JP2864617B2 - Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica - Google Patents

Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica

Info

Publication number
JP2864617B2
JP2864617B2 JP2029068A JP2906890A JP2864617B2 JP 2864617 B2 JP2864617 B2 JP 2864617B2 JP 2029068 A JP2029068 A JP 2029068A JP 2906890 A JP2906890 A JP 2906890A JP 2864617 B2 JP2864617 B2 JP 2864617B2
Authority
JP
Japan
Prior art keywords
ammonium
silica
acid
fluoride
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2029068A
Other languages
Japanese (ja)
Other versions
JPH03232714A (en
Inventor
正雄 久保
誠 柘植野
徳美 用山
康 高子
嘉人 油利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSAN KAGAKU KOGYO KK
Original Assignee
NITSUSAN KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSAN KAGAKU KOGYO KK filed Critical NITSUSAN KAGAKU KOGYO KK
Priority to JP2029068A priority Critical patent/JP2864617B2/en
Publication of JPH03232714A publication Critical patent/JPH03232714A/en
Application granted granted Critical
Publication of JP2864617B2 publication Critical patent/JP2864617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/186Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof from or via fluosilicic acid or salts thereof by a wet process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/10Compounds containing silicon, fluorine, and other elements
    • C01B33/103Fluosilicic acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粗シリカを原料とし、これを弗化アンモニウ
ム及び/又は酸性弗化アンモニウムとを反応させて珪弗
化アンモニウム含有する反応生成物を得、該生成物を酸
分解して得られる4弗化珪素を含有するガスからの珪弗
化水素酸、珪弗化アンモニウム及び高純度シリカの製造
法に関する。高純度シリカは石英原料、セラミックス原
料、充填材等の各種機能材料として有用であり、珪弗化
水素酸及び珪弗化アンモニウムは高純度シリカの合成中
間体等として有用である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention uses a crude silica as a raw material, and reacts it with ammonium fluoride and / or ammonium acid fluoride to obtain a reaction product containing ammonium silicofluoride. The present invention relates to a method for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica from a gas containing silicon tetrafluoride obtained by acid decomposition of the product. High-purity silica is useful as various functional materials such as a quartz raw material, a ceramic raw material, and a filler, and hydrosilicofluoric acid and ammonium silicofluoride are useful as synthetic intermediates of high-purity silica.

(従来の技術) 従来、シリカ粉末の製造法としては珪酸ソーダを酸や
イオン交換樹脂を用いて中和する方法(珪曹法)が一般
的であるが、この方法は低コストである反面Na、Al、Fe
等の金属性不純分やアニオン成分が混入するため、高純
度が要求される分野には供し得ない。また乾式法として
四塩化珪素を酸素と水素の存在下高温燃焼させる方法が
あるが、特殊な製造装置を要する上、高コストのため用
途が限定され、得られるシリカの物性も湿式法シリカと
は異なる。
(Prior Art) Conventionally, as a method for producing silica powder, a method of neutralizing sodium silicate with an acid or an ion exchange resin (a silicate method) is generally used. , Al, Fe
Therefore, it cannot be used in a field where high purity is required because metallic impurities and anionic components such as are mixed. As a dry method, there is a method in which silicon tetrachloride is burned at high temperature in the presence of oxygen and hydrogen.However, special production equipment is required, and the cost is high, so the application is limited. different.

また、珪弗化水素酸及び/又は珪弗化アンモニウムを
原料として水性媒体中でアンモニアを反応させてシリカ
を得る場合に、副生する弗化アンモニウムは産業上の利
用性が低く併産される利点よりも、産業廃棄物としてそ
の処分に困るという問題に直面する。
In addition, when silica is obtained by reacting ammonia in an aqueous medium using hydrofluoric acid and / or ammonium silicofluoride as a raw material, ammonium byproduct by-product has low industrial utility and is co-produced. We face the problem of disposing of it as industrial waste rather than its advantages.

また更に、シリカ源として利用可能な化合物または混
合物を、弗化水素酸と硫酸の混合液に溶解させ得られた
溶液を蒸留して得られる珪素の弗化物からシリカを得る
方法が開示されているが(例えば特開昭62−153111号公
報)、この方法では高価な弗化水素酸を用いるため、経
済的な工業プロセスとは言えない。
Still further, a method is disclosed in which a compound or a mixture usable as a silica source is dissolved in a mixed solution of hydrofluoric acid and sulfuric acid, and a solution obtained by distilling the obtained solution is used to obtain silica from fluoride of silicon. However, this method is not an economical industrial process because expensive hydrofluoric acid is used in this method.

(発明が解決しようとする課題) 従来技術の上記問題点に対し、本発明者等は高純度シ
リカの製造法に関し鋭意研究を進めた結果、本発明を完
成した。即ち本発明は、粗シリカと弗化アンモニウム
(NH4F)及び/又は酸性弗化アンモニウム(NH3・HF2
と酸成分を原料とする珪弗化水素酸(H2SiF6)、珪弗化
アンモニウム((NH42SiF6)及び高純度シリカの製造
法であり、粗シリカと弗化アンモニウムとの反応により
得られる珪弗化アンモニウムを含有する反応生成物を中
間体とし、これを酸分解して得られる4弗化珪素を含有
するガスを水、弗化アンモニウム液または水性アンモニ
アに吸収することにより珪弗化水素酸、珪弗化アンモニ
ウム及び高純度シリカを得ることができ、更に、得られ
た珪弗化水素酸、珪弗化アンモニウムをアンモニアと反
応させて高純度シリカを得ることが出来る。
(Problems to be Solved by the Invention) In view of the above-mentioned problems of the prior art, the present inventors have conducted intensive research on a method for producing high-purity silica, and as a result, completed the present invention. That is, the present invention relates to a method for producing crude silica and ammonium fluoride (NH 4 F) and / or acidic ammonium fluoride (NH 3 .HF 2 ).
Is a method for producing hydrosilicofluoric acid (H 2 SiF 6 ), ammonium silicofluoride ((NH 4 ) 2 SiF 6 ) and high-purity silica using acid components as raw materials. A reaction product containing ammonium silicofluoride obtained by the reaction is used as an intermediate, and a gas containing silicon tetrafluoride obtained by acid decomposition of the reaction product is absorbed into water, ammonium fluoride solution or aqueous ammonia. Hydrofluorosilicic acid, ammonium silicofluoride and high-purity silica can be obtained, and the obtained hydrosilicofluoric acid and ammonium silicofluoride can be reacted with ammonia to obtain high-purity silica.

本発明において用いる弗化アンモニウム及び/又は酸
性弗化アンモニウムは、珪弗化水素酸及び/又は珪弗化
アンモニウムとアンモニアとを水性媒体中で反応させて
シリカを得る際の副生物であるから、これを循環使用す
ることができる。また脱アンモニア反応において回収さ
れるアンモニア成分もシリカ製造原料として再使用する
ことができる。従って本発明の方法によれば、従来法の
ように高価な製造原料や産業上余剰な副生物の処理を要
せず、安価な製造原料と副生物の循環使用により経済的
な工業プロセスとなり、各種機能材料として有用な高純
度シリカが安価に供給できる。
Ammonium fluoride and / or ammonium acid fluoride used in the present invention is a by-product when silica is obtained by reacting hydrosilicofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium. This can be used cyclically. Also, the ammonia component recovered in the deammonification reaction can be reused as a raw material for producing silica. Therefore, according to the method of the present invention, it is not necessary to treat expensive production raw materials and industrially excessive by-products as in the conventional method, and an economical industrial process is realized by recycling inexpensive production raw materials and by-products. High-purity silica useful as various functional materials can be supplied at low cost.

(課題を解決するための手段) 本発明は、以下の(A)〜(C)の3工程 (A)粗シリカと弗化アンモニウム及び/又は酸性弗化
アンモニウムとを脱アンモニア反応させて珪弗化アンモ
ニウムを含有する反応生成物を得る工程、 (B)該生成物を酸分解するか、又は、該生成物にシリ
カを添加した後、酸分解し4弗化珪素を含有するガスを
得る工程、 (C)該ガスを水もしくは弗化アンモニウム液に吸収さ
せる工程、 よりなることを特徴とする、珪弗化水素酸及び/又は珪
弗化アンモニウムの製造法に関する。
(Means for Solving the Problems) The present invention comprises the following three steps (A) to (C): (A) a deammonia reaction between crude silica and ammonium fluoride and / or ammonium acid fluoride to form a silica A step of obtaining a reaction product containing ammonium fluoride; and (B) a step of acid-decomposing the product or, after adding silica to the product, acid-decomposing to obtain a gas containing silicon tetrafluoride. (C) a step of absorbing the gas into water or an ammonium fluoride solution, and a method for producing hydrosilicofluoric acid and / or ammonium silicofluoride.

更に、本発明は上記の(A)〜(C)の3工程に以下
の(D)工程を追加した、 (D)(C)工程で得られた珪弗化水素酸及び/又は珪
弗化アンモニウムとを水性媒体中でアンモニアと反応さ
せる工程、 よりなることを特徴とする高純度シリカの製造方法に関
する。
The present invention further comprises the following three steps (A) to (C) and the following step (D). (D) Hydrofluoric acid and / or fluorinated silicon obtained in step (C) Reacting ammonium with ammonia in an aqueous medium, and a method for producing high-purity silica.

更にまた、本発明は前記の(A)〜(B)の2工程で
得られた4弗化珪素を含有するガスを、(C)工程で水
性媒体中でアンモニアと反応させることを特徴とする高
純度シリカの製造方法に関する。
Furthermore, the present invention is characterized in that the gas containing silicon tetrafluoride obtained in the two steps (A) and (B) is reacted with ammonia in an aqueous medium in the step (C). The present invention relates to a method for producing high-purity silica.

本発明の上記製造法は、次の反応式にて例示される。 The above production method of the present invention is exemplified by the following reaction formula.

(A)脱アンモニア工程 粗SiO2+6NH4F→(NH42SiF6+4NH3+2H2O A−1 粗SiO2+3NH3・HF2→(NH42SiF6+NH3+2H2OA−2 (B)酸分解工程 酸として、硫酸及び燐酸のケースでは、 (NH42SiF6+2H2SO4→SiF4+2HF+2NH4HSO4 B−1 (NH42SiF6+2H3PO4→SiF4+2HF+2NH4H2PO4B−2 (NH42SiF6+1/2SiO2+2H2SO4→ 3/2SiF4+2NH4HSO4+2H2O B−3 (NH42SiF6+NH4F+3H2SO4→ SiF4+3HF++3NH4HSO4 B−4 (C)ガス吸収工程 SiF4+2HF→H2SiF6 C−1 SiF4+2/3H2O→2/3H2SiF6+1/3SiO2 C−2 SiF4+2NH4F→(NH42SiF6 C−3 (D)シリカ製造工程 SiF4+4NH3+2H2O→SiO2+4NH4F D−1 H2SiF6+6NH3+2H2O→SiO2+6NH4F D−2 (NH42SiF6+4NH3+2H2O→SiO2+6NH4F D−3 上記反応式は本発明の態様の一例であり、本発明の製
造法は勿論これらの反応式のみに限定されるものではな
い。
(A) deammoniation step crude SiO 2 + 6NH 4 F → ( NH 4) 2 SiF 6 + 4NH 3 + 2H 2 O A-1 crude SiO 2 + 3NH 3 · HF 2 → (NH 4) 2 SiF 6 + NH 3 + 2H 2 OA- 2 (B) Acid decomposition step In the case of sulfuric acid and phosphoric acid as the acid, (NH 4 ) 2 SiF 6 + 2H 2 SO 4 → SiF 4 + 2HF + 2NH 4 HSO 4 B-1 (NH 4 ) 2 SiF 6 + 2H 3 PO 4 SiF 4 + 2HF + 2NH 4 H 2 PO 4 B-2 (NH 4) 2 SiF 6 + 1 / 2SiO 2 + 2H 2 SO 4 → 3 / 2SiF 4 + 2NH 4 HSO 4 + 2H 2 O B-3 (NH 4) 2 SiF 6 + NH 4 F + 3H 2 SO 4 → SiF 4 + 3HF ++ 3NH 4 HSO 4 B-4 (C) Gas absorption process SiF 4 + 2HF → H 2 SiF 6 C-1 SiF 4 + 2 / 3H 2 O → 2 / 3H 2 SiF 6 +1/3 SiO 2 C -2 SiF 4 + 2NH 4 F → (NH 4 ) 2 SiF 6 C-3 (D) Silica production process SiF 4 + 4NH 3 + 2H 2 O → SiO 2 + 4NH 4 F D-1 H 2 SiF 6 + 6NH 3 + 2H 2 O → state of SiO 2 + 6NH 4 F D- 2 (NH 4) 2 SiF 6 + 4NH 3 + 2H 2 O → SiO 2 + 6NH 4 F D-3 above reaction formula present invention Is an example of a manufacturing method of the present invention is not intended to be of course limited to these reaction formulas.

本発明の製造法は、まず(A)工程で、原料の粗シリ
カと弗化アンモニウム及び/又は酸性弗化アンモニウム
との反応により、生成するアンモニアを系外に除去し
(回収可能)、珪弗化アンモニウムを生成させる。得ら
れた珪弗化アンモニウムを含有する反応生成物は粗シリ
カ中の不純分を含むが、(B)工程の酸分解工程におい
て酸成分と反応させ(必要に応じシリカ源を加え)るこ
とにより粗シリカ中の不純分は液層にとどまり、珪素成
分は4弗化珪素を含有するガスとしてガス化精製され
る。この4弗化珪素含有ガスは通常水分を含む4弗化珪
素と弗化水素との混合物から成り、これを(C)工程の
ガス吸収工程で水もしくは弗化アンモニウム液にて吸収
し珪弗化水素酸及び/又は珪弗化水素酸として回収する
が、直接水性アンモニアで吸収する場合(反応式D−1
参照)には一挙に高純度シリカを得ることができる。
In the production method of the present invention, first, in step (A), ammonia produced by the reaction of raw silica with ammonium fluoride and / or ammonium acid fluoride is removed out of the system (recoverable), and the silica is removed. Generate ammonium bromide. The obtained reaction product containing ammonium silicofluoride contains impurities in crude silica, but is reacted with an acid component in the acid decomposition step (B) (if necessary, a silica source is added). Impurities in the crude silica remain in the liquid layer, and the silicon component is gasified and purified as a gas containing silicon tetrafluoride. The silicon tetrafluoride-containing gas is usually composed of a mixture of silicon tetrafluoride containing water and hydrogen fluoride, and is absorbed by water or an ammonium fluoride solution in the gas absorption step of step (C) to form a silicon fluoride. It is recovered as hydroic acid and / or hydrosilicofluoric acid, but is directly absorbed with aqueous ammonia (reaction formula D-1).
High-purity silica can be obtained at once.

(D)工程のシリカ製造工程では、回収した珪弗化水素
酸及び/又は珪弗化アンモニウムとアンモニアとを水性
媒体中で反応させて高純度シリカを得る。
In the silica production step (D), the recovered hydrosilicofluoric acid and / or ammonium silicofluoride is reacted with ammonia in an aqueous medium to obtain high-purity silica.

シリカ製造工程での副生弗化アンモニウムはシリカを
分離後、母液として回収し、最初の脱アンモニア工程の
原料として循環使用できる。
The by-product ammonium fluoride in the silica production process is recovered as a mother liquor after the silica is separated, and can be recycled as a raw material in the first deammonification process.

次に本発明の製造法について詳細に説明する。 Next, the production method of the present invention will be described in detail.

(A)工程の脱アンモニア工程において、原料として用
いる粗シリカとはシリカを含有する化合物または混合
物、即ちシリカ源として利用可能な物質をさす。その具
体例を示せば、天然物として得られる珪藻土、珪石、珪
砂、籾殻灰、珪酸塩含有鉱物等が挙げられる。またムラ
イト、ジルコン等も使用でき、更に合成シリカとして知
られている、フェロシリコン製造時発生の廃ガスの集塵
により得られるシリカフューム、石炭火力発電所からの
副産物であるフライアッシュ、高炉スラグ、珪曹法シリ
カ等が挙げられるが、勿論これらのみに限定されるもの
ではない。粗シリカとしてはシリカ含量が高い程望まし
く、通常20%以上、好ましくは50%以上、更に好ましく
は80%以上であるが、上記シリカ含有の他、不純分の種
類、シリカ物性、シリカの反応性、入手容易性及び価格
等を加味して、目的とする高純度シリカの使途に応じ適
宜選択すれば良い。
In the deammonification step (A), the crude silica used as a raw material refers to a compound or mixture containing silica, that is, a substance that can be used as a silica source. Specific examples thereof include diatomaceous earth, silica stone, silica sand, rice husk ash, and silicate-containing minerals obtained as natural products. Mullite, zircon, etc. can also be used, and furthermore, silica fume, which is known as synthetic silica, obtained by collecting waste gas generated during ferrosilicon production, fly ash, blast furnace slag, silica, a by-product from a coal-fired power plant, Examples include soda silica, but are not limited to these. As the coarse silica, the higher the silica content, the better, usually 20% or more, preferably 50% or more, and more preferably 80% or more. In addition to the above silica content, the types of impurities, silica physical properties, and silica reactivity In consideration of the availability, the price, etc., it may be appropriately selected according to the intended use of the high-purity silica.

使用する弗化アンモニウムは、試薬または工業薬品と
して入射可能な固体もしくは溶液でも良いが、珪弗化水
素酸及び/又は珪弗化アンモニウムと水性アンモニアと
の反応生成物からシリカを分離した副生弗化アンモニウ
ム母液を循環使用するのが望ましい。この場合、母液中
に他の成分、例えば過剰のアンモニアや金属性不純分等
を含んでいても良く、必要に応じ母液を希釈したり濃縮
したりすることも可能である。
The ammonium fluoride used may be a solid or a solution that can be injected as a reagent or an industrial chemical, but may be a hydrofluoric acid and / or a by-product fluorine obtained by separating silica from a reaction product of ammonium silicofluoride and aqueous ammonia. It is desirable to recycle the ammonium halide mother liquor. In this case, the mother liquor may contain other components, such as excess ammonia and metallic impurities, and the mother liquor can be diluted or concentrated as necessary.

また酸性弗化アンモニウムも原料として使用でき、上
記同様工業薬品等を用いても良いがシリカ製造における
弗化アンモニウム母液を加熱濃縮せしめた脱アンモニア
反応生成物(以下の反応式参照)を使用することが望ま
しい。
Ammonium acid fluoride can also be used as a raw material, and industrial chemicals and the like may be used in the same manner as described above, but a deammonification reaction product obtained by heating and concentrating an ammonium fluoride mother liquor in silica production (see the following reaction formula) should be used. Is desirable.

NH4F→1/2NH3・HF2+1/2NH3↑ 上記反応は反応率を高めるには100℃以上の高温条件
を要するので、通常は20〜80%程度の脱アンモニア反応
率にとどめ弗化アンモニウムと酸性弗化アンモニウムと
の混合液または混合スラリーとして粗シリカとの反応に
供せば良い。
NH 4 F → 1 / 2NH 3・ HF 2 + 1 / 2NH 3 ↑ Since the above reaction requires high temperature conditions of 100 ° C or higher to increase the reaction rate, usually the deammonia reaction rate is limited to about 20 to 80%, What is necessary is just to provide to the reaction with the crude silica as a mixed solution or a mixed slurry of ammonium fluoride and ammonium acid fluoride.

粗シリカと弗化アンモニウム及び/又は酸性弗化アン
モニウムとの反応は、通常水性媒体中で、加熱条件下行
なうが、乾式法として固相反応を行なっても良い。
The reaction between the crude silica and ammonium fluoride and / or ammonium acid fluoride is usually performed in an aqueous medium under heating conditions, but a solid-phase reaction may be performed as a dry method.

水性媒体としては水または原料及び生成物に対して不
活性な有機溶剤と水との混合系が可能であるが、取扱い
上の理由から水系が望ましい。
As the aqueous medium, water or a mixed system of water and an organic solvent inert to raw materials and products can be used, but an aqueous system is preferable for handling reasons.

使用原料のモル否としてNH4F/SiO2=6が化学当量だ
が、原料の粗シリカの純度、反応性及び目標反応率に応
じモル比を変動させ、通常NH4F/SiO2モル比は1〜10の
範囲で行ない、好ましくは3〜8のモル比である。該モ
ル比が6を越えると過剰のNH4Fが反応系に残存し、6未
満では未反応のSiO2が残存する。
The chemical equivalent of NH 4 F / SiO 2 = 6 is used as the molarity of the raw material used, but the molar ratio varies depending on the purity, reactivity, and target reaction rate of the raw silica, and the NH 4 F / SiO 2 molar ratio is usually It is carried out in the range of 1 to 10, preferably in the molar ratio of 3 to 8. When the molar ratio exceeds 6, excess NH 4 F remains in the reaction system, and when the molar ratio is less than 6, unreacted SiO 2 remains.

上記反応は、通常加熱条件下、好ましくは50℃以上、
更に好ましくは80℃以上の温度にて行なう。反応系の圧
力は常圧付近または減圧下行なうことが多いが、加圧条
件下副生するNH3ガスを抜きつつ行なっても良い。反応
方式は原料混合物の加熱濃縮において原料を予め混合も
しくは一方の原料を仕込んで他方を添加する回分式で行
なっても良いし、反応系に原料両成分を同時に添加し生
成物を連続的に抜き出す連続方式で行なうことも可能で
ある。反応時間は他の条件により一概に言えないが、通
常数分ないし数10時間、好ましくは10時間以内、更に好
ましくは5時間以内である。
The reaction is usually carried out under heating conditions, preferably at 50 ° C or higher,
More preferably, it is carried out at a temperature of 80 ° C. or higher. The pressure in the reaction system is often around normal pressure or under reduced pressure, but it may be carried out under pressurized conditions while removing NH 3 gas by-produced. The reaction method may be a batch method in which the raw materials are premixed or one raw material is charged and the other is added in the heating and concentration of the raw material mixture, or both the raw materials are simultaneously added to the reaction system and the product is continuously extracted. It is also possible to carry out in a continuous manner. Although the reaction time cannot be unconditionally determined by other conditions, it is usually several minutes to several tens of hours, preferably within 10 hours, more preferably within 5 hours.

反応進行に伴ないアンモニアが系外に取出され気体も
しくはアンモニア水として回収され、同時に反応スラリ
ー中のシリカは系弗化アンモニウムに転化する。
As the reaction proceeds, ammonia is taken out of the system and recovered as a gas or aqueous ammonia, and at the same time, the silica in the reaction slurry is converted into system ammonium fluoride.

回収されたアンモニアは、通常アンモニア水として回
収し、後記のシリカ製造工程にて循環使用できる。
The recovered ammonia is usually recovered as ammonia water, and can be circulated and used in a silica production process described later.

脱アンモニア反応生成物は、原料組成、反応率、濃縮
度によるが、原料SiO2、原料NH4F、生成(NH42SiF6
副生NH3及び粗シリカ中の不純物等が混在する水スラリ
ーである。
The deammonification reaction product depends on the raw material composition, the reaction rate, and the concentration, but the raw material SiO 2 , the raw NH 4 F, the generated (NH 4 ) 2 SiF 6 ,
This is a water slurry in which by-product NH 3 and impurities in the crude silica are mixed.

酸性弗化アンモニウムまたはこれと弗化アンモニウム
との混合物を原料とする場合には、原料モル比はNH3・H
F2/SiO2=3が当量だが、通常モル比は0.5〜5の範囲で
行ない、好ましくは1.5〜4のモル比で行なう。反応の
進行は弗化アンモニウムを原料とする場合よりもかなり
低温で始まり、反応温度は室温付近でも良いが、反応率
を高めるには加熱条件下、好ましくは50℃以上で行なう
ことが望ましい。
When using ammonium acid fluoride or a mixture thereof with ammonium fluoride as the raw material, the raw material molar ratio is NH 3 .H
The molar ratio is usually in the range of 0.5 to 5, preferably 1.5 to 4, although F 2 / SiO 2 = 3 is equivalent. The reaction proceeds at a considerably lower temperature than when ammonium fluoride is used as a raw material, and the reaction temperature may be around room temperature. However, to increase the reaction rate, it is desirable to carry out the reaction under heating conditions, preferably at 50 ° C. or higher.

反応方式は弗化アンモンの場合と同様であり、反応条
件も前記に準ずる。
The reaction method is the same as that for ammonium fluoride, and the reaction conditions are the same as described above.

次の(B)工程の酸分解工程では、(A)工程で得た
珪弗化アンモニウムを含有する反応生成物を酸成分と反
応させ4弗化珪素を含有するガスを得るが、使用する酸
は低揮発性であることを要し、通常比較的安価に入手可
能な硫酸及び/又は燐酸を用いるが、勿論これらのみに
限定されない。
In the following acid decomposition step (B), the reaction product containing ammonium silicofluoride obtained in step (A) is reacted with an acid component to obtain a gas containing silicon tetrafluoride. Requires low volatility, and usually uses sulfuric acid and / or phosphoric acid which can be obtained relatively inexpensively, but of course is not limited thereto.

反応促進上酸成分は濃度が高い方が望ましく、硫酸を
用いる場合には通常20重量%以上、好ましくは50重量%
以上、更に好ましくは65重量%以上の濃度のものを使用
し、燐酸を用いる場合にはP2O5換算濃度で10重量%以
上、好ましくは20重量%以上が望ましい。
For the purpose of promoting the reaction, it is desirable that the acid component has a high concentration, and when sulfuric acid is used, it is usually at least 20% by weight, preferably 50% by weight.
Above, more preferably, a concentration of 65% by weight or more is used. When phosphoric acid is used, the concentration is preferably 10% by weight or more, preferably 20% by weight or more in terms of P 2 O 5 concentration.

また酸成分は必ずしも高純度である必要はないが、4
弗化珪素含有ガスとともに気化するような揮発性または
分解性不純分の存在は望ましくなく、その含有量は制限
される。
The acid component does not necessarily need to be of high purity.
The presence of volatile or decomposable impurities that evaporate with the silicon fluoride containing gas is undesirable and its content is limited.

(B)工程の酸分解工程において生成するガス成分は
主として4弗化珪素と弗化水素から成るが、その組成は
原料となる珪弗化アンモニウム混合物の組成、酸成分の
種類、酸分解反応により異なる。
The gas component generated in the acid decomposition step (B) is mainly composed of silicon tetrafluoride and hydrogen fluoride, and its composition depends on the composition of the ammonium silicofluoride mixture as the raw material, the type of the acid component, and the acid decomposition reaction. different.

例えば前記反応式B−1に例示される如くシリカの共
存なしで珪弗化アンモニウムを硫酸分解する際に高温条
件を要するが反応率を100%にすればガス組成HF/SiF4
2となり、式B−3の場合に十分な量のシリカ共存下反
応を行なえば、4弗化珪素ガスが選択的に生成する。
For example, as shown in the above reaction formula B-1, high-temperature conditions are required for decomposing ammonium silicofluoride without the coexistence of silica, but if the reaction rate is 100%, the gas composition HF / SiF 4 =
When the reaction is carried out in the presence of a sufficient amount of silica in the case of the formula B-3, silicon tetrafluoride gas is selectively generated.

また式B−4において珪弗化アンモニウムと弗化アン
モニウムの等モル混合物を原料として、酸分解反応及び
ガス回収を定量的に行なった場合には、ガス組成HF/SiF
4=3となる。
In addition, when the acid decomposition reaction and gas recovery are quantitatively performed using an equimolar mixture of ammonium silicofluoride and ammonium fluoride in the formula B-4, the gas composition HF / SiF
4 = 3.

尚、ガス成分である4弗化珪素の沸点は約−96℃であ
り、弗化水素の沸点は19℃であるから沸点差、換言すれ
ば蒸気圧の差異によりガス成分としての回収量は4弗化
弗素ガスの方が高まり、他方、弗化水素ガスの高回収率
にするにはより過酷な酸分解反応条件(高温、真空度ア
ップ)を要する。
The boiling point of silicon fluoride, which is a gas component, is about -96 ° C, and the boiling point of hydrogen fluoride is 19 ° C. Fluorine fluoride gas is more expensive, and on the other hand, more severe acid decomposition reaction conditions (high temperature, increased vacuum) are required to achieve a high recovery rate of hydrogen fluoride gas.

従って本(B)工程でのフッ素成分の回収率アップと
いう目的に対してはシリカを添加してフッ素成分を4弗
化珪素として回収した方が有利である。
Therefore, for the purpose of increasing the fluorine component recovery rate in the step (B), it is more advantageous to add silica to recover the fluorine component as silicon tetrafluoride.

本発明の(C)工程のガス吸収工程で、4弗化珪素を
含有するガスを水もしくは弗化アンモニウム液で吸収す
ることにより珪弗化水素酸及び/又は珪弗化アンモニウ
ムとして回収する。
In the gas absorption step of the step (C) of the present invention, the gas containing silicon tetrafluoride is recovered as water hydrofluoric acid and / or ammonium silicofluoride by absorbing it with water or an ammonium fluoride solution.

例えばガス組成HF/SiF4=2の場合(式C−1)に
は、水吸収により珪弗化水素酸が得られ、ガス組成がSi
F4のみの場合(式C−2)、にはシリカの副生を伴ない
つつ珪弗化水素酸を得る。実際にはガス組成はHF/SiF4
=0〜2(即ち式B−1とB−2との中間)の範囲であ
る場合が多い。
For example, when the gas composition HF / SiF 4 = 2 (Formula C-1), hydrosilicofluoric acid is obtained by water absorption, and the gas composition is Si
For F 4 only (Formula C-2), to obtain a hydrosilicofluoric acid while not accompanied by-production of the silica to. Actually the gas composition is HF / SiF 4
= 0 to 2 (that is, intermediate between the formulas B-1 and B-2) in many cases.

また、4弗化珪素含有ガスを弗化アンモニウム液で吸
収する際に、ガス組成がSiF4のみで、かつ弗化アンモニ
ウムが十分な量が存在する場合(式C−3)には、珪弗
化アンモニウム液として回収されるが、実際にはガス組
成が変動し、吸収液中の弗化アンモニウムの量も任意に
設定できるので、珪弗化水素酸と珪弗化アンモニウムと
の混合物として回収する場合が多い。
When the gas containing silicon tetrafluoride is absorbed by the ammonium fluoride solution, if the gas composition is only SiF 4 and a sufficient amount of ammonium fluoride is present (formula C-3), the silicon fluoride is used. Although it is recovered as an ammonium fluoride solution, in fact, the gas composition fluctuates and the amount of ammonium fluoride in the absorbing solution can be arbitrarily set, so that it is recovered as a mixture of hydrosilicofluoric acid and ammonium silicofluoride. Often.

なお、上記の水もしくは弗化アンモニウム吸収液はア
ンモニアをはじめとして弗化水素または酸性弗化アンモ
ニウムなど本発明の目的を逸脱しない範囲内で他の成分
を含んでいても良い。
The above-mentioned water or ammonium fluoride absorbing liquid may contain other components such as ammonia, hydrogen fluoride or ammonium acid fluoride within a range not departing from the object of the present invention.

更にガス吸収工程のもう一つの態様は、4弗化珪素含
有ガスを直接アンモニアを含有する水溶液で吸収し、直
接高純度シリカを得るものである(式D−1)。
Still another embodiment of the gas absorption step is to directly absorb silicon tetrafluoride-containing gas with an aqueous solution containing ammonia to directly obtain high-purity silica (formula D-1).

(C)工程のガス吸収工程で得られる珪弗化水素酸及び
/又は珪弗化アンモニウムは、いずれも4弗化珪素を含
有するガスとしてガス化することにより非揮発性もしく
は低揮発性不純分から精製されるので、実質上金属性不
純分を含有しない高純度品である。
Hydrofluoric acid and / or ammonium silicofluoride obtained in the gas absorption step of step (C) can be converted from non-volatile or low-volatile impurities by gasification as a gas containing silicon tetrafluoride. Since it is purified, it is a high-purity product containing substantially no metallic impurities.

本発明の高純度シリカの製造工程は、前記の4弗化珪
素含有ガスを直接アンモニアを含有する水溶液で吸収
し、直接高純度シリカを得る方法以外に、(D)工程と
して、(C)工程のガス吸収工程で得た珪弗化水素酸及
び/又は珪弗化アンモニウムを原料として高純度シリカ
を得るもので、本(D)工程で用いるアンモニアは気体
もしくは水性アンモニアであり、後者の場合は、5〜28
%程度の濃度の試薬または工業用アンモニア水を用いて
も良いが、本発明の脱アンモニア工程において回収され
たアンモニア成分を循環使用することもできる。
In the process for producing high-purity silica of the present invention, in addition to the method of directly absorbing high-purity silica by directly absorbing the silicon tetrafluoride-containing gas with an aqueous solution containing ammonia, the process (D) includes the process (C). High-purity silica is obtained from the hydrosilicofluoric acid and / or ammonium silicofluoride obtained in the gas absorption step, and the ammonia used in the step (D) is gaseous or aqueous ammonia; , 5-28
% Reagent or industrial ammonia water may be used, but the ammonia component recovered in the deammonification step of the present invention may be recycled.

本(D)工程は、水性媒体中で行なわれ、通常水を使
用するが、勿論有機溶剤や各種の添加剤を含有しても良
い。尚、アンモニア及び水性媒体は高純度シリカを得る
目的の範囲内で純度が良好なものを用いる。
This step (D) is carried out in an aqueous medium and usually uses water, but may of course contain an organic solvent or various additives. Ammonia and an aqueous medium having good purity within a range for obtaining high-purity silica are used.

アンモニアのモル比は化学量論的にはNH3/H2SiF6=6
(式D−2参照)、NH3/(NH42SiF6=4(式D−3参
照)だが、珪弗化水素酸及び/又は珪弗化アンモニウム
中のフッ素含量に対するアンモニアのモル比として、通
常NH3/Fモル比で0.3〜2.0、好ましくは0.5〜1.5、更に
好ましくは0.7〜1.2程度である。
The molar ratio of ammonia is stoichiometrically NH 3 / H 2 SiF 6 = 6
(See formula D-2), NH 3 / (NH 4 ) 2 SiF 6 = 4 (see formula D-3), but the molar ratio of ammonia to fluorine content in hydrosilicofluoric acid and / or ammonium silicofluoride The NH 3 / F molar ratio is usually about 0.3 to 2.0, preferably about 0.5 to 1.5, and more preferably about 0.7 to 1.2.

シリカの収率を高めるにはアンモニアを若干過剰にす
ることが望ましく(例えばNH3/Fモル比で1.1〜1.5)、
反面副生弗化アンモニウム母液の循環使用の場合には極
端な過剰量のアンモニアを使用することは好ましくな
い。
It is desirable that the increase the yield of the silica is in slight excess of ammonia (eg, 1.1 to 1.5 in NH 3 / F molar ratio),
On the other hand, when the by-product ammonium fluoride mother liquor is circulated, it is not preferable to use an excessively large amount of ammonia.

反応条件については目的とするシリカ物性に応じて選
択する。
Reaction conditions are selected according to the desired silica properties.

反応型式は回分式、連続式いずれも可能であり、原料
の添加方式としては、珪弗化水素酸及び/又は珪弗化
アンモニウムの水性媒体中にアンモニア成分を添加する
方式、その逆にアンモニア成分を予め仕込み他成分を
添加する方式、更には珪弗化水素酸及び/又は珪弗化
アンモニウムとアンモニア成分とを同時添加する方式及
び上記方式の組合せがある。
The reaction type can be a batch type or a continuous type. As a raw material addition method, a method in which an ammonia component is added to an aqueous medium of hydrofluoric acid and / or ammonium silicofluoride, and conversely, an ammonia component is added. Is added in advance and other components are added, furthermore, a method in which hydrofluoric acid and / or ammonium silicofluoride and an ammonia component are added simultaneously, and a combination of the above methods.

の方式は反応開始時は酸性側pH領域でシリカが生成
し、比較的緻密かつ微細なシリカ粒子が得られる。
In the method (1), silica is generated in the acidic pH range at the start of the reaction, and relatively dense and fine silica particles are obtained.

の方式は高pH領域でシリカが生成し、比較的粗大な
シリカ粒子が得られる。
In this method, silica is generated in a high pH range, and relatively coarse silica particles can be obtained.

の方式は反応系への原料の供給速度を制御すること
により一定のpH条件にてシリカの粒子成長を行なうこと
ができる。
In the method (1), silica particles can be grown under a constant pH condition by controlling the feed rate of the raw material to the reaction system.

珪弗化水素酸及び/又は珪弗化アンモニウムとアンモ
ニアとの水性媒体中での反応は、通常0〜100℃の温度
範囲で行ない、特に室温付近で反応を開始し反応熱によ
り10〜50℃程度の温度上昇を伴ないつつ反応を進めるこ
とが多いが、場合により80℃以上の高温下行なうことも
できる。
The reaction of hydrosilicofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium is usually carried out at a temperature in the range of 0 to 100 ° C., particularly when the reaction is started at around room temperature and the heat of reaction is 10 to 50 ° C. The reaction is often carried out with a slight increase in temperature, but may be carried out at a high temperature of 80 ° C. or higher in some cases.

上記反応は通常常圧付近で行なうが、加圧下100℃以
上の温度条件や減圧下行なっても良い。
The above reaction is usually carried out at about normal pressure, but may be carried out under pressure at a temperature of 100 ° C. or higher or under reduced pressure.

反応時間は反応形式、添加方式、他の反応条件等によ
り一律に規定できないが、通常1分〜10時間程度であ
り、必要に応じ熟成時間を設けることもできる。
Although the reaction time cannot be uniformly defined depending on the reaction type, addition method, other reaction conditions, and the like, it is usually about 1 minute to 10 hours, and an aging time can be provided as necessary.

反応系のシリカ濃度は通常0.5〜13%程度の範囲で行
なわれ、好ましくは1〜10%、更に好ましくは2〜7%
である。シリカ濃度が低過ぎるとシリカ粒子の生産効率
が低下し、高過ぎると反応制御が難しくなる。
The silica concentration in the reaction system is usually in the range of about 0.5 to 13%, preferably 1 to 10%, more preferably 2 to 7%.
It is. If the silica concentration is too low, the production efficiency of the silica particles decreases, and if it is too high, the reaction control becomes difficult.

また上記反応に際し、反応系に原料以外の例えば各種
塩(弗化アンモニウム、塩化アンモニウム、硫酸アンモ
ニウム等)、結合剤(PVA、セルロール類)、界面活性
剤等の添加剤を共存させることができる。
In the above reaction, additives other than the raw materials, for example, various salts (ammonium fluoride, ammonium chloride, ammonium sulfate, etc.), binders (PVA, celluloses), surfactants and the like can be coexistent in the reaction system.

これらの反応条件、即ち原料種及びモル比、反応型
式、添加方式、pH、温度、時間、シリカ濃度、添加剤
等、を選択してシリカスラリーを得る。
A silica slurry is obtained by selecting these reaction conditions, i.e., starting material type and molar ratio, reaction type, addition method, pH, temperature, time, silica concentration, additives and the like.

反応により得たシリカスラリーは副生する弗化アンモ
ニウム液もしくはスラリーと共存するので、これを通常
減圧濾過、加圧濾過、遠心分離等の固液分離操作により
シリカケーキを得る。このケーキは母液付着の形で少量
の弗化アンモニウムを含有するので、これを水洗処理等
により除く。この際に共存するアンモニア成分を酸洗浄
や熱水抽出等により除去することも可能である。
Since the silica slurry obtained by the reaction coexists with the ammonium fluoride solution or slurry produced as a by-product, the silica cake is usually obtained by a solid-liquid separation operation such as filtration under reduced pressure, filtration under pressure, and centrifugation. Since this cake contains a small amount of ammonium fluoride in the form of mother liquor adherence, it is removed by washing or the like. At this time, the coexisting ammonia component can be removed by acid washing, hot water extraction, or the like.

上記処理に得た湿シリカは熱風乾燥、真空乾燥、流動
乾燥、噴霧乾燥等により50〜200℃程度の温度条件で乾
燥し、必要に応じ500℃以上、更には900℃以上の高温で
焼成する。
The wet silica obtained in the above treatment is dried at a temperature of about 50 to 200 ° C. by hot air drying, vacuum drying, fluidized drying, spray drying, etc., and is fired at a high temperature of 500 ° C. or more, and even 900 ° C. or more as necessary. .

尚、シリカスラリーを予め噴霧乾燥等により水分を取
除いた後、共存する弗化アンモニウム等を水洗により除
去することも可能であるが、製造工程が複雑になる上、
得られるシリカの純度面においても有利であるとはいえ
ない。
In addition, after removing water by spray drying or the like of the silica slurry in advance, it is possible to remove coexisting ammonium fluoride and the like by washing with water, but the manufacturing process becomes complicated.
It is not advantageous in terms of the purity of the obtained silica.

本発明の製造法により得られる珪弗化水素酸、珪弗化
アンモニウム及び高純度シリカは、金属性不純物を実質
的に不純物を含まず、金属酸化物換算の不純物含量は10
0ppm以下、好ましくは10ppm以下、更に好ましくは1ppm
以下であり、アニオン成分も極めて少ない。
The hydrosilicofluoric acid, ammonium silicofluoride, and high-purity silica obtained by the production method of the present invention contain substantially no metallic impurities and have an impurity content of 10 as metal oxides.
0 ppm or less, preferably 10 ppm or less, more preferably 1 ppm
And the anion component is extremely small.

以下、実施例により更に詳細に本発明を説明する。
尚、実施例中の%は重量%である。
Hereinafter, the present invention will be described in more detail with reference to examples.
The percentages in the examples are% by weight.

実施例1 (A)温度計を付した10の撹拌反応機に粗シリカとし
て珪藻土(東亜化成社製 商品名 トーアライト シリ
カ純度 83.0%)0.72kgと30%弗化アンモニウム水溶液
7.4kgを添加し、130℃の油浴中で撹拌した。反応温度の
上昇とともにアンモニアを含む水分の留出が始まり、液
温が98℃になるまで5時間加熱撹拌し、反応スラリー3.
8kgを得た。反応系外にはアンモニア0.64kgを含む留出
液4.3kgが回収された。
Example 1 (A) 0.72 kg of diatomaceous earth (trade name: TOALITE, silica purity: 83.0%, manufactured by Toa Kasei Co., Ltd.) as crude silica in 10 stirred reactors equipped with a thermometer and a 30% aqueous ammonium fluoride solution
7.4 kg was added and stirred in a 130 ° C. oil bath. Distillation of water containing ammonia started with the rise of the reaction temperature, and the mixture was heated and stirred for 5 hours until the liquid temperature reached 98 ° C., and the reaction slurry 3.
8 kg was obtained. 4.3 kg of a distillate containing 0.64 kg of ammonia was recovered outside the reaction system.

(B)得られた反応スラリーは、珪弗化アンモニウムを
主成分とする混合物であり、これに上記珪藻土0.47kgを
添加した混合スラリー4.27kgを95%硫酸4.13kg中に2時
間かけて添加し、減圧下115℃の油浴中で反応温度80℃
に保ちつつ加熱撹拌した。
(B) The obtained reaction slurry is a mixture containing ammonium diafluoride as a main component, and 4.27 kg of a mixed slurry obtained by adding 0.47 kg of the above diatomaceous earth is added to 4.13 kg of 95% sulfuric acid over 2 hours. The reaction temperature is 80 ° C in a 115 ° C oil bath under reduced pressure.
While stirring.

(C)発生した4弗化珪素含有ガスは純水4.0kg中に吸
収することにより、シリカが一部析出した珪弗化水素酸
水溶液6.5kgを得た。シリカを静置沈降せしめた珪弗化
水素酸水溶液の上澄液は一部分析用サンプルとし、残り
はシリカ製造用中間原料とした。
(C) The generated silicon tetrafluoride-containing gas was absorbed in 4.0 kg of pure water to obtain 6.5 kg of an aqueous solution of hydrosilicofluoric acid in which silica was partially deposited. The supernatant of the hydrosilicofluoric acid aqueous solution in which silica was allowed to settle by standing was partially used as a sample for analysis, and the remainder was used as an intermediate material for silica production.

上記上澄液の珪弗化水素酸の分析値は21.5%(但しF1
7.0%、Si4.7%)であった。
The analytical value of hydrosilicofluoric acid in the supernatant was 21.5% (however, F1
7.0%, Si 4.7%).

(D)上記珪弗化水素酸3.2kgを25%アンモニア水2.2kg
中に室温で30分間かけて添加し、シリカスラリーを得
た。これを減圧濾過し、弗化アンモニウムを含有する母
液4.3kgを回収した。
(D) 2.2 kg of 25% ammonia water with 3.2 kg of the above hydrosilicofluoric acid
For 30 minutes at room temperature to obtain a silica slurry. This was filtered under reduced pressure to recover 4.3 kg of a mother liquor containing ammonium fluoride.

この回収母液の組成は化学分析値(NH3含量10.8%、
F含量10.7%)より、弗化アンモニウム0.896kgとアン
モニア0.10kgを含有していた。
The composition of the recovered mother liquor was determined by chemical analysis (NH 3 content 10.8%,
(F content: 10.7%), it contained 0.896 kg of ammonium fluoride and 0.10 kg of ammonia.

濾過したシリカケーキは大量の純水にて洗浄後熱風乾
燥し、シリカ粉末0.30kgを得た。
The filtered silica cake was washed with a large amount of pure water and dried with hot air to obtain 0.30 kg of silica powder.

原料として用いた粗シリカと得られた本発明の高純度
シリカの分析値を次に示す。
The analytical values of the crude silica used as a raw material and the obtained high-purity silica of the present invention are shown below.

原料(%) 生成物(ppm) Fe2O3 1.4 2.3 Al2O3 4.4 <1.0 CaO 0.3 <1.0 実施例2 (A)温度計を付した2の撹拌反応機に、珪藻土60g
と実施例1(D)で得たシリカ製造時の副生弗化アンモ
ニウム母液1000gを添加し130℃の油浴中で加熱撹拌し
た。反応温度が98℃になるまで5時間加熱濃縮しスラリ
ー400gを得た。
Raw material (%) Product (ppm) Fe 2 O 3 1.4 2.3 Al 2 O 3 4.4 <1.0 CaO 0.3 <1.0 Example 2 (A) 60 g of diatomaceous earth was added to a stirred reactor equipped with a thermometer.
And 1000 g of a mother liquor of ammonium fluoride as a by-product during the production of silica obtained in Example 1 (D), and the mixture was heated and stirred in a 130 ° C. oil bath. The mixture was heated and concentrated for 5 hours until the reaction temperature reached 98 ° C. to obtain 400 g of a slurry.

(B)得られた珪弗化アンモニウム混合物を95%硫酸43
0g中に添加し170℃の油浴中で液温が98℃になるまで5
時間加熱撹拌し、反応スラリーを得た。
(B) 95% sulfuric acid 43%
0 g in a 170 ° C oil bath until the liquid temperature reaches 98 ° C.
The mixture was stirred under heating for an hour to obtain a reaction slurry.

(C)発生した4弗化珪素と弗化水素の混合ガスを15%
アンモニア水630g中に吸収させシリカを生成させた。
(C) 15% of the generated mixed gas of silicon tetrafluoride and hydrogen fluoride
Absorbed in 630 g of aqueous ammonia to form silica.

得られたシリカスラリーは実施例1と同様に後処理を
行いシリカ粉末53gを得た。
The obtained silica slurry was subjected to post-treatment in the same manner as in Example 1 to obtain 53 g of silica powder.

原料粗シリカと得られたシリカ粉末の分析値を以下に
示す。
The analytical values of the raw crude silica and the obtained silica powder are shown below.

原料(%) 生成物(ppm) Fe2O3 1.42 <1 Al2O3 1.30 <1 CaO 0.07 <1 NaO2 0.42 <1 実施例3 (A)温度計を付した2の撹拌反応機に、粗シリカと
して珪曹法シリカ(日本シリカ社製 商品名ニップシー
ル)70gと酸性弗化アンモニウム171gと水399gを添加し
室温で30分撹拌後130℃の油浴中で、液温が98℃になる
まで5時間加熱撹拌し、反応スラリーを得た。
Raw material (%) Product (ppm) Fe 2 O 3 1.42 <1 Al 2 O 3 1.30 <1 CaO 0.07 <1 NaO 2 0.42 <1 Example 3 (A) In two stirred reactors equipped with a thermometer, As coarse silica, 70 g of silicate method silica (trade name: Nip Seal manufactured by Nippon Silica Co., Ltd.), 171 g of ammonium acid fluoride and 399 g of water were added, and the mixture was stirred at room temperature for 30 minutes, and then the liquid temperature became 98 ° C in an oil bath at 130 ° C. Until stirring for 5 hours to obtain a reaction slurry.

(B)得られた脱アンモニア反応スラリーに、前記
(A)工程で用いた粗シリカ35gを添加し、これを減圧
下80℃に、加熱撹拌した95%硫酸410g中に連続供給し
た。
(B) To the obtained deammonification reaction slurry, 35 g of the crude silica used in the step (A) was added, and this was continuously supplied to 410 g of 95% sulfuric acid heated and stirred at 80 ° C. under reduced pressure.

(C)発生した4弗化珪素含有ガスは20%弗化アンモニ
ウム液540gに吸収し、珪弗化アンモニウムのスラリー液
を得た。析出した珪弗化アンモニウムを濾取することに
より白色結晶130gが得られた。X線回折及び元素分析に
より、珪弗化アンモニウムであることを確認した。その
不純物分析値(ppm)を次に示す。
(C) The generated silicon tetrafluoride-containing gas was absorbed into 540 g of a 20% ammonium fluoride solution to obtain a slurry of ammonium silicofluoride. The precipitated ammonium silicofluoride was collected by filtration to obtain 130 g of white crystals. X-ray diffraction and elemental analysis confirmed that it was ammonium silicofluoride. The impurity analysis value (ppm) is shown below.

Fe2O3 <1 Al2O3 <1 CaO <1 NaO2 <1 (D)得られた珪弗化アンモニウム35gを純水315gに溶
解し、氷冷下気体アンモニア20gを30分間吹き込むと、
微細なシリカが生成した。
Fe 2 O 3 <1 Al 2 O 3 <1 CaO <1 NaO 2 <1 (D) Dissolve 35 g of the obtained ammonium silicofluoride in 315 g of pure water and blow in 20 g of gaseous ammonia for 30 minutes under ice-cooling.
Fine silica was formed.

得られたシリカ粉末の分析値(ppm)を以下に示す。 The analytical values (ppm) of the obtained silica powder are shown below.

Fe2O3 <1 Al2O3 <1 CaO <1 NaO2 <1 実施例4 (A)温度計を付した10の撹拌反応機に粗シリカとし
て珪曹法シリカ(日本シリカ社製 商品名ニップシー
ル)900gと、実施例1(D)で得たシリカ製造時の副生
弗化アンモニウムを含むシリカ母液10kgを添加し、130
℃の油浴中で撹拌した。反応温度の上昇とともにアンモ
ニアを含む水分の留出が始まり、液温が98℃になるまで
5時間加熱撹拌し、反応スラリーを得た。
Fe 2 O 3 <1 Al 2 O 3 <1 CaO <1 NaO 2 <1 Example 4 (A) Silica method silica (trade name, manufactured by Nippon Silica Co., Ltd.) was used as crude silica in 10 stirred reactors equipped with a thermometer. 900 g of nip seal) and 10 kg of a silica mother liquor containing ammonium fluoride by-produced during the production of silica obtained in Example 1 (D),
Stirred in oil bath at ℃. Distillation of ammonia-containing water was started as the reaction temperature was increased, and the mixture was heated and stirred for 5 hours until the liquid temperature reached 98 ° C. to obtain a reaction slurry.

(B)得られた珪弗化アンモニウム混合物6.1kgを60%
燐酸液51kg中に3時間かけて添加し、減圧下130℃の油
浴中で反応温度を90℃に保ちつつ5時間加熱撹拌をし
た。
(B) 60% of the obtained ammonium silicofluoride mixture 6.1 kg
The mixture was added to 51 kg of a phosphoric acid solution over 3 hours, and heated and stirred for 5 hours while maintaining the reaction temperature at 90 ° C. in a 130 ° C. oil bath under reduced pressure.

(C)発生した4弗化珪素含有ガスは20%弗化アンモニ
ウム液16kgで吸収し珪弗化水素酸と珪弗化アンモニウム
塩との混合液62kgを得た。
(C) The generated gas containing silicon tetrafluoride was absorbed by 16 kg of a 20% ammonium fluoride solution to obtain 62 kg of a mixed solution of hydrofluoric acid and ammonium silicofluoride.

(D)上記の混合液6.2kgを、実施例1(A)にて回収
された約15%濃度のアンモニア水4.5kgを添加した10
撹拌反応機中に各々連続供給し、得られたシリカ反応ス
ラリーを連続的に抜き出した。
(D) 4.5 kg of the above mixed solution was added to 4.5 kg of about 15% ammonia water recovered in Example 1 (A).
Each was continuously supplied into a stirring reactor, and the obtained silica reaction slurry was continuously extracted.

得られたスラリーはフィルタープレスにより固液分離
後大量の純水で洗浄後シリカケーキを抜き出し、熱風乾
燥し、シリカ粉末0.4kgを得た。
The obtained slurry was subjected to solid-liquid separation by a filter press, washed with a large amount of pure water, extracted a silica cake, and dried with hot air to obtain 0.4 kg of silica powder.

得られたシリカ粉末の分析値(ppm)を以下に示す。 The analytical values (ppm) of the obtained silica powder are shown below.

Fe2O3 <1 Al2O3 <1 CaO <1 NaO2 <1 実施例5 実施例1(D)で得たシリカ母液2000gを5撹拌容
器中で、170℃の油浴中で加熱濃縮しNH3/Fモル比0.9で
ある酸性弗化アンモニウムと弗化アンモニウムの混合液
830gを得た。この生成物はNH3269gとNH3・HF257gとの混
合物組成に相当する。
Fe 2 O 3 <1 Al 2 O 3 <1 CaO <1 NaO 2 <1 Example 5 2000 g of the silica mother liquor obtained in Example 1 (D) was heated and concentrated in an oil bath at 170 ° C. in a 5 stirred vessel. Mixed solution of ammonium fluoride and ammonium fluoride with NH 3 / F molar ratio of 0.9
830 g was obtained. This product corresponds to a mixture composition of 269 g of NH 3 and 57 g of NH 3 .HF 2 .

(A)温度計を付した10の撹拌反応機に粗シリカとし
てシリカヒューム(日本重化学工業社製)120gと上記酸
性弗化アンモニウムと弗化アンモニウムの混合液830gを
添加し、130℃の油浴中で撹拌した。反応温度の上昇と
ともにアンモニアを含む水分の留出が始まり、液温が98
℃になるまで5時間加熱撹拌し、反応スラリーを得た。
(A) To 10 stirred reactors equipped with a thermometer, 120 g of silica fume (manufactured by Nippon Heavy Industries, Ltd.) as crude silica and 830 g of the above-mentioned mixed solution of ammonium fluoride and ammonium fluoride were added, and an oil bath at 130 ° C. With stirring. As the reaction temperature rises, the distillation of water containing ammonia starts, and the liquid temperature rises to 98.
The mixture was heated and stirred for 5 hours until the temperature reached ℃, to obtain a reaction slurry.

(B)得られた珪弗化アンモニウム混合物860gを硫酸47
0gを含む60%燐酸液11.5kg中に添加し、減圧下120℃の
油浴中で反応温度を80℃に保ちつつ5時間加熱撹拌をし
た。
(B) 860 g of the obtained ammonium silicofluoride mixture was added to sulfuric acid 47
The mixture was added to 11.5 kg of a 60% phosphoric acid solution containing 0 g, and heated and stirred for 5 hours while maintaining the reaction temperature at 80 ° C. in a 120 ° C. oil bath under reduced pressure.

(C)発生した4弗化珪素含有ガスは純水に吸収し、シ
リカ30gを析出した珪弗化水素酸900gを得た。
(C) The generated silicon tetrafluoride-containing gas was absorbed in pure water to obtain 900 g of hydrosilicofluoric acid in which 30 g of silica was precipitated.

シリカを濾別した珪弗化水素酸の濃度は21.9%であっ
た。
The concentration of hydrosilicofluoric acid obtained by filtering off silica was 21.9%.

(D)得られた珪弗化水素酸は実施例1の(D)と同様
に処理を行い、シリカ粉末80gを得た。
(D) The obtained hydrosilicofluoric acid was treated in the same manner as in (D) of Example 1 to obtain 80 g of silica powder.

得られたシリカ粉末の分析値(ppm)を以下に示す。 The analytical values (ppm) of the obtained silica powder are shown below.

Fe2O3 <1 Al2O3 <1 CaO <1 NaO2 <1Fe 2 O 3 <1 Al 2 O 3 <1 CaO <1 NaO 2 <1

───────────────────────────────────────────────────── フロントページの続き (72)発明者 油利 嘉人 富山県婦負郡婦中町笹倉638 日産化学 工業株式会社富山工場内 審査官 八原 由美子 (56)参考文献 特開 平2−14808(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 33/10 C01B 33/18──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yoshito Yuri, 638 Sasakura, Funaka-cho, Nigane-gun, Toyama Prefecture Inspector, Nissan Chemical Industry Co., Ltd. , A) (58) Field surveyed (Int. Cl. 6 , DB name) C01B 33/10 C01B 33/18

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】以下の(A)〜(C)の3工程 (A)粗シリカと弗化アンモニウム及び/又は酸性弗化
アンモニウムとを脱アンモニア反応させ、珪弗化アンモ
ニウムを含有する反応生成物を得る工程、 (B)該生成物を酸分解して4弗化珪素を含有するガス
を得る工程、 (C)該ガスを水もしくは弗化アンモニウム液に吸収す
る工程、 よりなることを特徴とする珪弗化水素酸及び/又は珪弗
化アンモニウムの製造法。
1. A reaction product containing ammonium silicofluoride by the following three steps (A) to (C): (A) a deammonia reaction of crude silica with ammonium fluoride and / or ammonium acid fluoride; (B) obtaining a gas containing silicon tetrafluoride by acid decomposition of the product, and (C) absorbing the gas into water or an ammonium fluoride solution. To produce hydrosilicofluoric acid and / or ammonium silicofluoride.
【請求項2】請求項1の(A)工程に於ける弗化アンモ
ニウムとして、珪弗化水素酸及び/又は珪弗化アンモニ
ウムとアンモニアとを水性媒体中で反応させて得られる
弗化アンモニウムを使用する請求項1記載の珪弗化水素
酸及び/又は珪弗化アンモニウムの製造法。
2. An ammonium fluoride obtained by reacting hydrofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium as the ammonium fluoride in the step (A). 2. A process for producing hydrosilicofluoric acid and / or ammonium silicofluoride according to claim 1.
【請求項3】以下の(A)〜(C)の3工程 (A)粗シリカと弗化アンモニウム及び/又は酸性弗化
アンモニウムとを脱アンモニア反応させ、珪弗化アンモ
ニウムを含有する反応生成物を得る工程、 (B)該生成物にシリカを添加後、酸分解して4弗化珪
素を含有するガスを得る工程、 (C)該ガスを水もしくは弗化アンモニウム液に吸収す
る工程、 よりなることを特徴とする珪弗化水素酸及び/又は珪弗
化アンモニウムの製造法。
3. The following three steps (A) to (C): (A) a reaction product containing ammonium silicofluoride by deammonifying crude silica with ammonium fluoride and / or ammonium acid fluoride; (B) a step of adding silica to the product and subjecting it to acid decomposition to obtain a gas containing silicon tetrafluoride, and (C) a step of absorbing the gas into water or an ammonium fluoride solution. A method for producing hydrosilicofluoric acid and / or ammonium silicofluoride, comprising:
【請求項4】請求項3の(A)の工程に於ける弗化アン
モニウムとして、珪弗化水素酸及び/又は珪弗化アンモ
ニウムとアンモニアとを水性媒体中で反応させて得られ
る弗化アンモニウムを使用する請求項3記載の珪弗化水
素酸及び/又は珪弗化アンモニウムの製造法。
4. Ammonium fluoride obtained by reacting hydrosilicofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium as the ammonium fluoride in the step (A) of claim 3 The method for producing hydrosilicofluoric acid and / or ammonium silicofluoride according to claim 3, wherein
【請求項5】以下の(A)〜(C)の3工程 (A)粗シリカと弗化アンモニウム及び/又は酸性弗化
アンモニウムとを脱アンモニア反応させ、珪弗化アンモ
ニウムを含有する反応生成物を得る工程、 (B)該生成物を酸分解して4弗化珪素を含有するガス
を得る工程、 (C)該ガスを水性媒体中でアンモニアと反応させる工
程、 よりなることを特徴とする高純度シリカの製造法。
5. The following three steps (A) to (C): (A) a reaction product containing ammonium silicofluoride by subjecting the crude silica to a deammonification reaction with ammonium fluoride and / or ammonium acid fluoride; (B) a step of acid-decomposing the product to obtain a gas containing silicon tetrafluoride, and (C) a step of reacting the gas with ammonia in an aqueous medium. A method for producing high-purity silica.
【請求項6】請求項5の(A)工程に於ける弗化アンモ
ニウムとして、珪弗化水素酸及び/又は珪弗化アンモニ
ウムとアンモニアとを水性媒体中で反応させて得られる
弗化アンモニウムを使用する請求項5記載の高純度シリ
カの製造法。
6. An ammonium fluoride obtained by reacting hydrofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium as the ammonium fluoride in the step (A). The method for producing high-purity silica according to claim 5, which is used.
【請求項7】以下の(A)〜(C)の3工程 (A)粗シリカと弗化アンモニウム及び/又は酸性弗化
アンモニウムとを脱アンモニア反応させ、珪弗化アンモ
ニウムを含有する反応生成物を得る工程、 (B)該生成物にシリカを添加後、酸分解して4弗化珪
素を含有するガスを得る工程、 (C)該ガスを水性媒体中でアンモニアと反応させる工
程、 よりなることを特徴とする高純度シリカの製造法。
7. The following three steps (A) to (C): (A) a reaction product containing ammonium silicofluoride by subjecting the crude silica to a deammonification reaction with ammonium fluoride and / or ammonium acid fluoride; (B) adding silica to the product and subjecting it to acid decomposition to obtain a gas containing silicon tetrafluoride; and (C) reacting the gas with ammonia in an aqueous medium. A method for producing high-purity silica, characterized in that:
【請求項8】請求項7の(A)工程に於ける弗化アンモ
ニウムとして、珪弗化水素酸及び/又は珪弗化アンモニ
ウムとアンモニアとを水性媒体中で反応させて得られる
弗化アンモニウムを使用する請求項7記載の高純度シリ
カの製造法。
8. The ammonium fluoride in the step (A) according to claim 7, wherein ammonium fluoride obtained by reacting hydrosilicofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium. The method for producing high-purity silica according to claim 7, which is used.
【請求項9】以下の(A)〜(C)の4工程 (A)粗シリカと弗化アンモニウム及び/又は酸性弗化
アンモニウムとを脱アンモニア反応させ、珪弗化アンモ
ニウムを含有する反応生成物を得る工程、 (B)該生成物を酸分解して4弗化珪素を含有するガス
を得る工程、 (C)該ガスを水もしくは弗化アンモニウム液に吸収
し、珪弗化水素酸及び/又は珪弗化アンモニウムを得る
工程、 (D)得られた珪弗化水素酸及び/又は珪弗化アンモニ
ウムを水性媒体中でアンモニアと反応させる工程、 よりなることを特徴とする高純度シリカの製造法。
9. The following four steps (A) to (C): (A) a reaction product containing ammonium silicofluoride by subjecting the crude silica to a deammonification reaction with ammonium fluoride and / or ammonium acid fluoride; (B) a step of acid-decomposing the product to obtain a gas containing silicon tetrafluoride; (C) absorbing the gas in water or an ammonium fluoride solution to obtain hydrosilicofluoric acid and / or Or a step of obtaining ammonium silicofluoride; and (D) a step of reacting the obtained hydrosilicofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium. Law.
【請求項10】請求項9の(A)工程に於ける弗化アン
モニウムとして、珪弗化水素酸及び/又は珪弗化アンモ
ニウムとアンモニアとを水性媒体中で反応させて得られ
る弗化アンモニウムを使用する請求項9記載の高純度シ
リカの製造法。
10. An ammonium fluoride obtained by reacting hydrosilicofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium as the ammonium fluoride in the step (A). The method for producing high-purity silica according to claim 9, which is used.
【請求項11】以下の(A)〜(D)の4工程 (A)粗シリカと弗化アンモニウム及び/又は酸性弗化
アンモニウムとを脱アンモニア反応させ、珪弗化アンモ
ニウムを含有する反応生成物を得る工程、 (B)該生成物にシリカを添加後、酸分解して4弗化珪
素を含有するガスを得る工程、 (C)該ガスを水もしくは弗化アンモニウム液に吸収
し、珪弗化水素酸及び/又は珪弗化アンモニウムを得る
工程、 (D)得られた珪弗化水素酸及び/又は珪弗化アンモニ
ウムを水性媒体中でアンモニアと反応させる工程、 よりなることを特徴とする高純度シリカの製造法。
11. The following four steps (A) to (D): (A) A reaction product containing ammonium silicofluoride by subjecting a crude silica to a deammonification reaction with ammonium fluoride and / or ammonium acid fluoride. (B) adding silica to the product and subjecting it to acid decomposition to obtain a gas containing silicon tetrafluoride; (C) absorbing the gas into water or an ammonium fluoride solution to obtain (D) reacting the obtained hydrosilicofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium. A method for producing high-purity silica.
【請求項12】請求項11の(A)工程に於ける弗化アン
モニウムとして、珪弗化水素酸及び/又は珪弗化アンモ
ニウムとアンモニアとを水性媒体中で反応させて得られ
る弗化アンモニウムを使用する請求項11記載の高純度シ
リカの製造法。
12. An ammonium fluoride obtained by reacting hydrofluoric acid and / or ammonium silicofluoride with ammonia in an aqueous medium as the ammonium fluoride in the step (A). 12. The method for producing high-purity silica according to claim 11, which is used.
JP2029068A 1990-02-08 1990-02-08 Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica Expired - Fee Related JP2864617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029068A JP2864617B2 (en) 1990-02-08 1990-02-08 Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029068A JP2864617B2 (en) 1990-02-08 1990-02-08 Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica

Publications (2)

Publication Number Publication Date
JPH03232714A JPH03232714A (en) 1991-10-16
JP2864617B2 true JP2864617B2 (en) 1999-03-03

Family

ID=12266046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029068A Expired - Fee Related JP2864617B2 (en) 1990-02-08 1990-02-08 Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica

Country Status (1)

Country Link
JP (1) JP2864617B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735718B2 (en) * 2017-09-28 2020-08-05 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method and program
RU2691347C1 (en) * 2018-05-08 2019-06-11 Общество с ограниченной ответственностью "Новые химические продукты" Method of processing hexafluorosilicic acid to obtain hydrogen fluoride
CN111717922A (en) * 2020-07-01 2020-09-29 石河子大学 Preparation method of spherical silicon dioxide
CN113562738A (en) * 2021-08-17 2021-10-29 西安理工大学 Method for purifying silicon dioxide by using micro silicon powder
CN115010092A (en) * 2022-07-20 2022-09-06 湖北九宁化学科技有限公司 Method for recycling CVD dust in semiconductor industry

Also Published As

Publication number Publication date
JPH03232714A (en) 1991-10-16

Similar Documents

Publication Publication Date Title
US5458864A (en) Process for producing high-purity silica by reacting crude silica with ammonium fluoride
US4981664A (en) Method of production of high purity silica and ammonium fluoride
US4268492A (en) Process for production of potassium sulfate and hydrochloric acid
NO851213L (en) PROCEDURE FOR THE PREPARATION OF SILICONE TETRAFLUORIDE.
US5165907A (en) Method of production of high purity silica and ammonium fluoride
US4465657A (en) Process for the preparation of pure silicon dioxide and silicon dioxide obtained by applying this process
JP2864617B2 (en) Process for producing hydrosilicofluoric acid, ammonium silicofluoride and high-purity silica
US2588786A (en) Process for producing essentially silicon-free hydrofluoric acid from hydrofluosilicic acid
US6217840B1 (en) Production of fumed silica
US7534411B2 (en) Process for the preparation of pure silica
US5853685A (en) Process for the production of high purity silica from waste by-product silica and hydrogen fluoride
US3840639A (en) Method for the production of fluoride-free potassium phosphates
TWI535662B (en) Method for recovering dihydrate gypsum from ammonium sulfate
CN1234596C (en) Process for preparing fluorine compound and SiO2 from sodium fluosilicate
US4067957A (en) Process for producing hydrogen fluoride from an aqueous hydrofluorosilicic acid solution
US3021194A (en) Production of ammonium hydrogen fluoride
US2886414A (en) Process for producing finely-divided silica
CN113120937B (en) Comprehensive utilization method of fluorine-containing silicic acid wastewater
US4180546A (en) Process for removing phosphorus from phosphorus-containing fluorite
EP3126290A2 (en) High purity synthetic fluorite and process for preparing the same
JPH0692247B2 (en) Method for producing magnesium silicofluoride
JP2981931B2 (en) Method for treating aluminum foil etching waste liquid
JPH03218914A (en) Production of high purity silica and ammonium fluorosilicate
US3833713A (en) Method of manufacturing synthetic cryolite
KR20110017834A (en) Silicon tetrafluoride byproduct separation process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees