JPH0424285B2 - - Google Patents

Info

Publication number
JPH0424285B2
JPH0424285B2 JP58230929A JP23092983A JPH0424285B2 JP H0424285 B2 JPH0424285 B2 JP H0424285B2 JP 58230929 A JP58230929 A JP 58230929A JP 23092983 A JP23092983 A JP 23092983A JP H0424285 B2 JPH0424285 B2 JP H0424285B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
slurry
impurities
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58230929A
Other languages
Japanese (ja)
Other versions
JPS60122708A (en
Inventor
Hiroshi Shimodaira
Kazuo Maeda
Susumu Urata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP23092983A priority Critical patent/JPS60122708A/en
Publication of JPS60122708A publication Critical patent/JPS60122708A/en
Publication of JPH0424285B2 publication Critical patent/JPH0424285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0687After-treatment, e.g. grinding, purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は窒化けい素粉末の酸処理による不純物
の少ない窒化けい素粉末の製法に関する。 従来、粉砕機などによつて微粉砕した窒化けい
素粉末を湿式精製する際に、塩酸、弗酸、硫酸、
硝酸などの無機酸又はそれらの混酸を用いてスラ
リーとし窒化けい素粉末中に含まれる金属やシリ
カ等の不純物の酸に溶解させ、スラリーを酸性域
にて撹拌洗浄した後、窒化けい素粉末のみ沈降分
離する手段(以下、デカンテーシヨンという)を
数回繰返し、次いでフイルタープレスを用いてろ
過洗浄するという方法が工業的に用いられてい
る。 しかしながら、これは鉄ほどの金属及びシリカ
等の不純物を除去することは可能であるが、酸処
理時混入してくる無機酸を構成するハロゲンなど
の陰イオン(以下、不純陰イオンという)が窒化
けい素中に多量に残存してしまうという欠点があ
つた。又フイルタープレスなどのろ過手段では、
ケーキの取扱作業が困難であり、工業的規模で行
なう場合でもろ布の平面面積に限界があり、なお
かつ粉末の収率が悪いという欠点があつた。 本発明者らは不純物の含有量が少ない高純度窒
化けい素粉末の製造方法について種々研究し、ス
ラリーのPHを無機酸により3以下とし、窒化けい
素粉末中の不純物を無機酸と反応させ、次いで窒
化けい素粉末を沈降分離させるいわゆるデカンテ
ーシヨン処理をし、不純物を除去した窒化けい素
粉末を含有するスラリーにアンモニアを添加しPH
8.5以上とし、十分撹拌した後沈降させ分離乾燥
させるこそにより、窒化けい素粉末中の不純物及
び不純陰イオンの少ない窒化けい素粉末を収率よ
く取得できる窒化けい素粉末の製法を提供しよう
とするものである。 すなわち、本発明は窒化けい素粉末を酸処理し
て不純物の少ない窒化けい素粉末の製法におい
て、少くとも0.7μm以下の微粉末を含有する窒化
けい素粉末と無機酸水溶液とを混合しPH3以下の
スラリーとし、そのスラリーの無機酸水溶液と窒
化けい素粉末に含有される不純物とを反応させて
不純物を除去した後、窒化けい素粉末を沈降させ
て分離し、次いで不純物を除去した窒化けい素粉
末を含有するスラリーにアンモニアを添加しその
PHを8.5以上のスラリーとし、スラリー中の窒化
けい素粉末を沈降させ分離し乾燥することを特徴
とする不純物の少ない窒化けい素粉末の製法であ
る。 以下さらに本発明を詳しく説明する。 本発明は窒化けい素粉末と酸水溶液とをスラリ
ー状としその酸性域とアルカリ性域のデカンテー
シヨンをそれぞれ繰り返し行うことにより不純物
の少ない窒化けい素粉末を製造する方法である。 特に本発明においては原料窒化けい素粉末中に
特定の微粉末を含有するものを用いることを特徴
とするものである。 本発明において、原料とする窒化けい素粉末
は、少なくとも0.7μm以下の粒子を含有するもの
が用いられる。0.7μm以下の粒子を含有しないも
のは無機酸水溶液中に沈降はするものの不純物の
除去量が少ないので適切でない。0.7μm以下の粒
子の含有量は原料窒化けい素粉末中、1%もあれ
ば十分である。 次にこの原料窒化けい素粉末と無機酸水溶液と
をPH3以下のスラリーとする。そのPHが3をこえ
ると窒化けい素粉末の沈降に時間がかかり、分離
が困難となるので好ましくない。 本発明において無機酸としては塩酸、硝酸、硫
酸、弗酸などの1種以上が用いられる。これらの
酸は窒化けい素粉末中に含まれる不純物の種類に
よつては異なるが、鉄、カルシウム、シリカを含
む場合は塩酸と弗酸と混酸が好ましい。 その理由は鉄、カルシウムなどは塩化物、シリ
カはけい弗化水素などとなり、これらは無機酸水
溶液に溶解した後、これをデカンテーシヨンする
と不純物は除去され窒化けい素粉末が分離される
からである。このような手段を繰り返すことによ
つて窒化けい素粉末中の不純物を除去する。この
不純物が除去されたスラリーにアルカリを添加し
そのPHを8.5以上とするが、添加するアルカリと
しては、アンモニアを用いるのが好ましい。アン
モニア以外の例えば、カセイソーダ、カセイカリ
では、アルカリ金属イオンが混入するので好まし
くない。スラリーのアンモニア濃度は、
0.015mol/以上が好ましく、又、処理温度は
常温程度で何らさしつかえない。 アルカリ性域デカンテーシヨンは、PH8.5以上
で行なわれるが、PH8.5未満では窒化けい素粉末
の沈降に時間がかかり、分離が困難となるので好
ましくない。上記デカンテーシヨンにおいては、
酸性域デカンテーシヨンにより残留する不純陰イ
オンを除去すること以外に原料窒化けい素粉末中
に残存する不純物の鉄、カルシウム、及びシリカ
の除去も行われる。その手段としては公知の手段
を用いることができるが噴霧乾燥が好ましい。 本発明の方法によれば、窒化けい素粉末中に含
まれる金属や、シリカ、等の不純物及び酸処理中
に混入する不純陰イオンが大巾に除去され、高純
度窒化けい素粉末が98%以上の高収率で得られ
る。本発明品は高性能なガスタービンなどの高温
構造部材への利用が期待される。 本発明を実施する生産設備としては、撹拌機を
具備したポリエチレン、ポリプロピレン質などの
耐酸性容器を、酸処理槽と洗浄槽を兼ねて使用す
るだけでよく、別途洗浄装置を設けることは特に
必要ではない。 本発明による効果をあげると次のとおりであ
る。 (1) 従来の方法で成し得なかつた不純陰イオンの
除去が可能となる。 (2) さらに性能の向上されたガスタービン部品、
高温ベアリングなど高温構造部材や機械部品用
途が期待される。 (3) 従来の如き複雑な洗浄工程あるいは洗浄設備
が不要となる。 (4) 高純度窒化けい素粉末が98%以上の高収率で
得られる。 (5) 精製スラリーを噴霧乾燥機で乾燥させる場
合、スラリー濃度を無調整でフイードでき、フ
イルタープレスなどのろ過洗浄した場合のケー
キの希釈工程が省略でき、有利である。 (6) 設備費が安価である。 以下実施例により本発明を説明する。 実施例 1 10μm以下の粒子が98%であり、しかも0.7μm
以下の粒子を含有する第1表に示す窒化けい素粉
末(A)100gを、5%塩酸水溶液1と5%弗酸水
溶液1からなる混酸水溶液2の入つたポリプ
ロピレン製容器に投入し、60℃で1時間撹拌洗浄
し、その後PH2.5となるまで酸性域デカンテーシ
ヨンを5回繰返した。次いでそのスラリーに28%
アンモニア水を2ml添加して、PHを10.4とし、ア
ルリ性域デカンテーシヨンを3回繰返したとこ
ろ、PHは9.2であつた。このようにして処理した
精製スラリーをスプレードフライヤー(ヤマト科
学(株)製)を用いて、110℃で噴霧乾燥したところ、
窒化けい素粉末99.2g得た。この窒化けい素粉末
の科学成分、粒度分布及び収率の測定結果を第2
表に示す。 比較例 1 酸性域デカンテーシヨンのスラリーPHを4とし
たこと以外は実施例1と同様にして行なつたとこ
ろ、沈降分離は不可能であつた。さらにアンモニ
ア水を加え、PHを7.5にしたところ、同様に沈降
分離は不可能であつた。 比較例 2 10μm以下の粒子が98%以上でありしかも0.7μ
m以下の粒子を全く含有しない第1表に示す窒化
けい素粉末(B)を用いたこと以外は、実施例1と同
様にして行なつたところ、97.7gの窒化けい素粉
末を得た。この窒化けい素粉末の化学成分粒度分
布、及び収率の測定結果を第2表に示す。 比較例 3 アルカリ性域デカンテーシヨンの代わりに、フ
イルタープレス(東洋科学(株)製)を用いてろ過を
行つた以外は実施例1と同様にして行ない、89.6
gの窒化けい素粉末を得た。この窒化けい素粉末
の化学成分、粒度分布、及び収率の測定結果を第
2表に示す。
The present invention relates to a method for producing silicon nitride powder with few impurities by acid treatment of silicon nitride powder. Conventionally, when wet refining silicon nitride powder that has been finely ground using a grinder, hydrochloric acid, hydrofluoric acid, sulfuric acid,
A slurry is made using an inorganic acid such as nitric acid or a mixed acid thereof, and impurities such as metals and silica contained in the silicon nitride powder are dissolved in the acid. After stirring and cleaning the slurry in an acidic region, only the silicon nitride powder is prepared. A method used industrially is to repeat sedimentation and separation (hereinafter referred to as decantation) several times, followed by filtration and washing using a filter press. However, although it is possible to remove metals as large as iron and impurities such as silica, anions such as halogens (hereinafter referred to as impurity anions) constituting the inorganic acid mixed in during acid treatment may be nitrided. The drawback was that a large amount remained in silicon. Also, with filtration means such as filter presses,
The handling of the cake is difficult, the planar area of the filter cloth is limited even when carried out on an industrial scale, and the yield of powder is poor. The present inventors have conducted various studies on methods for producing high-purity silicon nitride powder with a low content of impurities, and have made the PH of the slurry 3 or less using an inorganic acid, and reacted the impurities in the silicon nitride powder with the inorganic acid. Next, the silicon nitride powder is subjected to a so-called decantation process in which it is sedimented and separated, and ammonia is added to the slurry containing the silicon nitride powder from which impurities have been removed.
8.5 or more, sufficiently stirred, and then sedimented and separated and dried to provide a method for producing silicon nitride powder that can obtain silicon nitride powder with a high yield with less impurities and impurity anions in the silicon nitride powder. It is something. That is, the present invention is a method for producing silicon nitride powder with few impurities by acid-treating silicon nitride powder, by mixing silicon nitride powder containing fine powder of at least 0.7 μm or less with an inorganic acid aqueous solution to obtain a silicon nitride powder with a pH of 3 or less. After removing the impurities by reacting the inorganic acid aqueous solution of the slurry with the impurities contained in the silicon nitride powder, the silicon nitride powder is separated by sedimentation, and then the silicon nitride from which the impurities have been removed is Ammonia is added to the slurry containing the powder.
This is a method for producing silicon nitride powder with few impurities, which is characterized by forming a slurry with a pH of 8.5 or higher, and precipitating the silicon nitride powder in the slurry, separating it, and drying it. The present invention will be further explained in detail below. The present invention is a method for producing silicon nitride powder with few impurities by forming a slurry of silicon nitride powder and an acid aqueous solution and repeatedly decanting the slurry in an acidic region and an alkaline region. In particular, the present invention is characterized in that the raw material silicon nitride powder contains a specific fine powder. In the present invention, the silicon nitride powder used as a raw material contains particles of at least 0.7 μm or less. Those that do not contain particles of 0.7 μm or less are not suitable because although they will settle in the inorganic acid aqueous solution, the amount of impurities removed will be small. It is sufficient if the content of particles of 0.7 μm or less is as much as 1% in the raw material silicon nitride powder. Next, this raw material silicon nitride powder and an inorganic acid aqueous solution are made into a slurry having a pH of 3 or less. If the pH exceeds 3, it is not preferable because it takes time for the silicon nitride powder to settle and separation becomes difficult. In the present invention, one or more types of inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and hydrofluoric acid are used. These acids vary depending on the type of impurities contained in the silicon nitride powder, but when iron, calcium, or silica is contained, hydrochloric acid, hydrofluoric acid, and a mixed acid are preferred. The reason for this is that iron, calcium, etc. become chlorides, and silica becomes hydrogen silicofluoride. When these are dissolved in an inorganic acid aqueous solution and then decanted, impurities are removed and silicon nitride powder is separated. be. By repeating such steps, impurities in the silicon nitride powder are removed. An alkali is added to the slurry from which impurities have been removed to adjust its pH to 8.5 or higher, and it is preferable to use ammonia as the alkali to be added. Other than ammonia, such as caustic soda and caustic potash, are not preferred because they contain alkali metal ions. The ammonia concentration of the slurry is
The amount is preferably 0.015 mol/or more, and there is no problem with the treatment temperature being around room temperature. Decantation in an alkaline region is carried out at a pH of 8.5 or above, but a pH below 8.5 is not preferred because it takes time for the silicon nitride powder to settle and separation becomes difficult. In the above decantation,
In addition to removing remaining impurity anions by acidic region decantation, impurities such as iron, calcium, and silica remaining in the raw material silicon nitride powder are also removed. Although known means can be used for this purpose, spray drying is preferred. According to the method of the present invention, impurities such as metals and silica contained in silicon nitride powder and impurity anions mixed in during acid treatment are largely removed, resulting in 98% high purity silicon nitride powder. It can be obtained in high yield. The product of the present invention is expected to be used in high-temperature structural components such as high-performance gas turbines. As production equipment for carrying out the present invention, it is sufficient to use an acid-resistant container made of polyethylene, polypropylene, etc. equipped with an agitator, and to serve as both an acid treatment tank and a cleaning tank, and there is no particular need to provide a separate cleaning device. isn't it. The effects of the present invention are as follows. (1) It becomes possible to remove impure anions, which could not be achieved with conventional methods. (2) Gas turbine components with further improved performance;
It is expected to be used in high-temperature structural parts and mechanical parts such as high-temperature bearings. (3) There is no need for complicated cleaning processes or cleaning equipment as in the past. (4) High purity silicon nitride powder can be obtained with a high yield of over 98%. (5) When a purified slurry is dried with a spray dryer, it is advantageous because the slurry concentration can be fed without adjustment, and the step of diluting the cake when filtered and washed using a filter press or the like can be omitted. (6) Equipment costs are low. The present invention will be explained below with reference to Examples. Example 1 98% of particles are 10 μm or less, and 0.7 μm
100 g of silicon nitride powder (A) shown in Table 1 containing the following particles was put into a polypropylene container containing a mixed acid aqueous solution 2 consisting of 1 5% hydrochloric acid aqueous solution and 1 5% hydrofluoric acid aqueous solution, and heated to 60°C. After stirring and washing for 1 hour, decantation in an acidic region was repeated 5 times until the pH reached 2.5. Then add 28% to that slurry
2 ml of ammonia water was added to adjust the pH to 10.4, and the alkaline region decantation was repeated three times, resulting in a pH of 9.2. When the purified slurry thus treated was spray-dried at 110°C using a spray fryer (manufactured by Yamato Scientific Co., Ltd.),
99.2g of silicon nitride powder was obtained. The measurement results of the chemical components, particle size distribution, and yield of this silicon nitride powder were
Shown in the table. Comparative Example 1 The same procedure as in Example 1 was carried out except that the slurry pH in the acidic region decantation was set to 4, but sedimentation separation was not possible. When aqueous ammonia was further added to bring the pH to 7.5, sedimentation separation was similarly impossible. Comparative Example 2 More than 98% of particles are 10 μm or less, and 0.7 μm
Example 1 was carried out in the same manner as in Example 1, except that silicon nitride powder (B) shown in Table 1 containing no particles smaller than m was used, and 97.7 g of silicon nitride powder was obtained. Table 2 shows the chemical component particle size distribution and yield measurement results of this silicon nitride powder. Comparative Example 3 The same procedure as in Example 1 was carried out except that filtration was performed using a filter press (manufactured by Toyo Kagaku Co., Ltd.) instead of alkaline region decantation, and the result was 89.6
g of silicon nitride powder was obtained. Table 2 shows the chemical composition, particle size distribution, and measurement results of the silicon nitride powder.

【表】【table】

【表】 実施例 2 第1表の窒化けい素粉末(B)をジエツトミルの粉
砕条件を調節して得られた0.7μm以下の粒子を含
有量が異なる窒化けい素粉末を用いたこと以外は
実施例1と同様な処理を行つた。 得られた窒化けい素粉末のFeとFの不純物量
の測定結果を第3表に示す。
[Table] Example 2 The same procedure was carried out except that silicon nitride powder (B) in Table 1 was obtained by adjusting the grinding conditions of a jet mill and had a different content of particles of 0.7 μm or less. The same treatment as in Example 1 was performed. Table 3 shows the measurement results of the amounts of Fe and F impurities in the obtained silicon nitride powder.

【表】 尚、第1表、第2表及び第3表に記載した物性
の測定は、次の方法によつた。 (1) Fe,Ca…JIS−G−1322に準拠。 (2) O…O/N同時分析計(LECO社(米国)
製)による。 (3) F…パイロハイドロリシス蒸留、アルフツソ
ン吸光光度法による。 (4) Cl…パイロハイドロリシス蒸留、チオシアン
酸第2水銀中和滴定法による。 (5) 粒度分布…粒度分布(レーザー回折法、N&
L社(英国)製、商品名「マイクロトラツク
SPA」)による。
[Table] The physical properties listed in Tables 1, 2, and 3 were measured by the following methods. (1) Fe, Ca...Compliant with JIS-G-1322. (2) O…O/N simultaneous analyzer (LECO (USA)
(manufactured by). (3) F...Pyrohydrolysis distillation, by Alftsson spectrophotometry. (4) Cl...By pyrohydrolysis distillation, mercuric thiocyanate neutralization titration method. (5) Particle size distribution…Particle size distribution (laser diffraction method, N&
Manufactured by Company L (UK), product name: Microtrack
SPA”).

Claims (1)

【特許請求の範囲】[Claims] 1 窒化けい素粉末の酸処理による不純物の少な
い窒化けい素粉末の製法におて、少くとも0.7μm
以下の微粉末を含有する窒化けい素粉末と無機酸
水溶液とを混合しPH3以下のスラリーとし、その
スラリーの無機酸水溶液と窒化けい素粉末に含有
される不純物とを反応させて不純物を除去した
後、窒化けい素粉末を沈降させて分離し、次いで
不純物を除去した窒化けい素粉末を含有するスラ
リーにアンモニアを添加しそのPHを8.5以上のス
ラリーとし、スラリー中の窒化けい素粉末を沈降
させ分離し乾燥することを特徴とする不純物の少
ない窒化けい素粉末の製法。
1 In the method of manufacturing silicon nitride powder with few impurities by acid treatment of silicon nitride powder, at least 0.7 μm
Silicon nitride powder containing the following fine powder and an inorganic acid aqueous solution were mixed to form a slurry with a pH of 3 or less, and the inorganic acid aqueous solution of the slurry was allowed to react with impurities contained in the silicon nitride powder to remove impurities. After that, the silicon nitride powder is separated by sedimentation, and then ammonia is added to the slurry containing the silicon nitride powder from which impurities have been removed to make a slurry with a pH of 8.5 or higher, and the silicon nitride powder in the slurry is sedimented. A method for producing silicon nitride powder with few impurities, which is characterized by separation and drying.
JP23092983A 1983-12-07 1983-12-07 Manufacture of silicon nitride powder Granted JPS60122708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23092983A JPS60122708A (en) 1983-12-07 1983-12-07 Manufacture of silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23092983A JPS60122708A (en) 1983-12-07 1983-12-07 Manufacture of silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS60122708A JPS60122708A (en) 1985-07-01
JPH0424285B2 true JPH0424285B2 (en) 1992-04-24

Family

ID=16915492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23092983A Granted JPS60122708A (en) 1983-12-07 1983-12-07 Manufacture of silicon nitride powder

Country Status (1)

Country Link
JP (1) JPS60122708A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3829504A1 (en) * 1988-08-31 1990-03-01 Bayer Ag SILICON NITRIDE POWDER WITH IMPROVED SURFACE PROPERTIES AND METHOD FOR THE PRODUCTION THEREOF
FR2959507B1 (en) * 2010-04-30 2014-01-03 Thales Sa METHOD FOR MANUFACTURING CERAMIC COMPOSITE MATERIAL BASED ON SILICON NITRIDE AND BETA-EUCRYPTITE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891017A (en) * 1981-11-26 1983-05-30 Denki Kagaku Kogyo Kk Purifying method for alpha-type silicon nitride
JPS5895605A (en) * 1981-11-30 1983-06-07 Toyota Motor Corp Iron removal from silicon nitride powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891017A (en) * 1981-11-26 1983-05-30 Denki Kagaku Kogyo Kk Purifying method for alpha-type silicon nitride
JPS5895605A (en) * 1981-11-30 1983-06-07 Toyota Motor Corp Iron removal from silicon nitride powder

Also Published As

Publication number Publication date
JPS60122708A (en) 1985-07-01

Similar Documents

Publication Publication Date Title
EP0424058A1 (en) Method for producing particulate titanium oxides
EP0094139B1 (en) Process for the preparation of pure silicon dioxide
JP4619428B2 (en) Method for producing bismuth oxide powder
EP2952478A1 (en) Method for the production of free flowing synthetic calcium fluoride and use thereof
JP3299291B2 (en) Method for obtaining a metal hydroxide having a low fluoride content
JPS62187112A (en) Method for recovering rare earth element from rare earth element-iron type magnet material
US3383166A (en) Process for producing iron-free aluminum nitrate solutions
JPH0424285B2 (en)
CN108793265A (en) A kind of new process of titanium powder industry waste acid concentration acid sludge production feed grade ferrous sulfate monohydrate
JPH0757684B2 (en) Method for producing high-purity silica from chaff
JP4657172B2 (en) Method for purifying metal silicon
US3717702A (en) Process for treating phosphate ore
JP2864617B2 (en) Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica
JPS60122707A (en) Manufacture of silicon nitride powder
KR101239605B1 (en) Aluminum hydroxide gel particles and process for production of same
JPH0533070A (en) Method for removing impurity in metal silicon powder
JPH05507054A (en) A simple method for producing swellable layered silicates
JPH0725603A (en) Purification of silicon nitride powder
JPS60176918A (en) Magnesium hydroxide having high purity and dispersibility and production thereof
US2532102A (en) Production of ammonium beryllium fluoride
JPH0121093B2 (en)
JPS5950031A (en) Method for purifying iron oxide powder
US1959747A (en) Manufacture of precipitated silica
EP0571047B1 (en) Process for the preparation of precipitated borates
JP3503115B2 (en) Method for producing free hydroxylamine aqueous solution