JP2954659B2 - Pulverized coal burner - Google Patents

Pulverized coal burner

Info

Publication number
JP2954659B2
JP2954659B2 JP12916090A JP12916090A JP2954659B2 JP 2954659 B2 JP2954659 B2 JP 2954659B2 JP 12916090 A JP12916090 A JP 12916090A JP 12916090 A JP12916090 A JP 12916090A JP 2954659 B2 JP2954659 B2 JP 2954659B2
Authority
JP
Japan
Prior art keywords
pulverized coal
nozzle
load
burner
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12916090A
Other languages
Japanese (ja)
Other versions
JPH0424404A (en
Inventor
邦夫 沖浦
彰 馬場
紀之 大谷津
宏行 加来
茂樹 森田
啓信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12916090A priority Critical patent/JP2954659B2/en
Publication of JPH0424404A publication Critical patent/JPH0424404A/en
Application granted granted Critical
Publication of JP2954659B2 publication Critical patent/JP2954659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微粉炭の燃焼装置に係り、特にミルと微粉炭
バーナを直接連結して運転する燃焼システムにおける負
荷変化の運用幅を拡大するのに好適な微粉炭バーナに関
する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulverized coal combustion device, and more particularly to an operation range of load change in a combustion system operated by directly connecting a mill and a pulverized coal burner. And pulverized coal burners suitable for

〔従来の技術〕[Conventional technology]

近年、我が国においては重油供給量のひつ迫から、石
油依存度の是正を図るために、従来の重油専焼から石炭
専焼へと燃料を変換しつつあり、特に事業用火力発電ボ
イラにおいては、石炭専焼の大容量火力発電所が建設さ
れている。
In recent years, Japan has been converting fuel from conventional heavy oil burning to coal burning in order to correct the dependence on petroleum due to the tight supply of heavy oil, and especially for commercial thermal power boilers, Large capacity thermal power plants are being constructed.

一方、最近の電力需要の特徴として、原子力発電の伸
びと共に、負荷の最大、最小差も増加し、火力発電用ボ
イラをベースロード用から負荷調整用へと移行する傾向
にあり、この火力発電用ボイラを負荷に応じて圧力を変
化させて変圧運転する、いわゆる全負荷運転では超臨界
圧域、部分負荷運転では亜臨界圧域で運転する変圧運転
ボイラとすることによって、部分負荷運転での発電効率
を数%向上させることができる。
On the other hand, as a characteristic of recent power demand, the difference between the maximum and minimum loads has increased with the increase in nuclear power generation, and there has been a tendency to shift the boiler for thermal power generation from base load to load adjustment. Power generation in partial load operation is achieved by using a boiler in which the pressure is changed according to the load to perform a variable pressure operation. Efficiency can be improved by several percent.

このためにこの石炭専焼火力においては、ボイラ負荷
が常に全負荷で運転されるものは少なく、負荷を昼間は
75%負荷、50%負荷、25%負荷、15%負荷へと負荷を上
げ、下げして運転したり、あるいは夜間は運転を停止す
るなど、いわゆる高頻度起動停止(Daily Start Stop
以下、単にDSSという)運転を行なって中間負荷を担
う石炭専焼火力へと移行しつつある。
For this reason, in the case of this coal-fired thermal power plant, few boiler loads are always operated at full load,
The so-called Daily Start Stop, such as increasing the load to 75% load, 50% load, 25% load, and 15% load, and then lowering or driving at night, or stopping operation at night.
The operation is shifting to a coal-fired thermal power plant that carries an intermediate load.

またDSS運転を行なう石炭専焼ボイラにおいては、起
動時から全負荷に至るまで微粉炭のみで全負荷帯を運転
するものは少なく、石炭専焼ボイラといえども起動時、
低負荷時には微粉炭以外の軽油,重油,ガス等を補助燃
料として用いている。
In addition, among coal-fired boilers that perform DSS operation, there are few that operate the full-load zone only with pulverized coal from start-up to full load.
At low load, light oil, heavy oil, gas, etc. other than pulverized coal are used as auxiliary fuel.

それは起動時においては石炭専焼ボイラからミルウオ
ーミング用の排ガス、加熱空気が得られず、このために
ミルを運転することができない(石炭を微粉炭に粉砕す
ることができない)からである。
This is because, at the time of startup, exhaust gas and heated air for mill warming cannot be obtained from the coal-fired boiler, so that the mill cannot be operated (coal cannot be pulverized into pulverized coal).

また、低負荷時にはミルのターンダウン比がとれない
こと、微粉炭自体の着火性が悪いことなどの理由によっ
て軽油,重油,ガス等が用いられている。
In addition, light oil, heavy oil, gas, and the like are used because the turndown ratio of the mill cannot be obtained at a low load and the ignitability of the pulverized coal itself is poor.

例えば起動時に補助燃料として軽油,重油を用いる場
合には、起動時から15%負荷までは軽油を補助燃料とし
てボイラを焚き上げ、15%負荷から40%負荷までは軽油
から重油へ補助燃料を変更して焚き上げ、40%負荷以上
となると補助燃料の重油と主燃料の微粉炭を混焼して順
次補助燃料の重油量を少なくするとともに、主燃料の微
粉炭量を多くして微粉炭の混焼比率を上げて実質的な石
炭専焼へと移行する。
For example, when using light oil or heavy oil as the auxiliary fuel at startup, boil the boiler using light oil as the auxiliary fuel up to 15% load from startup and change the auxiliary fuel from light oil to heavy oil from 15% load to 40% load When the load exceeds 40%, the auxiliary fuel heavy oil and the main fuel pulverized coal are co-fired to gradually reduce the amount of auxiliary fuel heavy oil, and the main fuel pulverized coal is increased to increase the pulverized coal co-firing. Increase the ratio and shift to substantial coal firing.

以下、第10図および第11図を用いて微粉炭焚ボイラの
起動時における概要について説明する。第10図及び第11
図は微粉炭焚ボイラの概略系統図および従来の微粉炭バ
ーナの拡大断面図である。
Hereinafter, the outline of the pulverized coal-fired boiler at the time of startup will be described with reference to FIGS. 10 and 11. Figures 10 and 11
The figure is a schematic system diagram of a pulverized coal-fired boiler and an enlarged sectional view of a conventional pulverized coal burner.

第10図に示す微粉炭焚ボイラ1をコールドスタートす
る際は、まず第11図に示す微粉炭バーナ7の軽油点火バ
ーナ2により、ボイラ負荷の15%まで焚き上げる。その
後に重油起動用バーナ3を点火する。そして、重油起動
用バーナ3のみで、ボイラ負荷の25〜35%まで焚き上げ
る。その後にボイラ火炉4の火炉内温度が十分に上がっ
た時点で、第10図に示すミル5から第11図に示す微粉炭
供給管6、微粉炭バーナ7へ微粉炭燃料を供給して微粉
炭ノズル8からボイラ火炉4内へ送り、微粉炭専焼へと
切り換える。
When the pulverized coal-fired boiler 1 shown in FIG. 10 is cold-started, first, the pulverized coal-fired boiler 7 shown in FIG. Thereafter, the heavy oil starting burner 3 is ignited. Then, only the heavy oil starting burner 3 is used to boil up to 25 to 35% of the boiler load. Thereafter, when the temperature in the furnace of the boiler furnace 4 is sufficiently increased, the pulverized coal fuel is supplied from the mill 5 shown in FIG. 10 to the pulverized coal supply pipe 6 and the pulverized coal burner 7 shown in FIG. It is sent from the nozzle 8 into the boiler furnace 4 and switched to pulverized coal only firing.

微粉炭の搬送用媒体は、第10図に示すエアヒータ9に
よって、ボイラ排ガスと熱交換された後ミル5に送ら
れ、コールバンカ10から供給される塊炭に付着した水分
の除去と、ミル5に内蔵した図示していない分級器の分
級エアとして、さらには、ミル5で粉砕された微粉炭を
微粉炭バーナ7まで搬送するための搬送用空気として使
用される。
The pulverized coal transport medium is heat-exchanged with the boiler exhaust gas by the air heater 9 shown in FIG. 10 and then sent to the mill 5 to remove moisture adhering to the lump coal supplied from the coal bunker 10 and to the mill 5. The air is used as classification air of a built-in classifier (not shown), and further as conveying air for conveying the pulverized coal pulverized by the mill 5 to the pulverized coal burner 7.

第11図には従来技術の微粉炭バーナ7を示している
が、この微粉炭バーナ7には軽油点火バーナ2と重油起
動用バーナ3が取り付けられており、微粉炭バーナ7を
構成している。風箱11内の燃焼用空気は、二次エアレジ
スタ12と三次エアレジスタ13により旋回が加えられた
後、ボイラ火炉4内に投入される。一方、微粉炭は微粉
炭供給管6を通り微粉炭バーナ7の微粉炭ノズル8へ送
られるが、その間にベンチュリー14を通過するのみで、
ほぼ自由噴流に近い状態でボイラ火炉4内に吹き込まれ
る。この微粉炭バーナ7には高負荷用保炎器15が設けら
れ、燃焼用空気の旋回によって逆流域が生じ、火炎の伝
播速度以下の流速域で火炎が保持されるのみであった。
したがって微粉炭粒子の拡散は良いが、一方では火炎が
不安定になり、微粉炭バーナ7の空気側の操作条件に極
めて左右されやすい。なお、第10図の符号16は重油タン
ク、17は軽油タンクである。一方、ミル5(微粉炭バー
ナ7)の負荷が低い領域でミル5から供給される微粉炭
−空気流中の微粉炭濃度(C/A)が低くなるための着火
安定性が悪くなる。
FIG. 11 shows a pulverized coal burner 7 of the prior art. The pulverized coal burner 7 is provided with a light oil ignition burner 2 and a heavy oil starter burner 3 to constitute the pulverized coal burner 7. . The combustion air in the wind box 11 is turned into the boiler furnace 4 after being swirled by the secondary air register 12 and the tertiary air register 13. On the other hand, the pulverized coal is sent to the pulverized coal nozzle 8 of the pulverized coal burner 7 through the pulverized coal supply pipe 6, while only passing through the venturi 14,
It is blown into the boiler furnace 4 almost in a state close to a free jet. The pulverized coal burner 7 was provided with a high-load flame stabilizer 15, and the swirling of the combustion air produced a reverse flow region, which only maintained the flame in a flow velocity region lower than the flame propagation speed.
Therefore, the diffusion of the pulverized coal particles is good, but on the other hand, the flame becomes unstable, and the pulverized coal burner 7 is very easily influenced by the operating conditions on the air side. Reference numeral 16 in FIG. 10 is a heavy oil tank, and 17 is a light oil tank. On the other hand, in a region where the load on the mill 5 (pulverized coal burner 7) is low, the pulverized coal supplied from the mill 5—the pulverized coal concentration (C / A) in the air flow is low, and ignition stability is deteriorated.

第12図は横軸にバーナ(ミル)負荷、縦軸にバーナ
(ミル)負荷に対するミル5から微粉炭バーナ7に供給
される微粉炭(C)と空気(A)の重量比(以下C/Aと
称す)を示す特性曲線図である。
FIG. 12 shows the weight ratio of pulverized coal (C) and air (A) supplied to the pulverized coal burner 7 from the mill 5 with respect to the burner (mill) load on the horizontal axis and the burner (mill) load on the vertical axis (C / C). FIG. 4 is a characteristic curve diagram showing the characteristic curve (referred to as A).

この第12図から、バーナ(ミル)負荷の低下に伴って
C/Aが低くなることが分かるが、これは微粉炭の搬送、
分級のために止むを得ないミル特有の現象である。
From Fig. 12, it can be seen that as the burner (mill) load decreases,
It can be seen that the C / A is low,
This is a phenomenon peculiar to mills that cannot be stopped due to classification.

バーナ負荷15%時におけるC/Aは第12図に示すように
0.08となり、微粉炭は極めて希薄となり、またその時の
1次空気流が燃焼に及ぼす空気比としては、炭種により
異なるが、いずれの場合でも1を越える。従って、この
負荷においては1次空気のみで空気過剰となるために、
2,3次空気は不要となるが、実際にはフアンの特性上、
また微粉炭バーナ7の焼損防止対策として2次,3次空気
をかなり供給するために、微粉炭バーナ近傍における空
気比はかなり高い値となり、微粉炭粒子はさらに希釈さ
れるために火炎は不安定になる。
As shown in Fig. 12, C / A at 15% burner load
0.08, the pulverized coal becomes extremely lean, and the air ratio at which the primary air flow affects combustion varies depending on the type of coal, but in any case exceeds 1. Therefore, in this load, since only primary air becomes excess air,
No secondary or tertiary air is required, but in fact, due to the characteristics of Juan,
Also, as a measure to prevent burning of the pulverized coal burner 7, the air ratio in the vicinity of the pulverized coal burner is considerably high because the secondary and tertiary air is supplied considerably, and the flame is unstable because the pulverized coal particles are further diluted. become.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように補助燃料を用いる微粉炭バーナでは、頻繁
な起動停止運転毎に補助燃料の使用量が増加し、直接ミ
ルから微粉炭バーナへ微粉炭−空気流を供給する燃焼シ
ステムではミル(バーナ)負荷が低い場合、微粉炭バー
ナの着火性が悪くなるために未燃分が増加する欠点があ
る。
As described above, in the pulverized coal burner using the auxiliary fuel, the usage amount of the auxiliary fuel increases every frequent start-stop operation, and in the combustion system in which the pulverized coal-air flow is directly supplied from the mill to the pulverized coal burner, the mill (burner) is used. When the load is low, there is a disadvantage that the ignitability of the pulverized coal burner is deteriorated and the unburned matter increases.

本発明はかかる従来の欠点を解消しようとするもの
で、その目的とするところは、補助燃料を削減し、しか
も微粉炭バーナの着火安定性を向上させることにより、
DSS運転での低負荷運転を行なうことができる微粉炭バ
ーナを提供するにある。
The present invention is intended to solve such conventional disadvantages, and aims at reducing auxiliary fuel and improving the ignition stability of pulverized coal burners.
An object of the present invention is to provide a pulverized coal burner that can perform low-load operation in DSS operation.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は前述の目的を達成するため、火炉側先端に高
負荷用保炎器を設けた微粉炭ノズルと、その微粉炭ノズ
ル内に固定され、微粉炭ノズル内を流れる微粉炭を慣性
力により外側に偏らせる粒子パイロットと、前記微粉炭
ノズル内で、かつ前記粒子パイロットの微粉炭流れ方向
下流側に固定され、外側の流路と内側の流路を仕切り、
火炉側先端に低負荷用保炎器を設けた例えば入口ダクト
と出口ダクトからなるダクト部材と、前記微粉炭ノズル
内に配置されて微粉炭ノズル内を流れる微粉炭を慣性力
により内側に偏らせるとともに、微粉炭ノズルの軸方向
に移動可能なノズルとを備え、 バーナの高負荷時に前記ノズルは前記粒子パイロット
よりも微粉炭流れ方向上流側に配置され、バーナの低負
荷時に前記ノズルは前記粒子パイロットと前記ダクト部
材の間に配置されるように構成されていることを特徴と
するものである。
In order to achieve the above-mentioned object, the present invention provides a pulverized coal nozzle provided with a high-load flame stabilizer at the furnace end and a pulverized coal fixed in the pulverized coal nozzle and flowing through the pulverized coal nozzle by inertia force. Particle pilot biased outward, in the pulverized coal nozzle, and fixed to the pulverized coal flow direction downstream of the particle pilot, partitioning the outer flow path and the inner flow path,
A duct member having, for example, an inlet duct and an outlet duct provided with a low-load flame stabilizer at the furnace side end, and a pulverized coal that is disposed in the pulverized coal nozzle and flows through the pulverized coal nozzle is biased inward by inertial force. And a nozzle that can move in the axial direction of the pulverized coal nozzle, wherein the nozzle is disposed on the upstream side in the pulverized coal flow direction from the particle pilot when the burner is under a high load, and the nozzle is configured such that when the burner is under a low load, the nozzle It is characterized by being arranged between a pilot and the duct member.

〔作用〕[Action]

微粉炭バーナのバーナ負荷が低い時(ミルの起動時及
び低負荷時)には、微粉炭ノズル内の微粉炭流路を変え
るノズルを移動させて、入口ダクトと出口ダクトの内側
に濃厚微粉炭流を形成させ、低負荷用保炎器で着火安定
性を確保する。
When the burner load of the pulverized coal burner is low (when the mill is started and the load is low), move the nozzle that changes the pulverized coal flow path inside the pulverized coal nozzle and place the dense pulverized coal inside the inlet duct and outlet duct. A flow is formed, and ignition stability is ensured with a low-load flame stabilizer.

一方、微粉炭バーナのバーナ負荷が高い時には、微粉
炭ノズル内の微粉炭流路を変えるノズルを移動させて、
入口ダクトと出口ダクトの外側に濃厚微粉炭流を形成さ
せ高負荷用保炎器で着火安定性を確保する。
On the other hand, when the burner load of the pulverized coal burner is high, the nozzle that changes the pulverized coal flow path in the pulverized coal nozzle is moved,
A dense pulverized coal stream is formed outside the inlet duct and outlet duct to ensure ignition stability with a high-load flame stabilizer.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図および第2図は本発明の実施例に係る微粉炭バ
ーナの断面図、第3図、第4図および第5図は微粉炭ノ
ズルの上半分を示した拡大断面図で、第3図は高負荷
時、第4図は低負荷時、第5図は極低負荷時を示す。
1 and 2 are sectional views of a pulverized coal burner according to an embodiment of the present invention, and FIGS. 3, 4, and 5 are enlarged sectional views showing an upper half of a pulverized coal nozzle. The figure shows a high load, FIG. 4 shows a low load, and FIG. 5 shows an extremely low load.

第6図は横軸に1次空気の分配率、縦軸に微粉炭濃縮
率を示した特性曲線図、第7図は横軸にバーナ負荷、縦
軸にC/Aを示した特性曲線図、第8図及び第9図は他の
実施例を示す微粉炭バーナの断面図である。
Fig. 6 is a characteristic curve diagram showing the distribution ratio of primary air on the horizontal axis, the pulverized coal concentration ratio on the vertical axis, and Fig. 7 is a characteristic curve diagram showing the burner load on the horizontal axis and C / A on the vertical axis. 8 and 9 are sectional views of a pulverized coal burner showing another embodiment.

第1図から第9図において、符号3から符号15までは
従来のものと同一のものを示す。
In FIGS. 1 to 9, reference numerals 3 to 15 denote the same components as those of the prior art.

18,19は微粉炭ノズル8内に配置され微粉炭濃度を変
える入口ダクトと出口ダクト、20は出口ダクト19の先端
に設けた低負荷用保炎器、21は微粉炭ノズル8にそって
移動するノズル、22は粒子パイロット、23,24,25は微粉
炭流路である。
18 and 19 are inlet ducts and outlet ducts arranged in the pulverized coal nozzle 8 to change the concentration of pulverized coal, 20 is a low-load flame stabilizer provided at the end of the outlet duct 19, and 21 is moved along the pulverized coal nozzle 8 Nozzle, 22 is a particle pilot, and 23, 24, 25 are pulverized coal passages.

第1図は高負荷時におけるノズル21の位置を示し、第
2図は極低負荷時におけるノズル21の位置を示してい
る。
FIG. 1 shows the position of the nozzle 21 when the load is high, and FIG. 2 shows the position of the nozzle 21 when the load is extremely low.

第1図において、微粉炭と搬送用1次空気は図示して
いないミルから微粉炭供給管6によって第1図の矢印A
で示すように微粉炭バーナ7の微粉炭ノズル8に供給さ
れ、ノズル21、粒子パイロット22、入口ダクト18、出口
ダクト19を経てボイラ火炉4に入り、高負荷用保炎器15
によって安定に燃焼される。
In FIG. 1, pulverized coal and primary air for conveyance are supplied from a mill (not shown) by a pulverized coal supply pipe 6 to an arrow A in FIG.
Is supplied to the pulverized coal nozzle 8 of the pulverized coal burner 7, enters the boiler furnace 4 through the nozzle 21, the particle pilot 22, the inlet duct 18, and the outlet duct 19, and receives a high-load flame stabilizer 15.
Combustion is stable.

この微粉炭バーナ7では、更に、燃焼用空気が風箱11
内で2次エアレジスタ12、3次エアレジスタ13に分割さ
れ、好ましくは旋回力を加えて供給される。ノズル21
は、図示してないなが、アクチュエータ、ベアリング付
ローラ等によって微粉炭ノズル8内を摺動しバーナの要
求性能を満足するように制御される。
In this pulverized coal burner 7, the combustion air is further supplied to a wind box 11.
Inside, it is divided into a secondary air register 12 and a tertiary air register 13 and is preferably supplied with a turning force. Nozzle 21
Although not shown, the actuator is slid in the pulverized coal nozzle 8 by an actuator, a roller with a bearing, or the like, and is controlled so as to satisfy the required performance of the burner.

この第1図に示す高負荷時には、微粉炭流路25の微粉
炭は入口ダクト18および出口ダクト19の外側に位置する
微粉炭流路23には濃厚微粉炭流が流れ、入口ダクト18お
よび出口ダクト19の内側に位置する微粉炭流路24には希
薄微粉炭流が流れるので、高負荷用保炎器15で安定燃焼
する。
At the time of high load shown in FIG. 1, the pulverized coal in the pulverized coal channel 25 flows into the pulverized coal channel 23 located outside the inlet duct 18 and the outlet duct 19, and the pulverized coal flows through the inlet duct 18 and the outlet. Since the dilute pulverized coal flow flows through the pulverized coal flow path 24 located inside the duct 19, the flame is stably burned by the high-load flame stabilizer 15.

一方、第2図に示す極低負荷時にはノズル21がボイラ
火炉4側へ移動して入口ダクト18と接触するために微粉
炭流路25の微粉炭は入口ダクト18および出口ダクト19の
内側に位置する微粉炭流路24には濃厚微粉炭流が流れ、
入口ダクト18および出口ダクト19の外側に位置する微粉
炭流路23には希薄微粉炭流が流れるので、低負荷用保炎
器20で安定燃焼する。
On the other hand, when the load is extremely low as shown in FIG. 2, the pulverized coal in the pulverized coal passage 25 is located inside the inlet duct 18 and the outlet duct 19 because the nozzle 21 moves toward the boiler furnace 4 and comes into contact with the inlet duct 18. The rich pulverized coal flow flows through the pulverized coal flow path 24,
Since the dilute pulverized coal flow flows in the pulverized coal flow path 23 located outside the inlet duct 18 and the outlet duct 19, the flame is stably burned by the low-load flame stabilizer 20.

以下、第3図から第5図を用いて、高負荷時、低負荷
時、極低負荷時に分けて説明する。
Hereinafter, a description will be given separately with reference to FIGS. 3 to 5 when the load is high, when the load is low, and when the load is extremely low.

第3図の高負荷時においては、微粉炭ノズル8内の微
粉炭流路25に微粉炭流Aが供給され、先ず、上流にある
ノズル21と下流にある粒子パイロット22の部分を通過す
る際、微粉炭が慣性力で図示のように片側に偏り(比重
が空気の約1000倍以上)、後流の入口ダクト18で仕切ら
れた外側の微粉炭流路23を濃度の高い濃厚微粉炭流AB
流れる。次に、入口ダクト18によって仕切られた内側の
微粉炭流路24へ流入した希薄微粉炭流は、出口ダクト19
の微粉炭流路24へ希薄微粉炭流ARとして流れる。また、
空気AAは矢印で示すように抵抗の配分から入口ダクト18
と出口ダクト19の間に形成された隙間状の流路を流れる
ように分離し、内側の微粉炭流路24の希薄微粉炭流AR
合流し、最終的にボイラ火炉4へ濃厚微粉炭流AC,希薄
微粉炭流ARのように分割され供給される。
3, the pulverized coal stream A is supplied to the pulverized coal flow path 25 in the pulverized coal nozzle 8, and firstly, when passing through the nozzle 21 on the upstream side and the particle pilot 22 on the downstream side. As shown in the figure, the pulverized coal is biased to one side due to inertial force (specific gravity is about 1000 times or more of air), and the dense pulverized coal flow is concentrated in the outer pulverized coal passage 23 partitioned by the downstream inlet duct 18. A B flows. Next, the dilute pulverized coal flow flowing into the inner pulverized coal flow path 24 partitioned by the inlet duct 18 is
It flows as lean pulverized coal flow A R to the pulverized coal flow path 24. Also,
Air A A from the resistance distribution as shown by the arrow
Into a gap-shaped flow path formed between the pulverized coal flow and the dilute pulverized coal flow A R in the inner pulverized coal flow path 24, and finally into the boiler furnace 4. flow a C, is supplied is divided as lean pulverized coal flow a R.

ここで、この高負荷時のノズル21の配置では、上述の
ごとく粒子パイロット22の働きで入口ダクト18,出口ダ
クト19に微粉炭流が供給されるとき、すでに外側の微粉
炭流路23へ多くの微粉炭を分離供給しているため、濃厚
微粉炭流ACのC/Aが希薄微粉炭流ARのC/Aよりも高くな
る。したがって高負荷用保炎器15によって高C/Aの微粉
炭流が安定に燃焼される。この際、ノズル21は、入口ダ
クト18,出口ダクト19の濃厚微粉炭流ABの流量を調節す
る機能を持ち、火炎安定性の良い通常負荷帯では全開状
態にすることにより、流路抵抗を低減させ微粉炭バーナ
7の差圧を低くすると同時に、微粉炭の流速を出来るだ
け低く保ち磨耗による損傷を抑制する。
Here, in the arrangement of the nozzle 21 at the time of high load, when the pulverized coal flow is supplied to the inlet duct 18 and the outlet duct 19 by the operation of the particle pilot 22 as described above, a large amount because of that the pulverized coal is separated supply, C / a of the thick pulverized coal flow a C is higher than the C / a of the lean pulverized coal flow a R. Therefore, the high-load pulverized coal stream is stably burned by the high-load flame stabilizer 15. In this case, the nozzle 21 has an inlet duct 18 has a function of adjusting the flow rate of the concentrated pulverized coal flow A B of the outlet duct 19, by a good normal load zone of flame stability for the fully open state, the flow path resistance At the same time, the pressure difference of the pulverized coal burner 7 is reduced, and at the same time, the flow rate of the pulverized coal is kept as low as possible to suppress damage due to abrasion.

粒子パイロット22は、微粉炭の流れを高負荷時には外
側の微粉炭流路23へ流し、微粉炭濃度が外側の微粉炭流
路23で高くなるようにし、高負荷用保炎器15によって燃
焼するようにする。入口ダクト18,出口ダクト19は、高
負荷領域では特に内側の微粉炭流路24のC/Aを高くする
必要が無いため外側の微粉炭流路23の微粉炭濃度を高く
する方がバーナの運用上好ましい。
The particle pilot 22 causes the flow of pulverized coal to flow to the outer pulverized coal flow path 23 when the load is high, so that the pulverized coal concentration becomes higher in the outer pulverized coal flow path 23, and is burned by the high-load flame stabilizer 15. To do. The inlet duct 18 and the outlet duct 19 do not need to increase the C / A of the inner pulverized coal flow path 24 particularly in a high load area, so that the pulverized coal concentration in the outer pulverized coal flow path 23 is better for the burner. Operationally favorable.

第4図の低負荷時においては、第3図の高負荷時の場
合と同様に、微粉炭ノズル8に供給された微粉炭流A
が、粒子パイロット22,ノズル21,入口ダクト18,出口ダ
クト19により、矢印AB,AR,ACで示すごとく微粉炭流を形
成する。ここで、高負荷時と異なるのはノズル21と粒子
パイロット22の相対位置で、ノズル21の方が粒子パイロ
ット23よりボイラ火炉4側に設定される。このため、第
4図に示すように入口ダクト18,出口ダクト19の内側の
微粉炭流路24に濃度の高い微粉炭流ACが供給され、さら
に、入口ダクト18,出口ダクト19においてそれぞれ内側
と外側に形成される微粉炭流路24と微粉炭流路23へ微粉
炭流AR,ACにおいても、慣性力により内側の微粉炭流路2
4の微粉炭濃度が高くなり低負荷用保炎器20によって燃
焼する。
At the time of low load in FIG. 4, the pulverized coal flow A supplied to the pulverized coal nozzle 8 is similar to the case of high load in FIG.
But particle pilot 22, the nozzle 21, the inlet duct 18, the outlet duct 19, the arrows A B, A R, to form a pulverized coal flow as shown by A C. Here, the difference from the high load state is the relative position between the nozzle 21 and the particle pilot 22, and the nozzle 21 is set closer to the boiler furnace 4 than the particle pilot 23. Therefore, the inlet duct 18 as shown in FIG. 4, a high concentration of the pulverized coal flow A C inside the pulverized coal flow path 24 of the outlet duct 19 is supplied, further, the inlet duct 18, inside each at the outlet duct 19 the pulverized coal flow a R to pulverized coal passage 24 and pulverized coal passage 23 formed outside, even in a C, the inside of the pulverized coal passage due to the inertial force 2
The pulverized coal concentration of 4 becomes high and it is burned by the low load flame stabilizer 20.

即ち、本実施例の特長とするところは、ノズル21と粒
子パイロット22の組み合わせによって後流の入口ダクト
18,出口ダクト19への2流路に供給する粒子濃度を逆転
させたところにある。
That is, the feature of the present embodiment is that the combination of the nozzle 21 and the
18, where the particle concentration supplied to the two flow paths to the outlet duct 19 is reversed.

第5図の極低負荷時においては、ノズル21を全閉状態
にすることにより、入口ダクト18と出口ダクト19の間を
バイパスする微粉炭流をなくし、全流量を入口ダクト1
8,出口ダクト19の内側の微粉炭流路24に供給する。この
操作により、入口ダクト18,出口ダクト19は最大効率で
機能し、高いC/Aの必要な低負荷用保炎器20へ微粉炭流A
Cを要求される値に保持できる。
When the load is extremely low as shown in FIG. 5, the pulverized coal flow bypassing between the inlet duct 18 and the outlet duct 19 is eliminated by fully closing the nozzle 21, and the entire flow rate is reduced to the inlet duct 1.
8, supply to the pulverized coal flow path 24 inside the outlet duct 19. By this operation, the inlet duct 18 and the outlet duct 19 function with maximum efficiency, and the pulverized coal stream A is supplied to the low-load flame stabilizer 20 that requires a high C / A.
C can be held at the required value.

以上のような機能について検討した結果、微粉炭濃度
を高めるための入口ダクト18,出口ダクト19の構造とし
て、出口ダクト19の最も狭い流路断面積Si(第3図中の
ACが流れる流路)、出口ダクト19のもう一方の流路にお
ける最も狭い流路断面積S0(第3図中のARが流れる流
路)、微粉炭ノズル8の流路断面積Sとすると、(S0
Si)/Sを0.5〜0.9とし、Si/(Si+S0)を0.4以下とする
と共に、流路仕切り構造部材間に構成されるところの1
流路とみなせる部分の最小面積SR(第3図中のAAが流れ
る流路)がS0よりも大きくなるような濃縮分離器構造と
すればよいことを見出した。
As a result of examining the functions as described above, as a structure of the inlet duct 18 and the outlet duct 19 for increasing the pulverized coal concentration, the narrowest passage cross-sectional area S i of the outlet duct 19 (see FIG. 3)
Flow path A C flows), the narrowest flow path sectional area S 0 (A R flows flow path in FIG. 3 in the other flow path of the outlet duct 19), the flow path cross-sectional area S of the pulverized coal nozzle 8 Then (S 0 +
S i ) / S is set to 0.5 to 0.9, S i / (S i + S 0 ) is set to 0.4 or less, and 1 is formed between the flow path partitioning structural members.
Minimum area S R of the portion which can be regarded as the flow path (flow path through which the 3 A A in the figure) is found that may be set larger such concentrates separator structure than S 0.

第6図に、第2図の構造で高C/A側への1次空気の分
配率(=100×AC中の空気流量/A中の空気流量)と微粉
炭濃縮率(=100×AC中の微粉炭流量/A中の微粉炭流
量)の関係を線図で示した。図はSi/(Si+S0)を0.4と
すると共に、微粉炭ノズル8への供給微粉炭流A中のC/
A(入口C/A)0.2の場合を示している。図中のカーブB
は、(S0+Si)/Sを0.5、カーブCは0.9とした場合の結
果を示す。
The six figures, the primary air distribution ratio to the second view structure with a high C / A side (= 100 × air flow in the air flow rate / A in A C) and pulverized coal concentration factor (= 100 × the relationship between the pulverized coal flow) in pulverized coal flow rate / a in a C shown in the diagram. The figure shows that S i / (S i + S 0 ) is 0.4 and C / in the pulverized coal stream A supplied to the pulverized coal nozzle 8 is
A (entrance C / A) of 0.2 is shown. Curve B in the figure
Shows the results when (S 0 + S i ) / S is 0.5 and the curve C is 0.9.

また、第7図には入口C/A及び縦軸,横軸の関係から
一義的に計算される濃縮側の微粉炭流ACのC/Aも示して
いる。AC中のC/A=0.2の場合は、入口C/Aと同じ値のた
め、当然のことながらAC流への微粉炭の配分と空気の配
分とは同じ値となる。従って、実用的なC/Aの範囲は、
着火安定性も考慮するとC/A≧0.25であり、好ましくは
0.3以上を保つようにノズル21の開度位置を調製すれば
よい。
Also shows C / A of the inlet C / A and the vertical axis, the uniquely calculated by concentration-side from the relation of the horizontal axis pulverized coal flow A C in Figure 7. For C / A = 0.2 in A C, for the same value as the inlet C / A, the same value and of course distribution and allocation of air pulverized coal into the A C flow. Therefore, the practical C / A range is
Considering ignition stability, C / A ≧ 0.25, preferably
The opening position of the nozzle 21 may be adjusted so as to maintain 0.3 or more.

(S0+Si)/Sを0.5よりも小さい値にすると、分配効
率の向上よりも微粉炭流による磨耗量が著しく大きくな
るため好ましくない。また、0.9以上としても構造部材
の厚みの確保と分配効率の低下のために好ましくない。
Setting (S 0 + S i ) / S to a value smaller than 0.5 is not preferable because the amount of abrasion caused by the pulverized coal stream becomes significantly larger than the distribution efficiency. Further, a value of 0.9 or more is not preferable because the thickness of the structural member is secured and the distribution efficiency is reduced.

第8図,第9図は他の実施例を示すもので、第8図の
ものにおいては、粒子パイロット22に代えてベンド26を
設けたもので、第8図に示すようにノズル21を可動させ
ることによって濃厚微粉炭流ACと希薄微粉炭流ARを作る
もので、他の説明は第1図から第5図のものと同一であ
る。
8 and 9 show another embodiment. In FIG. 8, a bend 26 is provided instead of the particle pilot 22, and the nozzle 21 is movable as shown in FIG. but produces a rich pulverized coal flow a C and dilute pulverized coal flow a R by, the other description is the same as the first drawing of Figure 5.

第9図のものは第8図のベンド26に代えて粒子パイロ
ット22を設けたもので、ノズル21の開,閉によって濃厚
微粉炭流ACと希薄微粉炭流ARを作るものである。
Those of Fig. 9 which was a particle pilot 22 is provided in place of the bend 26 of Figure 8, open the nozzle 21, it is intended to make a thick pulverized coal flow A C and dilute pulverized coal flow A R by closing.

〔発明の効果〕〔The invention's effect〕

本発明によれば、極低負荷時であっても補助燃料を削
減し、しかも微粉炭バーナの着荷安定性を向上させるこ
とができ、かつ、DSS運転を行なうことができる。
ADVANTAGE OF THE INVENTION According to this invention, auxiliary fuel can be reduced, the load stability of a pulverized coal burner can be improved, and DSS operation can be performed even at the time of an extremely low load.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図は本発明の実施例に係る微粉炭バーナの
断面図、第3図は高負荷時の微粉炭ノズルの上半分を示
した拡大断面図、第4図は低負荷時の微粉炭ノズルの上
半分を示した拡大断面図、第5図は極高負荷時の微粉炭
ノズルの上半分を示した拡大断面図、第6図は横軸に1
次空気の分配率、縦軸に微粉炭濃縮率を示した特性曲線
図、第7図は横軸にバーナ負荷、縦軸にC/Aを示した特
性曲線図、第8図,第9図は他の実施例を示す微粉炭バ
ーナの断面図、第10図は微粉炭焚ボイラの概略系統図、
第11図は従来の微粉炭バーナの拡大断面図、第12図は横
軸にミル負荷、縦軸にC/Aを示した特性曲線図である。 3……起動用バーナ、8……微粉炭ノズル、15……高負
荷用保炎器、18……入口ダクト、19……出口ダクト、20
……低負荷用保炎器、21……ノズル。
1 and 2 are cross-sectional views of a pulverized coal burner according to an embodiment of the present invention, FIG. 3 is an enlarged cross-sectional view showing the upper half of a pulverized coal nozzle under a high load, and FIG. 5 is an enlarged sectional view showing the upper half of the pulverized coal nozzle of FIG. 5, FIG. 5 is an enlarged sectional view showing the upper half of the pulverized coal nozzle under extremely high load, and FIG.
FIG. 7 is a characteristic curve showing the distribution ratio of the secondary air, the pulverized coal concentration rate on the vertical axis, and FIG. 7 is a characteristic curve showing the burner load on the horizontal axis and C / A on the vertical axis. Is a sectional view of a pulverized coal burner showing another embodiment, FIG. 10 is a schematic system diagram of a pulverized coal fired boiler,
FIG. 11 is an enlarged sectional view of a conventional pulverized coal burner, and FIG. 12 is a characteristic curve diagram in which a horizontal axis indicates a mill load and a vertical axis indicates C / A. 3 ... Start-up burner, 8 ... Pulverized coal nozzle, 15 ... High-load flame stabilizer, 18 ... Inlet duct, 19 ... Outlet duct, 20
…… Low load flame stabilizer, 21 …… Nozzle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加来 宏行 広島県呉市宝町3番36号 バブコツク日 立株式会社呉研究所内 (72)発明者 森田 茂樹 広島県呉市宝町6番9号 バブコツク日 立株式会社呉工場内 (72)発明者 小林 啓信 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (56)参考文献 特開 平3−50408(JP,A) 実開 昭62−142610(JP,U) (58)調査した分野(Int.Cl.6,DB名) F23D 1/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Kaku 3-36 Takara-cho, Kure City, Hiroshima Prefecture Inside the Kure Research Institute, Inc. (72) Inventor Shigeki Morita 6-9 Takara-cho Kure City, Hiroshima Prefecture Babkotsuk Day (72) Inventor Hironobu Kobayashi 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi Ltd. (56) References JP-A-3-50408 (JP, A) Shokai Sho 62- 142610 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) F23D 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】火炉側先端に高負荷用保炎器を設けた微粉
炭ノズルと、 その微粉炭ノズル内に固定され、微粉炭ノズル内を流れ
る微粉炭を慣性力により外側に偏らせる粒子パイロット
と、 前記微粉炭ノズル内で、かつ前記粒子パイロットの微粉
炭流れ方向下流側に固定され、外側の流路と内側の流路
を仕切り、火炉側先端に低負荷用保炎器を設けたダクト
部材と、 前記微粉炭ノズル内に配置されて微粉炭ノズル内を流れ
る微粉炭を慣性力により内側に偏らせるとともに、微粉
炭ノズルの軸方向に移動可能なノズルとを備え、 バーナの高負荷時に前記ノズルは前記粒子パイロットよ
りも微粉炭流れ方向上流側に配置され、バーナの低負荷
時に前記ノズルは前記粒子パイロットと前記ダクト部材
の間に配置されるように構成されていることを特徴とす
る微粉炭バーナ。
1. A pulverized coal nozzle provided with a high-load flame stabilizer at the furnace end, and a particle pilot fixed in the pulverized coal nozzle and biasing the pulverized coal flowing through the pulverized coal nozzle outward by inertia force. And a duct fixed in the pulverized coal nozzle and on the downstream side in the pulverized coal flow direction of the particle pilot to partition an outer flow path and an inner flow path and to provide a low-load flame stabilizer at a furnace side end. And a nozzle arranged inside the pulverized coal nozzle and biasing the pulverized coal flowing through the pulverized coal nozzle inward due to inertial force, and having a nozzle movable in the axial direction of the pulverized coal nozzle. The nozzle is disposed upstream of the particle pilot in the pulverized coal flow direction, and the nozzle is configured to be disposed between the particle pilot and the duct member when a burner has a low load. And pulverized coal burner.
JP12916090A 1990-05-21 1990-05-21 Pulverized coal burner Expired - Fee Related JP2954659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12916090A JP2954659B2 (en) 1990-05-21 1990-05-21 Pulverized coal burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12916090A JP2954659B2 (en) 1990-05-21 1990-05-21 Pulverized coal burner

Publications (2)

Publication Number Publication Date
JPH0424404A JPH0424404A (en) 1992-01-28
JP2954659B2 true JP2954659B2 (en) 1999-09-27

Family

ID=15002631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12916090A Expired - Fee Related JP2954659B2 (en) 1990-05-21 1990-05-21 Pulverized coal burner

Country Status (1)

Country Link
JP (1) JP2954659B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585276C (en) * 2008-06-20 2010-01-27 哈尔滨工业大学 Side direction multilevel open type igniting center powder feeding vortex combustor of small oil mass gasification combustion
CN103017159A (en) * 2012-12-27 2013-04-03 北京哈宜节能环保科技开发有限公司 Vertical rich-lean pulverized coal concentration device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3099109B2 (en) * 1996-05-24 2000-10-16 株式会社日立製作所 Pulverized coal burner
US8701572B2 (en) 2008-03-07 2014-04-22 Alstom Technology Ltd Low NOx nozzle tip for a pulverized solid fuel furnace
CN101832550A (en) * 2010-06-18 2010-09-15 上海交通大学 Swirl pulverized-coal burner based on multi-level pulverized-coal concentration
KR101972249B1 (en) * 2015-03-31 2019-04-24 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Combustion burner and boiler with it
EP3279562B1 (en) 2015-03-31 2020-08-19 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler
JP6560885B2 (en) 2015-03-31 2019-08-14 三菱日立パワーシステムズ株式会社 Combustion burner and boiler
JP6642912B2 (en) 2015-09-11 2020-02-12 三菱日立パワーシステムズ株式会社 Combustion burner and boiler provided with the same
JP6818136B2 (en) * 2017-05-11 2021-01-27 三菱パワー株式会社 Solid fuel burner and combustion equipment
WO2020152867A1 (en) * 2019-01-25 2020-07-30 三菱日立パワーシステムズ株式会社 Solid fuel burner and combustion device
CN113847616A (en) * 2021-10-27 2021-12-28 西安热工研究院有限公司 Auxiliary pulverizing system for improving operation flexibility of thermal power generating unit
CN114777114A (en) * 2022-04-20 2022-07-22 西安热工研究院有限公司 Deep low-oxygen combustion system for pulverized coal
CN116772199B (en) * 2023-06-25 2024-04-05 北京天地融创科技股份有限公司 Stable burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585276C (en) * 2008-06-20 2010-01-27 哈尔滨工业大学 Side direction multilevel open type igniting center powder feeding vortex combustor of small oil mass gasification combustion
CN103017159A (en) * 2012-12-27 2013-04-03 北京哈宜节能环保科技开发有限公司 Vertical rich-lean pulverized coal concentration device

Also Published As

Publication number Publication date
JPH0424404A (en) 1992-01-28

Similar Documents

Publication Publication Date Title
JP2776572B2 (en) Pulverized coal burner
JP2954659B2 (en) Pulverized coal burner
CN1321288C (en) Burner, fuel combustion method and boiler retrofit method
CA1195878A (en) Combustion system and method for a coal-fired furnace utilizing a low load coal burner
CA1230522A (en) Combustion system and method for a coal-fired furnace utilizing a louvered low load separator-nozzle assembly and a separate high load nozzle
EP0284629B1 (en) Dust coal igniting burner device
CN102705818A (en) Wall-attached wind distribution method of boiler combustor
JP3830582B2 (en) Pulverized coal combustion burner
WO2023202053A1 (en) Pulverized coal deep low-oxygen combustion system
JP2954656B2 (en) Pulverized coal burner
JP2954628B2 (en) Pulverized coal burner
CN100585276C (en) Side direction multilevel open type igniting center powder feeding vortex combustor of small oil mass gasification combustion
JPH11148610A (en) Solid fuel combustion burner and solid fuel combustion apparatus
JP3253350B2 (en) Pulverized coal burner
JP2776575B2 (en) Pulverized coal combustion equipment
JPH0735302A (en) Method for warming always mill of coal fired boiler
CN214120019U (en) Coal-fired boiler combustion system
CN214840783U (en) Concentrated type double-air-regulation rotational flow low-nitrogen combustor provided with central air
CN214120018U (en) Coal powder concentration and dilution separation device and coal-fired boiler combustion system
JP3242923U (en) Air temperature control system to improve operational flexibility and adaptability to coal type of coal combustion unit
JP2654386B2 (en) Combustion equipment
JPH0268405A (en) Pulverized coal burner
WO2023204102A1 (en) Pulverized fuel burner
CN201875701U (en) Pulverized coal combustor and boiler with same
JPH055506A (en) Pulverized coal burner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20070716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees