で、火炎が保持されるの
みであった。したがって微粉炭粒子の拡散は良いが、一
方では火炎が不安定になり、微粉炭バーナ7の空気側の
操作条件に極めて左右されやすい。なお、第10図の符
号16は重油タンク、17は軽油タンクである。
FIG. 11 shows a conventional pulverized coal burner 7, which is equipped with a light oil ignition burner 2 and a heavy oil starting burner 3, which constitute the pulverized coal burner 7. . Combustion air in the wind box 11 is swirled by a secondary air register 12 and a tertiary air register 13, and then is introduced into the boiler furnace 4. On the other hand, the pulverized coal passes through the pulverized coal supply pipe 6 to the pulverized coal nozzle 8 of the pulverized coal burner 7.
However, during that time, it only passes through the venturi 14 and is blown into the boiler furnace 4 in a state close to a free jet. This pulverized coal burner 7 has a flame stabilizer 15 for high load.
was provided, and the swirling of the combustion air created a backflow region, and the flame was only maintained in the flow velocity region below the flame propagation velocity. Therefore, the diffusion of the pulverized coal particles is good, but on the other hand, the flame becomes unstable and is highly dependent on the operating conditions on the air side of the pulverized coal burner 7. In addition, the reference numeral 16 in FIG. 10 is a heavy oil tank, and the reference numeral 17 is a light oil tank.

一方、ミル5(微粉炭バーナ7)の負荷が低い領域でミ
ル5から供給される微粉炭−空気流中の微粉炭濃度(C
/A)が低くなるため着火安定性が悪くなる。
On the other hand, the pulverized coal concentration (C
/A) becomes low, resulting in poor ignition stability.

第12図は横軸にバーナ負荷、縦軸にバーナ(ミル)負
荷に対するミル5から微粉炭バーナ7に供給される微粉
炭(C)と空気(A)の重量比(以下C/Aと称す)を
示す特性曲線図である。
Figure 12 shows the weight ratio (hereinafter referred to as C/A) of pulverized coal (C) and air (A) supplied from the mill 5 to the pulverized coal burner 7 (hereinafter referred to as C/A) with respect to the burner load on the horizontal axis and the burner (mill) load on the vertical axis. ) is a characteristic curve diagram showing.

この第12図から、バーナ(ミル)負荷の低下に伴って
C/Aが低くなることが分かるが、これは、微粉炭の搬
送、分級のために止むを得ないミル特有の現象である。
From FIG. 12, it can be seen that C/A decreases as the burner (mill) load decreases, but this is a phenomenon unique to mills that is unavoidable due to the transportation and classification of pulverized coal.

バーナ負荷15%時におけるC/Aは第12図に示すよ
うに0.08となり、微粉炭は極めて希薄となり、また
、その時の1次空気量が燃焼に及ぼす空気比としては、
炭種により異なるが、いずれの場合でも1を越える。従
って、この負荷においては1次空気のみで空気過剰とな
るために、2゜3次空気は不要となるが、実際には、フ
ァンの特性上また、微粉炭バーナ7の焼損防止対策とし
て2次、3次空気をかなり供給するために、微粉炭バー
ナ近傍における空気比はかなり高い値となり、微粉炭粒
子は、さらに希釈されるために火炎は不安定になる。
The C/A at 15% burner load is 0.08 as shown in Figure 12, and the pulverized coal is extremely lean, and the air ratio that the primary air amount affects combustion at that time is:
It varies depending on the type of coal, but exceeds 1 in all cases. Therefore, under this load, only the primary air will cause excess air, and 2° tertiary air will not be necessary. However, due to the characteristics of the fan, and as a measure to prevent burnout of the pulverized coal burner 7, secondary air is required. In order to supply a considerable amount of tertiary air, the air ratio in the vicinity of the pulverized coal burner becomes quite high, and the pulverized coal particles are further diluted, making the flame unstable.

[発明が解決しようとする課題] このように補助燃料を用いる微粉炭バーナでは、頻繁な
起動停止運転毎に補助燃料の使用量が増加し、直接ミル
から微粉炭バーナへ微粉炭−空気流を供給する燃焼シス
テムではミル(バーナ)負荷が低い場合、微粉炭バーナ
の着火性が悪くなるために未燃分が増加する欠点がある
[Problems to be Solved by the Invention] As described above, in a pulverized coal burner that uses auxiliary fuel, the amount of auxiliary fuel used increases each time the operation is started and stopped frequently, and the pulverized coal-air flow is directly transferred from the mill to the pulverized coal burner. In the combustion system that supplies pulverized coal, when the mill (burner) load is low, the ignitability of the pulverized coal burner deteriorates, resulting in an increase in unburned content.

本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、補助燃料を削減し、しかも微
粉炭バーナの着火安定性を向上させることにより、DS
S運転での低負荷運転を行なうことができる微粉炭バー
ナを提供するにある。
The present invention aims to eliminate such conventional drawbacks,
The purpose is to reduce auxiliary fuel and improve the ignition stability of the pulverized coal burner.
To provide a pulverized coal burner capable of performing low-load operation in S operation.

[課題を解決するための手段] 本発明は前述の目的を達成するために、微粉炭ノズル内
に微粉炭濃度を変える入口ダクトと出口ダクトと、出口
ダクトの先端に低負荷用保炎器を設け、かつ、入口ダク
トの上流に微粉炭流路を変えるノズルを設けたのである
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention includes an inlet duct and an outlet duct for changing the pulverized coal concentration in a pulverized coal nozzle, and a low-load flame stabilizer at the tip of the outlet duct. In addition, a nozzle was installed upstream of the inlet duct to change the pulverized coal flow path.

[作用] 微粉炭バーナのバーナ負荷が低い時(ミルの起動時及び
低負荷時)には、微粉炭ノズル内の微粉炭流路を変える
ノズルを閉じる方向へ移動させて、入口ダクトと出口ダ
クトの内側に濃厚微粉炭流を形成させ、低負荷用保炎器
で着火安定性を確保する。
[Operation] When the burner load of the pulverized coal burner is low (when the mill starts up and when the load is low), the nozzle that changes the pulverized coal flow path in the pulverized coal nozzle is moved in the direction of closing, and the inlet duct and outlet duct are A dense pulverized coal flow is formed inside the cylinder, and a low-load flame stabilizer ensures ignition stability.

一方、微粉炭バーナのバーナ負荷が高い時には、微粉炭
ノズル内の微粉炭流路を変えるノズルを開く方向へ移動
させて、入口ダクトと出口ダクトの外側に濃厚微粉炭流
を形成させ、高負荷用保炎器で着火安定性を確保する。
On the other hand, when the burner load of the pulverized coal burner is high, the nozzle that changes the pulverized coal flow path in the pulverized coal nozzle is moved in the direction of opening to form a dense pulverized coal flow outside the inlet and outlet ducts, resulting in a high load. Ensure ignition stability with a flame holder.

[実施例コ 以下、本発明の実施例を図面を用いて説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本発明の実施例に係る微粉炭バー
ナの断面図、第3図、第4図および第5図は微粉炭ノズ
ルの上半分を示した拡大断面図で、第3図は高負荷時、
第4図は低負荷時、第5図は極低負荷時を示す。
1 and 2 are cross-sectional views of a pulverized coal burner according to an embodiment of the present invention, and FIGS. 3, 4, and 5 are enlarged sectional views showing the upper half of a pulverized coal nozzle. The figure shows at high load.
Fig. 4 shows the case at low load, and Fig. 5 shows the case at extremely low load.

第5図は横軸に1次空気の分配率、縦軸に微粉炭濃縮率
を示した特性曲線図、第6図は横軸にバーナ負荷、縦軸
にC/Aを示した特性曲線図、第7図及び第8図は他の
実施例を示す微粉炭バーナの断面図である。
Figure 5 is a characteristic curve diagram in which the horizontal axis shows primary air distribution ratio and the vertical axis shows pulverized coal concentration ratio. Figure 6 is a characteristic curve diagram in which the horizontal axis shows burner load and the vertical axis shows C/A. , FIG. 7, and FIG. 8 are sectional views of a pulverized coal burner showing other embodiments.

第1図から第8図において、符号3から符号15までは
従来のものと同一のものを示す。
In FIGS. 1 to 8, numerals 3 to 15 indicate the same parts as the conventional ones.

18.19は微粉炭ノズル8内に配置され微粉炭濃度を
変える入口ダクトと出口ダクト、20は出口ダクト19
の先端に設けた低負荷用保炎器、21は微粉炭ノズル8
にそって移動するノズル、22は粒子パイロット、23
.24は濃厚微粉炭流路、希薄微粉炭流路、25は微粉
炭流路である。
18.19 is an inlet duct and an outlet duct arranged in the pulverized coal nozzle 8 to change the pulverized coal concentration; 20 is an outlet duct 19;
21 is the pulverized coal nozzle 8.
22 is a particle pilot, 23
.. 24 is a rich pulverized coal flow path, a lean pulverized coal flow path, and 25 is a pulverized coal flow path.

第1図は高負荷時におけるノズル21の位置を示し、第
3図は極低負荷時におけるノズル21の位置を示してい
る。
FIG. 1 shows the position of the nozzle 21 when the load is high, and FIG. 3 shows the position of the nozzle 21 when the load is extremely low.

第1図において、微粉炭と搬送用1次空気は図示してい
ないミルから微粉炭供給管6によって第1図の矢印Aで
示すように微粉炭バーナ7の微粉炭ノズル8に供給され
、ノズル21、粒子パイロット22、入口ダクト18、
出口ダクト19を経てボイラ火炉4に入り、高負荷用保
炎器15によって安定に燃焼される。この微粉炭バーナ
7では、更に、燃焼用空気が風箱11内で2次エアレジ
スタ12.3次エアレジスタ13に分割され、好ましく
は旋回力を加えて供給される6ノズル21は、図示して
いないが、アクチュエータ、ベアリング付ローラ等によ
って微粉炭ノズル8内を摺動しバーナの要求性能を満足
するように制御される。
In FIG. 1, pulverized coal and primary air for conveyance are supplied from a mill (not shown) through a pulverized coal supply pipe 6 to a pulverized coal nozzle 8 of a pulverized coal burner 7 as shown by arrow A in FIG. 21, particle pilot 22, inlet duct 18,
It enters the boiler furnace 4 through the outlet duct 19 and is stably combusted by the high-load flame stabilizer 15. In this pulverized coal burner 7, the combustion air is further divided into a secondary air register 12 and a tertiary air register 13 in a wind box 11, and six nozzles 21, which are preferably supplied with swirling force, are not shown in the figure. However, the pulverized coal nozzle 8 is slid within the pulverized coal nozzle 8 by an actuator, a roller with a bearing, etc., and is controlled to satisfy the required performance of the burner.

この第1図に示す高負荷時には、微粉炭流路25の微粉
炭は入口ダクト18および出口ダクト19の外側に位置
する濃厚微粉炭流路23には濃厚微粉炭流が流れ、入口
ダクト18および出口ダクト19の内側に位置する希薄
微粉炭流路24には希薄微粉炭流が流れるので、高負荷
用保炎器15で安定燃焼する。
At the time of high load shown in FIG. 1, the pulverized coal in the pulverized coal flow path 25 flows into the rich pulverized coal flow path 23 located outside the inlet duct 18 and the outlet duct 19, and Since the lean pulverized coal flow flows through the lean pulverized coal flow path 24 located inside the outlet duct 19, stable combustion is achieved in the high-load flame stabilizer 15.

一方、第2図に示す極低負荷時にはノズル21がボイラ
火炉4側へ移動して入口ダクト18と接触するために微
粉炭流路25の微粉炭は入口ダクト18および出口ダク
ト19の内側に位置する濃厚微粉炭流路23には濃厚微
粉炭流が流れ、入口ダクト18および出口ダクト19の
外側に位置する希薄微粉炭流路24には希薄微粉炭流が
流れるので、低負荷用保炎器20で安定燃焼する。
On the other hand, at extremely low load as shown in FIG. A rich pulverized coal flow flows through the rich pulverized coal flow path 23, and a lean pulverized coal flow flows through the lean pulverized coal flow path 24 located outside the inlet duct 18 and the outlet duct 19. Stable combustion occurs at 20.

以下、第3図から第5図を用いて、高負荷時、低負荷時
、極低負荷時に分けて説明する。
Hereinafter, with reference to FIGS. 3 to 5, the explanation will be made separately for high load, low load, and extremely low load.

第3図の高負荷時においては、微粉炭ノズル8内の微粉
炭流路25に微粉炭流Aが供給され、先ず、上流にある
ノズル21と下流にある粒子パイロット22の部分を通
過する際、微粉炭が慣性力で図示のように片側に偏り(
比重が空気の約1000倍以上)、後流の入口ダクト1
8で仕切られた外側の濃厚微粉炭流路23を濃度の高い
濃厚微粉炭流ABが流れる。次に、入口ダクト18によ
って仕切られた下側の希薄微粉炭流路24へ流入した微
粉炭流は、慣性力によって大部分の微粉炭を出口ダクト
19による下側の希薄微粉炭流路24の希薄微粉炭流A
cに、また大部分の空気AAは抵抗の配分から入口ダク
ト18と出口ダクト19により形成させたスキマ状の流
路へ流れるように分離し、さらに空気AAはバイパス濃
厚微粉炭流路23の濃厚微粉炭流Al11と合流して濃
厚微粉炭流Acとなり、最終的にボイラ火炉4へ濃厚微
粉炭流Ac。
At the time of high load as shown in FIG. 3, the pulverized coal flow A is supplied to the pulverized coal flow path 25 in the pulverized coal nozzle 8, and first, when it passes through the nozzle 21 located upstream and the particle pilot 22 located downstream. , the pulverized coal is biased to one side due to inertia as shown in the figure (
(specific gravity is approximately 1000 times or more that of air), wake inlet duct 1
A dense pulverized coal flow AB with high concentration flows through the outer rich pulverized coal flow path 23 partitioned by 8. Next, the pulverized coal flow that has flowed into the lower lean pulverized coal flow path 24 partitioned by the inlet duct 18 transfers most of the pulverized coal to the lower lean pulverized coal flow path 24 through the outlet duct 19 due to inertial force. Lean pulverized coal flow A
c, most of the air AA is separated from the resistance distribution so as to flow into the gap-like flow path formed by the inlet duct 18 and the outlet duct 19, and furthermore, the air AA is separated from the dense pulverized coal flow path 23 in the bypass dense pulverized coal flow path 23. It merges with the pulverized coal flow Al11 to become a dense pulverized coal flow Ac, and finally the rich pulverized coal flow Ac flows into the boiler furnace 4.

希薄微粉炭流ARのように分割され供給される。It is divided and supplied as a lean pulverized coal stream AR.

ここで、この高負荷時のノズル21の配置では、上述の
ごとく粒子パイロット22の働きで入口ダクト18.出
口ダクト19に微粉炭流が供給されるとき、すでに希薄
微粉炭流路24へ多くの微粉炭を分離供給しているため
の入口ダクト18.出口ダクト19の機能にもかかわら
ず、濃厚微粉炭流AcのC/Aが希薄微粉炭流AユのC
/Aよりも高くなる。したがって高負荷用保炎器15に
よって高C/Aの微粉炭流が安定に燃焼される。この際
、ノズル21は、入口ダクト18.出口ダクト19の濃
厚微粉炭流A8の流量を調節する機能を持ち、火炎安定
性の良い通常負荷布では全開状態にすることにより、流
路抵抗を低減させ微粉炭バーナ7の差圧を低くすると同
時に、微粉炭の流速を出来るだけ低く保ち摩耗による損
傷を抑制する。
Here, in this arrangement of the nozzle 21 at the time of high load, the inlet duct 18. When the pulverized coal flow is supplied to the outlet duct 19, the inlet duct 18. already separates and supplies more pulverized coal to the lean pulverized coal channel 24. Despite the function of the outlet duct 19, the C/A of the rich pulverized coal flow Ac is the same as the C/A of the lean pulverized coal flow A.
/A will be higher. Therefore, the high C/A pulverized coal flow is stably combusted by the high load flame stabilizer 15. At this time, the nozzle 21 is connected to the inlet duct 18. It has a function of adjusting the flow rate of the dense pulverized coal flow A8 in the outlet duct 19, and is fully opened in a normal load cloth with good flame stability to reduce flow path resistance and lower the differential pressure of the pulverized coal burner 7. At the same time, the flow rate of pulverized coal is kept as low as possible to suppress damage caused by wear.

粒子パイロット22は、微粉炭の流れを高負荷時には濃
厚微粉炭流路23へ流し、微粉炭濃度が濃厚微粉炭流路
23で高くなるようにし、高負荷用保炎器ISによって
燃焼するようにする。入口ダクト18.出口ダクト19
は、高負荷領域では特に希薄微粉炭流路24のC/Aを
高くする必要が無いため濃厚微粉炭流路23の微粉炭濃
度を高くする方がバーナの運用上好ましい。
The particle pilot 22 causes the flow of pulverized coal to flow into the rich pulverized coal flow path 23 at high load, so that the pulverized coal concentration becomes high in the rich pulverized coal flow path 23, and is combusted by the high load flame stabilizer IS. do. Inlet duct 18. Outlet duct 19
In the high load region, it is not necessary to increase the C/A of the lean pulverized coal flow path 24, so it is preferable to increase the pulverized coal concentration of the rich pulverized coal flow path 23 in terms of burner operation.

第4図の低負荷時においては、第3図の高負荷時の場合
と同様に、微粉炭ノズル8に供給された微粉炭流Aが1
粒子パイロット22.ノズル21゜入口ダクト18.出
口ダクト19により、矢印All。
When the load is low in FIG. 4, the pulverized coal flow A supplied to the pulverized coal nozzle 8 is 1
Particle Pilot 22. Nozzle 21° Inlet duct 18. By the outlet duct 19, arrow All.

AR,ACで示すごとく微粉炭流を形成する。ここで、
高負荷時と異なるのはノズル21と粒子パイロット22
の相対位置で、ノズル21の方が粒子パイロット23よ
りボイラ火炉4側に設定される。
Pulverized coal flows are formed as shown by AR and AC. here,
The nozzle 21 and particle pilot 22 are different from when under high load.
With the relative position, the nozzle 21 is set closer to the boiler furnace 4 than the particle pilot 23.

このため、第4図に示すように入口ダクト18゜出口ダ
クト19の濃厚微粉炭流路23に濃度の高い微粉炭流A
cが供給され、さらに、入口ダクト18、出口ダクト1
9において形成される希薄微粉炭流路24と濃厚微粉炭
流路23へ微粉炭流A R。
For this reason, as shown in FIG.
c is supplied, and furthermore, an inlet duct 18, an outlet duct 1
The pulverized coal flows A to the lean pulverized coal flow path 24 and the rich pulverized coal flow path 23 formed at 9.

Acにおいても、慣性力により濃厚微粉炭流路23の濃
度が高くなり低負荷用保炎器20によって燃焼する。
Even in Ac, the concentration in the rich pulverized coal channel 23 increases due to inertial force, and the coal is combusted by the low-load flame stabilizer 20.

即ち、本実施例の特長とするところは、ノズル2]と粒
子パイロット22の組み合わせによって後流の入口ダク
ト18.出口ダクト19への2流路に供給する粒子濃度
を逆転させたところにある。
That is, the feature of this embodiment is that the combination of the nozzle 2] and the particle pilot 22 allows the downstream inlet duct 18. The particle concentrations feeding the two flow paths to the outlet duct 19 have been reversed.

第5図の極低負荷時においては、ノズル21を全開状態
にすることにより、六ロダク)−18、出口ダクト19
をバイパスする微粉炭流をなくし、全流量を入口ダクト
18.出口ダクト19の濃厚側微粉炭流路23に供給す
る。この操作により、入口ダクト18.出口ダクト19
は最大効率で機能し、高いC/Aの必要な低負荷用保炎
器20へ微粉炭流Acを要求される値に保持できる。
When the load is extremely low as shown in Fig. 5, by fully opening the nozzle 21, the outlet duct 19
Eliminate pulverized coal flow bypassing the inlet duct 18. The pulverized coal is supplied to the rich side pulverized coal flow path 23 of the outlet duct 19. With this operation, the inlet duct 18. Outlet duct 19
functions at maximum efficiency and can maintain the pulverized coal flow Ac at the required value to the low load flame stabilizer 20 which requires a high C/A.

以上のような機能について検討した結果、微粉炭濃度を
高めるための入口ダクト18.出口ダクト19の構造と
して、出口ダクト19の最も狭い流路断面積S、(第3
図中のACが流れる流路)、出口ダクト19のもう一方
の流路における最も狭い流路断面積S。(第3図中のA
Rが流れる流路)、微粉炭ノズル8の流路断面積Sとす
ると、(SO+S、)/Sを0.5〜0.9とし、S、
/ (S、+SO)を0.4以下とすると共に、流路仕
切り構造部材間に構成されるところの1流路とみなせる
部分の最小面積SR(第3図中のAAが流れる流路)が
S。よりも大きくなるような濃縮分離器構造とすればよ
いことを見出した。
As a result of considering the above functions, we decided to create an inlet duct 18. to increase the concentration of pulverized coal. As the structure of the outlet duct 19, the narrowest flow passage cross-sectional area S of the outlet duct 19, (the third
The narrowest cross-sectional area S in the other flow path of the outlet duct 19 (flow path where AC flows in the figure). (A in Figure 3
When R is a flow path) and the flow path cross-sectional area of the pulverized coal nozzle 8 is S, (SO+S,)/S is 0.5 to 0.9, S,
/ (S, +SO) shall be 0.4 or less, and the minimum area SR of the portion that can be considered as one flow path constructed between the flow path partition structural members (the flow path indicated by AA in Figure 3) shall be S. It was discovered that the structure of the concentrating separator should be designed to be larger than the above.

第6図に、第2図の構造で高C/A側への1次空気の分
配率(=100XAc中の空気流量/A中の空気流量)
と微粉炭濃縮率(=100xAc中の微粉炭流量/A中
の微粉炭流量)の関係を線図で示した。図はS、/ (
S、+So)を0.4とすると共に、微粉炭ノズル8へ
の供給微粉炭流A中のC/A(入口C/A)0.2の場
合を示している。
Figure 6 shows the distribution ratio of primary air to the high C/A side in the structure shown in Figure 2 (=100X air flow rate in Ac/air flow rate in A).
The relationship between and the pulverized coal concentration rate (=100x pulverized coal flow rate in Ac/pulverized coal flow rate in A) is shown in a diagram. The figure is S, / (
The case where S, +So) is 0.4 and C/A (inlet C/A) in the pulverized coal flow A supplied to the pulverized coal nozzle 8 is 0.2 is shown.

図中のカーブBは、(So+S、)/Sを0.5、カー
ブCは0.9とした場合の結果を示す。また、第7図に
は入口C/A及び縦軸、横軸の関係から一義的に計算さ
れる濃縮側の微粉炭流AcのC/Aも示している。Ac
中のC/A=’0.2の場合は、入口C/Aと同じ値の
ため、当然のことながらAc流への微粉炭の配分と空気
の配分とは同じ値となる。従って、実用的なC/Aの範
囲は、着火安定性も考慮するとC/A≧0.25であり
、好ましくは0.3以上を保つようにノズル21の開度
位置を調整すればよい。
Curve B in the figure shows the results when (So+S, )/S is 0.5 and curve C is 0.9. FIG. 7 also shows the C/A of the pulverized coal flow Ac on the enrichment side, which is uniquely calculated from the relationship between the inlet C/A, the vertical axis, and the horizontal axis. Ac
In the case of C/A='0.2, it is the same value as the inlet C/A, so naturally the distribution of pulverized coal and the distribution of air to the Ac flow have the same value. Therefore, the practical range of C/A is C/A≧0.25, taking ignition stability into consideration, and preferably the opening position of the nozzle 21 may be adjusted so as to maintain the value of 0.3 or more.

(S、+S、)/Sを0.5よりも小さい値にすると、
分配効率の向上よりも微粉炭流による摩耗量が著しく大
きくなるため好ましくない。また、0.9以上としても
構造部材の厚みの確保と分配効率の低下のために好まし
くない。
When (S, +S,)/S is set to a value smaller than 0.5,
This is not preferable because the amount of wear caused by the pulverized coal flow becomes significantly greater than the improvement in distribution efficiency. Moreover, it is not preferable to set it at 0.9 or more because it will ensure the thickness of the structural member and reduce the distribution efficiency.

第8図、第9図は他の実施例を示すもので、第8図のも
のにおいては、粒子パイロット22に代えてベンド26
を設けたもので、第8図に示すようにノズル21を可動
させることによって濃厚微粉炭流Acと希薄微粉炭流A
Rを作るもので、他の説明は第1図から第5図のものと
同一である。
8 and 9 show other embodiments, in which the particle pilot 22 is replaced by a bend 26.
As shown in Fig. 8, by moving the nozzle 21, a rich pulverized coal flow Ac and a lean pulverized coal flow A
The other explanations are the same as those in FIGS. 1 to 5.

第9図のものは第8図のベント26に代えて粒子パイロ
ット22を設けたもので、ノズル21の開、閉によって
濃厚微粉炭流Acと希薄微粉炭流A2を作るものである
The one in FIG. 9 is provided with a particle pilot 22 in place of the vent 26 in FIG. 8, and a rich pulverized coal flow Ac and a lean pulverized coal flow A2 are created by opening and closing the nozzle 21.

[発明の効果] 本発明によれば、極低負荷時であっても補助燃料を削減
し、しかも微粉炭バーナの着火安定性を向上させること
ができ、かつ、DSS運転を行なうことができる。
[Effects of the Invention] According to the present invention, it is possible to reduce the amount of auxiliary fuel even under extremely low loads, improve the ignition stability of the pulverized coal burner, and perform DSS operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例に係る微粉炭バー
ナの断面図、第3図、第4図および第5図は微粉炭ノズ
ルの上半分を示した拡大断面図で。 第3図は高負荷時、第4図は低負荷時、第5図は極低負
荷時を示す。 第6図は横軸に1次空気の分配率、縦軸に微粉炭濃縮率
を示した特性曲線図、第7図は横軸にバーナ負荷、縦軸
にC/Aを示した特性曲線図、第8図および第9図は他
の実施例を示す微粉炭バーナの断面図、第10図は微粉
炭焚ボイラの概略系統図、第11図は従来の微粉炭バー
ナの拡大断面図、第12図は横軸にミル負荷、縦軸にC
/Aを示した特性曲線図である。 3・・・ 起動用バーナ、8・・・・・・微粉炭ノズル
、15・・・・高負荷用保炎器、18・・・・入口ダク
ト、19出ロダクト、20・・・・・低負荷用保炎器、
21・・・・・ノズル。 第1図 第2図 第3図 第5図 第6図 第7図 一一◆バー′r負葡C〜 第12図
1 and 2 are sectional views of a pulverized coal burner according to an embodiment of the present invention, and FIGS. 3, 4, and 5 are enlarged sectional views showing the upper half of a pulverized coal nozzle. Fig. 3 shows the case at high load, Fig. 4 shows the case at low load, and Fig. 5 shows the case at extremely low load. Figure 6 is a characteristic curve diagram in which the horizontal axis shows primary air distribution ratio and the vertical axis shows pulverized coal concentration ratio. Figure 7 is a characteristic curve diagram in which the horizontal axis shows burner load and the vertical axis shows C/A. , FIG. 8 and FIG. 9 are cross-sectional views of a pulverized coal burner showing other embodiments, FIG. 10 is a schematic system diagram of a pulverized coal-fired boiler, FIG. 11 is an enlarged cross-sectional view of a conventional pulverized coal burner, In Figure 12, the horizontal axis is the mill load, and the vertical axis is C.
It is a characteristic curve diagram showing /A. 3... Start-up burner, 8... Pulverized coal nozzle, 15... Flame stabilizer for high load, 18... Inlet duct, 19 Outlet duct, 20... Low load flame holder,
21...Nozzle. Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig.

Claims (1)

【特許請求の範囲】 微粉炭ノズルの先端に高負荷用保炎器を、微粉炭ノズル
のほぼ中心に起動用バーナを配置して微粉炭を燃焼させ
るものにおいて、 前記微粉炭ノズル内に微粉炭濃度を変える入口ダクトと
出口ダクトと、 出口ダクトの先端に低負荷用保炎器を設け、かつ、入口
ダクトの上流に微粉炭流路を変えるノズルを設けたこと
を特徴とする微粉炭バーナ。
[Claims] A device for burning pulverized coal by arranging a high-load flame stabilizer at the tip of a pulverized coal nozzle and a starting burner at approximately the center of the pulverized coal nozzle, wherein pulverized coal is placed in the pulverized coal nozzle. A pulverized coal burner comprising an inlet duct and an outlet duct for changing the concentration, a low-load flame stabilizer provided at the tip of the outlet duct, and a nozzle for changing the pulverized coal flow path upstream of the inlet duct.
JP12916090A 1990-05-21 1990-05-21 Pulverized coal burner Expired - Fee Related JP2954659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12916090A JP2954659B2 (en) 1990-05-21 1990-05-21 Pulverized coal burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12916090A JP2954659B2 (en) 1990-05-21 1990-05-21 Pulverized coal burner

Publications (2)

Publication Number Publication Date
JPH0424404A true JPH0424404A (en) 1992-01-28
JP2954659B2 JP2954659B2 (en) 1999-09-27

Family

ID=15002631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12916090A Expired - Fee Related JP2954659B2 (en) 1990-05-21 1990-05-21 Pulverized coal burner

Country Status (1)

Country Link
JP (1) JP2954659B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809068A2 (en) 1996-05-24 1997-11-26 Babcock-Hitachi Kabushiki Kaisha Pulverized coal burner
WO2009114331A3 (en) * 2008-03-07 2010-04-29 Alstom Technology Ltd Low nox nozzle tip for a pulverized solid fuel furnace
CN101832550A (en) * 2010-06-18 2010-09-15 上海交通大学 Swirl pulverized-coal burner based on multi-level pulverized-coal concentration
WO2016158081A1 (en) * 2015-03-31 2016-10-06 三菱日立パワーシステムズ株式会社 Combustion burner and boiler provided therewith
CN107407482A (en) * 2015-03-31 2017-11-28 三菱日立电力系统株式会社 burner and boiler
US10591154B2 (en) 2015-03-31 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler
US10677457B2 (en) 2015-09-11 2020-06-09 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler equipped with the same
WO2020153404A1 (en) * 2019-01-25 2020-07-30 三菱日立パワーシステムズ株式会社 Solid fuel burner
EP3636996A4 (en) * 2017-05-11 2021-01-13 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner and combustion device
CN113847616A (en) * 2021-10-27 2021-12-28 西安热工研究院有限公司 Auxiliary pulverizing system for improving operation flexibility of thermal power generating unit
CN116772199A (en) * 2023-06-25 2023-09-19 北京天地融创科技股份有限公司 Stable burner
WO2023202053A1 (en) * 2022-04-20 2023-10-26 西安热工研究院有限公司 Pulverized coal deep low-oxygen combustion system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585276C (en) * 2008-06-20 2010-01-27 哈尔滨工业大学 Side direction multilevel open type igniting center powder feeding vortex combustor of small oil mass gasification combustion
CN103017159A (en) * 2012-12-27 2013-04-03 北京哈宜节能环保科技开发有限公司 Vertical rich-lean pulverized coal concentration device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809068A2 (en) 1996-05-24 1997-11-26 Babcock-Hitachi Kabushiki Kaisha Pulverized coal burner
US5937770A (en) * 1996-05-24 1999-08-17 Babcock-Hitachi Kabushiki Kaisha Pulverized coal burner
WO2009114331A3 (en) * 2008-03-07 2010-04-29 Alstom Technology Ltd Low nox nozzle tip for a pulverized solid fuel furnace
US8701572B2 (en) 2008-03-07 2014-04-22 Alstom Technology Ltd Low NOx nozzle tip for a pulverized solid fuel furnace
CN101832550A (en) * 2010-06-18 2010-09-15 上海交通大学 Swirl pulverized-coal burner based on multi-level pulverized-coal concentration
US10605455B2 (en) 2015-03-31 2020-03-31 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler
CN107407482A (en) * 2015-03-31 2017-11-28 三菱日立电力系统株式会社 burner and boiler
US10458645B2 (en) 2015-03-31 2019-10-29 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler provided with same
US10591154B2 (en) 2015-03-31 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler
WO2016158081A1 (en) * 2015-03-31 2016-10-06 三菱日立パワーシステムズ株式会社 Combustion burner and boiler provided therewith
CN107250668A (en) * 2015-03-31 2017-10-13 三菱日立电力系统株式会社 Burner and the boiler for possessing the burner
US10677457B2 (en) 2015-09-11 2020-06-09 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler equipped with the same
EP3636996A4 (en) * 2017-05-11 2021-01-13 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner and combustion device
WO2020153404A1 (en) * 2019-01-25 2020-07-30 三菱日立パワーシステムズ株式会社 Solid fuel burner
JPWO2020153404A1 (en) * 2019-01-25 2021-11-18 三菱パワー株式会社 Solid fuel burner
TWI748336B (en) * 2019-01-25 2021-12-01 日商三菱動力股份有限公司 Solid fuel burner
CN113847616A (en) * 2021-10-27 2021-12-28 西安热工研究院有限公司 Auxiliary pulverizing system for improving operation flexibility of thermal power generating unit
WO2023202053A1 (en) * 2022-04-20 2023-10-26 西安热工研究院有限公司 Pulverized coal deep low-oxygen combustion system
CN116772199A (en) * 2023-06-25 2023-09-19 北京天地融创科技股份有限公司 Stable burner
CN116772199B (en) * 2023-06-25 2024-04-05 北京天地融创科技股份有限公司 Stable burner

Also Published As

Publication number Publication date
JP2954659B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
JPH0350408A (en) Pulverized coal burner
US20170045221A1 (en) Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
JPH0424404A (en) Pulverized-coal burner
US20130291772A1 (en) Combustion system and method for operating same
CN209495349U (en) A kind of biomass molding fuel and coal direct-coupling pulverized coal preparation system
JP5386230B2 (en) Fuel burner and swirl combustion boiler
EP0284629B1 (en) Dust coal igniting burner device
CN102705818B (en) Wall-attached wind distribution method of boiler combustor
JPS5864409A (en) Pulverized coal firing boiler
AU2011315008B2 (en) Boiler combustion system and operation method therefor
JP3830582B2 (en) Pulverized coal combustion burner
CN100585276C (en) Side direction multilevel open type igniting center powder feeding vortex combustor of small oil mass gasification combustion
JP5854620B2 (en) Boiler and boiler operation method
JP2954656B2 (en) Pulverized coal burner
JP2954628B2 (en) Pulverized coal burner
CN114659103A (en) Flue gas recirculation oxygen boosting combustor suitable for degree of depth peak regulation
KR101814687B1 (en) Combustion apparatus
JPH0375403A (en) Pulverized coal burner
CN218295709U (en) Deep peak-regulation low-load stable combustion system for medium-speed grinding four-corner tangential boiler
JPH0735302A (en) Method for warming always mill of coal fired boiler
CN214120018U (en) Coal powder concentration and dilution separation device and coal-fired boiler combustion system
JPH0268405A (en) Pulverized coal burner
Wang et al. Experimental Study on Combustion Optimization for 1000MW Ultra-supercritical Boilers
CN112555885A (en) Coal powder concentration and dilution separation device and coal-fired boiler combustion system
CN115325531A (en) Deep peak-regulation low-load stable combustion method for medium-speed grinding four-corner tangential boiler

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees