JPH0424259A - Granular carbon fiber aggregate - Google Patents

Granular carbon fiber aggregate

Info

Publication number
JPH0424259A
JPH0424259A JP2129128A JP12912890A JPH0424259A JP H0424259 A JPH0424259 A JP H0424259A JP 2129128 A JP2129128 A JP 2129128A JP 12912890 A JP12912890 A JP 12912890A JP H0424259 A JPH0424259 A JP H0424259A
Authority
JP
Japan
Prior art keywords
aggregate
carbon fiber
particle size
granular
fiber aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129128A
Other languages
Japanese (ja)
Inventor
Kazuyuki Obara
和幸 小原
Taichi Imanishi
今西 太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2129128A priority Critical patent/JPH0424259A/en
Publication of JPH0424259A publication Critical patent/JPH0424259A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title aggregate useful as a composite material, etc., having a granular aggregate shape, particle diameters in a given range, a particle diameter distribution of plural peaks, excellent blending properties and fluidity in a specific carbon fiber aggregate. CONSTITUTION:In a carbon fiber aggregate having 0.01-4mum, preferably 0.05-1mum diameter of fibers and 5-10,000, preferably 20-500 ratio of fiber length/fiber diameter, the shape of the aggregate is granular, the particle diameters distribute in a range of 0.1-5mm and the particle diameter distribution has plural peaks between 0.1-0.4mm and 1-2mm to give the objective aggregate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、顆粒状炭素繊維集合体に関し、更に詳しくは
、気相法により得れた炭素繊維の集合体の取扱い性及び
樹脂・ゴムへの混線性を改良した顆粒状炭素繊維集合体
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a granular carbon fiber aggregate, and more specifically, to handling of a carbon fiber aggregate obtained by a vapor phase method and to resin/rubber processing. The present invention relates to a granular carbon fiber aggregate that has improved crosstalk properties.

〔従来の技術〕[Conventional technology]

炭素繊維は高強度、高弾性率などの優れた性質を有し、
各種複合材料として近年脚光を浴びている材料である。
Carbon fiber has excellent properties such as high strength and high modulus of elasticity.
It is a material that has been in the spotlight in recent years as a variety of composite materials.

従来、炭素繊維は有機繊維を炭化することによって主に
製造されているが、炭化水素類の熱分解及び触媒反応に
よって生成する気相法炭素繊維も知られている。気相法
炭素繊維は、前者の炭素繊維に比べ、優れた結晶性、配
向性を有しているため、高強度、高弾性率を兼備する材
料として、多方面の用途が期待されている。このような
気相法炭素繊維としては、例えは、特開昭61−132
630号公報、同61−132600号公報、同61−
132663号公報、同61−225325号公報、同
61−225319号公報、同61−225320号公
報、同60−215816号公報、同61−70014
号公報などに示されているものが知られている。
Conventionally, carbon fibers have been mainly produced by carbonizing organic fibers, but vapor-grown carbon fibers produced by thermal decomposition and catalytic reactions of hydrocarbons are also known. Vapor-grown carbon fibers have superior crystallinity and orientation compared to the former carbon fibers, and are therefore expected to be used in a wide variety of fields as a material that has both high strength and high modulus of elasticity. Examples of such vapor-grown carbon fiber include Japanese Patent Application Laid-Open No. 61-132
No. 630, No. 61-132600, No. 61-
No. 132663, No. 61-225325, No. 61-225319, No. 61-225320, No. 60-215816, No. 61-70014
The ones shown in the No. 1 gazette, etc. are known.

しかしながら、これらの特許出願に係る気相法炭素繊維
は、本発明者らの検討によると嵩密度が0、04g/c
nrと小さく、その重量に対しての体積か大きいため、
保管、運搬時の取扱い性か悪いという問題かある。特に
樹脂、コム等の強化フィラーとして用いる場合、そのま
まの形状で押出機に供給したり、ロール混練機に供給す
ると、喰込みが悪く均一に樹脂、コム等に分散すること
かできないという問題が生じた。
However, according to studies by the present inventors, the vapor-grown carbon fibers related to these patent applications have a bulk density of 0.04 g/c.
Because it is small as nr and has a large volume relative to its weight,
There are problems with ease of handling during storage and transportation. In particular, when used as a reinforcing filler for resins, combs, etc., if it is fed as is to an extruder or to a roll kneader, there is a problem that it is difficult to penetrate and can only be uniformly dispersed into resins, combs, etc. Ta.

また、特開平1−270543号公報には、気相法炭素
繊維造粒物が開示されているが、その嵩密度か0.05
〜0.2g/cnfであり、樹脂と混練する場合、あら
かじめ気相法炭素繊維造粒物と樹脂をブレンドした後ホ
ッパーに投入すると、両者の嵩密度差によりホッパー内
で偏析を起し、一定組成での混練が困難であるという問
題があった。
Further, JP-A-1-270543 discloses a vapor-grown carbon fiber granule, but its bulk density is 0.05
~0.2 g/cnf, and when kneading with resin, if the vapor-grown carbon fiber granules and resin are blended in advance and then put into the hopper, segregation will occur in the hopper due to the difference in bulk density between the two, resulting in a constant There was a problem in that it was difficult to knead the composition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、保管、運搬に便利であり、取扱い性が
よく、ことに樹脂、ゴム等と混練する際に押出機等への
喰込みか改善されホッパー内における偏析を抑制すると
共に、樹脂、ゴム等に均−且つ容易に分散することので
きる顆粒状炭素繊維集合体を提供することにある。
The purpose of the present invention is to provide convenient storage and transportation, good handling properties, and in particular, to improve biting into the extruder etc. when kneading with resin, rubber, etc., to suppress segregation in the hopper, and to suppress segregation in the hopper. The object of the present invention is to provide a granular carbon fiber aggregate that can be uniformly and easily dispersed in rubber or the like.

〔課題を解決するための手段1 前記課題を解決するため、本発明者らは鋭意検討した結
果、ある特定の気相法炭素繊維をある特定の粒径分布を
有する顆粒状集合体とすることにより、前記問題点か大
幅に改善されることを見出し本発明に到達した。
[Means for Solving the Problems 1] In order to solve the above-mentioned problems, the present inventors have made extensive studies and found that certain vapor-grown carbon fibers are made into granular aggregates having a certain particle size distribution. The inventors have found that the above-mentioned problems can be significantly improved, and have arrived at the present invention.

すなわち、本発明は次のとおりである。That is, the present invention is as follows.

(1)繊維の直径が0.01〜4μm、繊維の長さ/繊
維の直径(以下アスペクト比と称す)が5〜1oooo
の炭素繊維の集合体において、集合体形状が顆粒状であ
り、その粒径が0.1〜5mmの範囲に分布しており、
且つ、粒径分布が複数個のピークを有していることを特
徴とする顆粒状炭素繊維集合体。
(1) The fiber diameter is 0.01 to 4 μm, and the fiber length/fiber diameter (hereinafter referred to as aspect ratio) is 5 to 1oooo
In the aggregate of carbon fibers, the aggregate shape is granular, and the particle size is distributed in the range of 0.1 to 5 mm,
A granular carbon fiber aggregate characterized in that the particle size distribution has a plurality of peaks.

(2)顆粒状炭素繊維集合体の粒径分布が、0.1〜0
.4mmと1〜2mmの間に複数個のピークを有してい
ることを特徴とする請求項(1)記載の顆粒状炭素繊維
集合体。
(2) The particle size distribution of the granular carbon fiber aggregate is 0.1 to 0.
.. The granular carbon fiber aggregate according to claim 1, having a plurality of peaks between 4 mm and 1 to 2 mm.

本発明の炭素繊維の直径0.01〜4μmであり、好ま
しくは0.01〜2μmであり、特に好ましくは0.0
5〜1μmである。
The diameter of the carbon fiber of the present invention is 0.01 to 4 μm, preferably 0.01 to 2 μm, particularly preferably 0.0
It is 5 to 1 μm.

また炭素繊維の長さ/直径の比、すなわちアスペクト比
は5〜10000であり、好ましくは10〜1000、
特に好ましくは20〜500である。アスペクト比かl
Oより小さくなると樹脂・ゴム等の補強効果が小さくな
り、10000を越えると溶融粘度の増加等成形加工性
が悪くなる。
Further, the length/diameter ratio of carbon fibers, that is, the aspect ratio, is 5 to 10,000, preferably 10 to 1,000,
Particularly preferably 20 to 500. Aspect ratio
If it is smaller than O, the reinforcing effect of resin, rubber, etc. will be reduced, and if it exceeds 10,000, the molding processability will deteriorate, such as an increase in melt viscosity.

本発明の炭素繊維を製造するには、例えは特開昭60−
231821号公報、同61−225322号公報、同
61282427号公報等に示されるように、加熱帯域
の空間で炭化水素類を熱分解触媒反応させることにより
製造される。
In order to produce the carbon fiber of the present invention, for example,
As shown in JP231821, JP61-225322, JP61282427, etc., it is produced by subjecting hydrocarbons to a thermal decomposition catalytic reaction in the space of a heating zone.

本発明における炭素繊維の集合体の形状は顆粒状であり
、球形に近い形状はど流動性がよく好ましい。該集合体
の粒径は0.1〜5mmの範囲に分布していることが好
ましい。粒径が0.1mm未満であると流動性か低下し
、押出機、ロール混練機等への喰込み性が悪くなり、5
mmを越えると分散性か悪くなる。更に上記集合体の粒
径分布か複数個のピークを有していることが必要である
The shape of the aggregate of carbon fibers in the present invention is granular, and a shape close to a spherical shape is preferred because of its good fluidity. It is preferable that the particle size of the aggregate is distributed in a range of 0.1 to 5 mm. If the particle size is less than 0.1 mm, the fluidity will decrease and the bite into an extruder, roll kneader, etc. will be poor.
If it exceeds mm, the dispersibility will deteriorate. Furthermore, it is necessary that the particle size distribution of the above-mentioned aggregate has a plurality of peaks.

粒径分布において、複数個のピークを有することにより
、該炭素繊維の充填率が向上し、該炭素繊維集合体の嵩
密度が増加し、樹脂との嵩密度差か減少するために偏析
を防止するのに効果がある。
Having multiple peaks in the particle size distribution improves the filling rate of the carbon fibers, increases the bulk density of the carbon fiber aggregate, and prevents segregation because the difference in bulk density with the resin decreases. It is effective to do so.

該ピークがO〜0.4mmと1〜2mmの間に複数個存
在すると、嵩密度の増加に加えて流動性、樹脂中への分
散性等が一層優れた該炭素繊維集合体を得ることができ
る。更に0.2〜0.4mmと1〜1.5mmの間に存
在することがより好ましい。ここで複数個とは2個以上
のことである。粒径分布の形状としては、0.1〜5+
++mの範囲に連続的に分布していて0.1〜0.4m
mと1〜2mmの間にピークか複数個存在してもよく、
或いは上記範囲外にもピークが存在していてもよく或い
は0.1〜0.4mmと1〜2mmの範囲だけに存在す
る形状でもよく、特に限定されるものではない。ピーク
の数、大きさの比は特に限定されないが、流動性、嵩密
度、樹脂ゴム等への分散性を考慮して、最適な粒径分布
となるようにする。粒径及び粒径分布の測定は公知の粒
径分布測定技術を用いることができ、例えば、顆粒状炭
素繊維集合体を光学顕微鏡下で観察し、画像処理装置に
より粒径及び粒径分布を解析する方法などが好ましい。
When a plurality of peaks exist between 0~0.4 mm and 1~2 mm, it is possible to obtain the carbon fiber aggregate which not only has an increased bulk density but also has better fluidity, dispersibility in resin, etc. can. Furthermore, it is more preferable to exist between 0.2-0.4 mm and 1-1.5 mm. Here, the term plurality refers to two or more. The shape of the particle size distribution is 0.1 to 5+
Continuously distributed in the range of ++m and 0.1 to 0.4m
There may be a peak or multiple peaks between m and 1 to 2 mm,
Alternatively, peaks may exist outside the above range, or shapes may exist only in the ranges of 0.1 to 0.4 mm and 1 to 2 mm, and are not particularly limited. Although the number of peaks and the ratio of their sizes are not particularly limited, they should be set to have an optimum particle size distribution in consideration of fluidity, bulk density, dispersibility in resin rubber, etc. Particle size and particle size distribution can be measured using known particle size distribution measurement techniques. For example, a granular carbon fiber aggregate is observed under an optical microscope, and the particle size and particle size distribution are analyzed using an image processing device. A method of doing so is preferred.

本発明における顆粒状炭素繊維集合体は嵩密度が0.1
〜0.5 g/cnf、好ましくは0.2〜0.5 g
/cm3である。嵩密度が0.1g/cmより小さくな
ると、該集合体と樹脂を混練するために、両者をブレン
ドした後ホッパーに投入すると、ホッパー内での偏析が
著しくなり、樹脂中の炭素繊維の組成が経時的に変化し
てしまい、また0、 5g/cnrより大きくなると分
散性が悪くなる。嵩密度は500cmのメスシリンダー
に顆粒状炭素繊維集合体を450cnr以上充填し、そ
の時の体積と質量を測定し、質量/体積により算出され
る。
The granular carbon fiber aggregate in the present invention has a bulk density of 0.1
~0.5 g/cnf, preferably 0.2-0.5 g
/cm3. When the bulk density is less than 0.1 g/cm, when the aggregate and the resin are blended and then put into a hopper, segregation in the hopper becomes significant and the composition of the carbon fibers in the resin changes. It changes over time, and if it exceeds 0.5 g/cnr, the dispersibility deteriorates. The bulk density is calculated by mass/volume by filling a 500 cm graduated cylinder with 450 cnr or more of granular carbon fiber aggregates, measuring the volume and mass at that time.

本発明における顆粒状炭素繊維集合体は極めて流動性が
すぐれていることも特長であり、流動性の目安である安
息角は25〜50度、好ましくは25〜40度である。
The granular carbon fiber aggregate according to the present invention is characterized by extremely excellent fluidity, and the angle of repose, which is a measure of fluidity, is 25 to 50 degrees, preferably 25 to 40 degrees.

ここでいう安息角は、水平面上に上方から該集合体を供
給して円鍾状の堆積を形成させ、その斜面の傾斜角を測
定することにより求められる。
The angle of repose here is determined by supplying the aggregate from above onto a horizontal surface to form a circular pile, and measuring the inclination angle of the slope.

本発明の最も肝要な点は嵩密度、流動性、樹脂中への分
散性等顆粒状炭素繊維集合体の物性を最適にするために
、該集合体の粒径分布を調整することである。
The most important point of the present invention is to adjust the particle size distribution of the granular carbon fiber aggregate in order to optimize the physical properties of the granular carbon fiber aggregate, such as bulk density, fluidity, and dispersibility in the resin.

本発明において炭素繊維は、本発明で特定されたような
繊維の直径及びアスペクト比に粉砕されたもの、更に酸
化処理を施し含酸素官能基が導入されたもの、また窒素
、アルゴンのごとき不活性雰囲気中で熱処理されたもの
等でもよい。
In the present invention, carbon fibers include those that have been pulverized to the fiber diameter and aspect ratio specified in the present invention, those that have been further oxidized and introduced with oxygen-containing functional groups, and those that have been subjected to an oxidation treatment to introduce oxygen-containing functional groups, It may also be one that has been heat-treated in an atmosphere.

本発明における、顆粒状炭素繊維集合体の製造方法は特
に限定されないが、例えは、横型ドラム中にすき状のシ
ャベルを配して構成したミキサー中に、前記製造法によ
り得られた炭素繊維、又は該炭素繊維を粉砕、酸化処理
、熱処理したものを投入し、上記シャベルを回転させて
、上記炭素繊維を三次元流動させ、この状態の炭素繊維
に造粒助剤を加えることにより、上記炭素繊維を顆粒状
の集合体に形成する。
The method for producing the granular carbon fiber aggregate in the present invention is not particularly limited, but for example, the carbon fibers obtained by the above production method may be placed in a mixer configured by disposing a plow-like shovel in a horizontal drum. Alternatively, the carbon fibers are crushed, oxidized, and heat treated, and the shovel is rotated to cause the carbon fibers to flow three-dimensionally, and a granulation aid is added to the carbon fibers in this state. The fibers are formed into granular aggregates.

上記シャベルの回転数、造粒助剤の種類と投入量、投入
方法、造粒時間により、顆粒状炭素繊維集合体の粒径分
布、嵩密度等が変化するため、所望の該集合体を得るた
めに、上記造粒条件を調整する必要がある。例えば、造
粒助剤の投入量を多くすれば、粒径の大きな嵩密度の大
きい該集合体が得られ、また、シャベルの回転数を上げ
ると粒径が小さくなる。更に当然ながら、用いる炭素繊
維の直径、アスペクト比を変えると同じ造粒条件で該集
合体の粒径分布等が変化するので、用いる炭素繊維の形
態により造粒条件を調整する必要かある。
The particle size distribution, bulk density, etc. of the granular carbon fiber aggregates change depending on the rotation speed of the shovel, the type and amount of granulation aid, the method of injection, and the granulation time, so that the desired aggregate can be obtained. Therefore, it is necessary to adjust the above granulation conditions. For example, if the amount of granulation aid added is increased, the aggregate with a large particle size and a high bulk density can be obtained, and if the number of rotations of the shovel is increased, the particle size becomes smaller. Furthermore, as a matter of course, changing the diameter and aspect ratio of the carbon fibers used will change the particle size distribution of the aggregate under the same granulation conditions, so it is necessary to adjust the granulation conditions depending on the form of the carbon fibers used.

上記の如き装置、方法で形成された顆粒状炭素繊維集合
体をふるい等で分級し、分級した該集合体をブレンドす
ることにより本発明の顆粒状炭素繊維集合体を得ること
ができる。また上記ミキサ中に該炭素繊維と造粒助剤を
連続的に投入して、連続的に処理されたものを排出、分
級ブレンドする顆粒状炭素繊維集合体の連続製造方法も
好ましい。本発明における顆粒状炭素繊維集合体の製造
方法及び装置は上記例示に限定されるものではなく、上
記炭素繊維を三次元流動させなから、同時に造粒助剤を
加えられる装置を用いる方法や、造粒助剤を使用しない
方法も用いられる。
The granular carbon fiber aggregates of the present invention can be obtained by classifying the granular carbon fiber aggregates formed by the apparatus and method described above using a sieve or the like, and blending the classified aggregates. It is also preferable to continuously produce a granular carbon fiber aggregate, in which the carbon fibers and granulation aid are continuously introduced into the mixer, and the continuously treated mixture is discharged, classified and blended. The method and apparatus for producing granular carbon fiber aggregates according to the present invention are not limited to the above examples, but include a method using an apparatus that does not cause the carbon fibers to flow three-dimensionally and can simultaneously add a granulation aid; Methods that do not use granulation aids are also used.

造粒助剤とは、前記炭素繊維に凝集性を付与する液体で
あれは、特に限定されないが、例えは、水、メタノール
、エタノール、プロパツール等のアルコール類、アセト
ン、メチルエチルケトン等のケトン類、ヘキサン、シク
ロヘキサン、ベンセン、トルエン等の炭化水素類等の有
機溶媒、及び水、有機溶媒に有機化合物を溶解させたも
の、機械的に分散させたもの、界面活性剤により分散さ
せたもの等が用いられる。ここで有機化合物とは、デン
プン、シクロデキストリン、アミノ酸、ペプチド、たん
白質、天然ゴム、大豆油、ヤシ油等の天然化合物、AB
S樹脂、塩化ビニリデン系ラテックス、塩化ビニル樹脂
、ブタジェン樹脂、フン素樹脂、ポリアセタール、ナイ
ロン6、ナイロン66等のポリアミド、ボリアリレート
、ポリエーテルイミド、ポリエーテルエーテルケトン、
ポリエチレン、ポリエチレンオキシド、ポリエチレンテ
レフタレート、ポリブチレンテレフタレート等のポリエ
ステル、ポリカーボネート、ポリスチレン、ポリサルホ
ン、ポリビニルエーテル、ポリフェニレンオキサイド、
ポリフェニレンサルファイド、ポリプロピレン、メタク
リル樹脂等の熱可塑性樹脂、該樹脂の前駆体及び単量体
、該樹脂の変性物、エポキシ樹脂、キシレン樹脂、ビニ
ルエステル樹脂、フェノール樹脂、不飽和ポリエステル
樹脂、フラン樹脂、ポリイミド、ポリウレタン、メラミ
ン樹脂、ユリア樹脂等の熱硬化性樹脂、該樹脂の前駆体
及び単量体、該樹脂の変性物、スチレン・ブタジェンラ
テックス、ブタジェンラテックス、ネオプレン・ブタジ
ェンラテックス、クロロプレンゴム、ウレタンコム、シ
リコーンゴム、フッ素ゴム、アクリルゴム等の合成ゴム
、ビニルトリクロロシラン、ビニルトリメトキシシラン
、ビニルトリエトキシシラン、トリス−(2−メトキシ
エトキシ)ビニルシラン、γ−グリシドキシプロピルト
リメトキシシラン、3−(トリメトキシシリル)プロピ
ルメタクリレート、γ  (2−アミンエチル)アミノ
プロピルトリメトキシシラン、γクロロプロピルトリメ
トキシシラン、γ−メルカプトプロピルトリメトキシシ
ラン、γ−アミノプロピルトリエトキシシラン等のシラ
ン系カップリング剤、イソプロピルトリイソステアロイ
ルチタネート、イソプロピルトリデシルベンセンスルホ
ニルチタネート、イソプロピルトリス(ジオクチルピロ
ホスフェート)チタネート、テトライソプロピルビス(
ジオクチルホスファイト)チタネト、テトラオクチルビ
ス(ジトリデシルホスファイト)チタネート、ビス(ジ
オクチルパイロホスフェート)オキシアセテートチタネ
ート、イソプロピルトリオクタノイルチタネート、イソ
プロピルジメタクリルイソステアロイルチタネート、イ
ソプロビルイソステアロイルジアクリルチタネト、イソ
プロピルトリ (ジオクチルホスフェート)チタネート
、イソプロピルトリクミルフェニルチタネート、イソプ
ロピルトリ(N−アミノエチル−アミノエチル)チタネ
ート等のチタニウム系カップリング剤等である。界面活
性剤とじては、アルキルエーテルカルホン酸塩等の陰イ
オン界面活性剤、脂肪族4級アンモニウム塩、イミダゾ
リニウム塩等の陽イオン界面活性剤、カルボキンヘタイ
ン型等の両性界面活性剤、ポリオキシエチレンアルキル
エーテル、ポリオキシエチレングリセリン脂肪酸エステ
ル、ポリエチレングリコル脂肪酸エステル等の非イオン
界面活性剤があけられる。
The granulation aid is not particularly limited to any liquid that imparts cohesive properties to the carbon fibers, but examples thereof include water, alcohols such as methanol, ethanol, and propatool, ketones such as acetone and methyl ethyl ketone, Organic solvents such as hydrocarbons such as hexane, cyclohexane, benzene, toluene, etc., organic compounds dissolved in water, organic solvents, mechanically dispersed, and dispersed with surfactants are used. It will be done. Organic compounds here include natural compounds such as starch, cyclodextrin, amino acids, peptides, proteins, natural rubber, soybean oil, coconut oil, etc.
S resin, vinylidene chloride latex, vinyl chloride resin, butadiene resin, fluorine resin, polyacetal, polyamide such as nylon 6 and nylon 66, polyarylate, polyetherimide, polyether ether ketone,
Polyesters such as polyethylene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polystyrene, polysulfone, polyvinyl ether, polyphenylene oxide,
Thermoplastic resins such as polyphenylene sulfide, polypropylene, methacrylic resins, precursors and monomers of the resins, modified products of the resins, epoxy resins, xylene resins, vinyl ester resins, phenolic resins, unsaturated polyester resins, furan resins, Thermosetting resins such as polyimide, polyurethane, melamine resin, urea resin, precursors and monomers of the resin, modified products of the resin, styrene/butadiene latex, butadiene latex, neoprene/butadiene latex, chloroprene rubber , urethane rubber, silicone rubber, fluorine rubber, synthetic rubber such as acrylic rubber, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, tris-(2-methoxyethoxy)vinylsilane, γ-glycidoxypropyltrimethoxysilane , 3-(trimethoxysilyl)propyl methacrylate, γ(2-amineethyl)aminopropyltrimethoxysilane, γchloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, etc. Ringing agent, isopropyl triisostearoyl titanate, isopropyl tridecyl benzene sulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis(
Dioctyl phosphite) titanate, Tetraoctyl bis(ditridecyl phosphite) titanate, Bis(dioctyl pyrophosphate) oxyacetate titanate, Isopropyltrioctanoyl titanate, Isopropyl dimethacrylic isostearoyl titanate, Isoprobyl isostearoyl diacryl titanate, Isopropyl These include titanium-based coupling agents such as tri(dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, and isopropyl tri(N-aminoethyl-aminoethyl) titanate. Examples of surfactants include anionic surfactants such as alkyl ether carbonate, cationic surfactants such as aliphatic quaternary ammonium salts and imidazolinium salts, and amphoteric surfactants such as carboquinhetain type. Nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene glycerin fatty acid ester, and polyethylene glycol fatty acid ester can be used.

造粒助剤としては、安全性の面から水、及び水に有機化
合物を溶解させたもの、機械的に分散させたもの、界面
活性剤により分散させたものが好ましく、更に、形成し
た顆粒状炭素繊維集合体を様々な用途に使用する場合、
不純物となる可能性がある有機化合物が残留しない事が
望ましく、水を造粒助剤に用いるのが好ましい。しかし
ながら該集合体の強さを向上させるために水に有機化合
物を溶解させたもの、界面活性剤により分散させたもの
も好ましい。使用する用途に応じて最適な造粒助剤を選
択する必要がある。
From the viewpoint of safety, the granulation aid is preferably water, an organic compound dissolved in water, mechanically dispersed, or dispersed with a surfactant. When using carbon fiber aggregates for various purposes,
It is desirable that no organic compounds that may become impurities remain, and it is preferable to use water as a granulation aid. However, in order to improve the strength of the aggregate, it is also preferable to dissolve an organic compound in water or to disperse it with a surfactant. It is necessary to select the most suitable granulation aid depending on the intended use.

造粒助剤の量は製造に用いる装置、製造条件、用いる造
粒助剤の種類等に応じて最も好ましい顆粒状炭素繊維集
合体が得られるよう調整する必要かある。
The amount of the granulation aid needs to be adjusted depending on the equipment used for production, production conditions, the type of granulation aid used, etc. so as to obtain the most preferable granular carbon fiber aggregate.

造粒助剤中に含まれる水、有機溶媒を除去するために乾
燥を行う必要がある。乾燥方法は特に限定されず、公知
の技術が利用できる。乾燥温度は水、有機溶媒のみの場
合は4008C以下で窒素、アルゴン等の不活性雰囲気
で行うことが好ましい。
Drying is required to remove water and organic solvent contained in the granulation aid. The drying method is not particularly limited, and known techniques can be used. In the case of using only water or an organic solvent, the drying temperature is preferably 4008 C or less, and the drying is preferably carried out in an inert atmosphere such as nitrogen or argon.

有機化合物を用いた場合は、該有機化合物が変質しない
温度で乾燥を行う。
When an organic compound is used, drying is performed at a temperature at which the organic compound does not change in quality.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例により更に詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1〜3、比較例1〜2 トリスアセチルアセトン鉄とベンセンを1400°Cの
加熱空間に導入し、浮遊状態で製造した。繊維の直径が
0.02〜0.3μm、アスペクト比が50〜400の
炭素繊維1kgを内容積約100nのレディゲミキサー
(検板技研社製)に投入し、シャベル回転数8orpm
、チョッパー回転数300Orpmで該炭素繊維を三次
元的に流動させた。造粒助剤として水4kgを連続的に
投入し、5分間造粒した後、棚段式熱風乾燥機で150
°Cで乾燥し、分級ブレンドして顆粒状炭素繊維集合体
を得た。
Examples 1 to 3, Comparative Examples 1 to 2 Iron trisacetylacetonate and benzene were introduced into a heating space at 1400°C and produced in a floating state. 1 kg of carbon fiber with a fiber diameter of 0.02 to 0.3 μm and an aspect ratio of 50 to 400 was put into a Lodige mixer (manufactured by Kenpan Giken Co., Ltd.) with an internal volume of about 100 n, and the shovel rotation speed was 8 orpm.
The carbon fibers were made to flow three-dimensionally at a chopper rotation speed of 300 rpm. Continuously add 4 kg of water as a granulation aid and granulate for 5 minutes.
It was dried at °C and classified and blended to obtain a granular carbon fiber aggregate.

得られた集合体の粒径分布により実施例1.2.3、比
較例1.2として評価した。第1図に実施例1〜3、第
2図に比較例1.2の粒径分布を示す。該集合体の平均
粒径、嵩密度、安息角及び樹脂と複合して、喰込み押出
し性、分散性を評価した。
The obtained aggregates were evaluated as Example 1.2.3 and Comparative Example 1.2 based on the particle size distribution. FIG. 1 shows the particle size distribution of Examples 1 to 3, and FIG. 2 shows the particle size distribution of Comparative Examples 1.2. The average particle size, bulk density, angle of repose, and composite with resin of the aggregate were evaluated for biting extrudability and dispersibility.

樹脂との複合は、マトリックス樹脂としてポリプロピレ
ンを用いて行った。押出機での喰込み性、押出し性は3
0+r+m2軸押出機(池貝鉄工社製、PCM−30)
にて評価した。あわせて、ホッパ内での偏析についても
評価した。
The composite with resin was performed using polypropylene as the matrix resin. The bite and extrusion properties of the extruder are 3.
0+r+m twin screw extruder (manufactured by Ikegai Iron Works, PCM-30)
It was evaluated. In addition, segregation within the hopper was also evaluated.

また、炭素繊維の分散性は、押出したストランドの表面
状態及びストランド断面を走査型電子顕微鏡で観察し評
価した。
Further, the dispersibility of carbon fibers was evaluated by observing the surface condition and cross section of the extruded strand using a scanning electron microscope.

その結果を第1表に示す。The results are shown in Table 1.

第 表 * a) はとんどない◎、若干有り○、かなり有る× 実施例4〜5 造粒助剤として、ビスフェノールA型エポキシ樹脂を界
面活性剤で水に分散したもの(ユヵレジンKE306、
吉相油化社製、固形分1.25%)を用いる以外は実施
例1と同様にして、顆粒状炭素繊維集合体を得た。該集
合体の平均粒径、嵩密度、安息角及び樹脂と複合して喰
込み押出し性、分散性、偏析を評価した。その結果を第
2表に示す。
Table * a) Very little ◎, some ○, quite a bit
A granular carbon fiber aggregate was obtained in the same manner as in Example 1 except that a carbon fiber (manufactured by Kisso Yuka Co., Ltd., solid content: 1.25%) was used. The average particle diameter, bulk density, angle of repose, and extrudability, dispersibility, and segregation of the aggregate were evaluated in combination with resin. The results are shown in Table 2.

また粒径分布を第3図に示す。Further, the particle size distribution is shown in FIG.

第   2   表 〔発明の効果〕 本発明による顆粒状炭素繊維集合体は、嵩密度が大きく
流動性がよいため、保管、運搬に便利であり、取扱い性
がよく、ことに樹脂、ゴム等と混練する際に押出機等へ
の喰込みが改善されホッパ内での偏析を抑制すると共に
樹脂、ゴム等に均、且つ容易に分散することかでき極め
て有用である。
Table 2 [Effects of the Invention] The granular carbon fiber aggregate according to the present invention has a large bulk density and good fluidity, so it is convenient to store and transport, has good handling, and is especially suitable for kneading with resins, rubber, etc. When doing so, it is extremely useful because it improves the biting into the extruder, etc., suppresses segregation in the hopper, and allows it to be uniformly and easily dispersed in resins, rubbers, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1〜3の、第2図は比較例I、2の、第
3図は実施例4.5の顆粒状炭素繊維集合体の粒径分布
を示す。
FIG. 1 shows the particle size distribution of the granular carbon fiber aggregates of Examples 1 to 3, FIG. 2 shows the comparative examples I and 2, and FIG. 3 shows the granular carbon fiber aggregates of Example 4.5.

Claims (2)

【特許請求の範囲】[Claims] (1)繊維の直径が0.01〜4μm、繊維の長さ/繊
維の直径が5〜10000の炭素繊維の集合体において
集合体形状が顆粒状であり、その粒径が0.1〜5mm
の範囲に分布しており、且つ、粒径分布が複数個のピー
クを有していることを特徴とする顆粒状炭素繊維集合体
(1) In an aggregate of carbon fibers with a fiber diameter of 0.01 to 4 μm and a fiber length/fiber diameter of 5 to 10,000, the aggregate shape is granular, and the particle size is 0.1 to 5 mm.
1. A granular carbon fiber aggregate characterized in that the particle size distribution is distributed in a range of 1 to 1, and the particle size distribution has a plurality of peaks.
(2)顆粒状炭素繊維集合体の粒径分布が、0.1〜0
.4mmと1〜2mmの間に複数個のピークを有してい
ることを特徴とする請求項(1)記載の顆粒状炭素繊維
集合体。
(2) The particle size distribution of the granular carbon fiber aggregate is 0.1 to 0.
.. The granular carbon fiber aggregate according to claim 1, having a plurality of peaks between 4 mm and 1 to 2 mm.
JP2129128A 1990-05-21 1990-05-21 Granular carbon fiber aggregate Pending JPH0424259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129128A JPH0424259A (en) 1990-05-21 1990-05-21 Granular carbon fiber aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129128A JPH0424259A (en) 1990-05-21 1990-05-21 Granular carbon fiber aggregate

Publications (1)

Publication Number Publication Date
JPH0424259A true JPH0424259A (en) 1992-01-28

Family

ID=15001789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129128A Pending JPH0424259A (en) 1990-05-21 1990-05-21 Granular carbon fiber aggregate

Country Status (1)

Country Link
JP (1) JPH0424259A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899592A (en) * 1994-09-30 1996-04-16 Honda Motor Co Ltd Bumper beam
US5639807A (en) * 1994-08-05 1997-06-17 Akzo Nobel Nv Process for manufacturing carbon fiber pellets, the high density, streamlined pellets resulting therefrom and process for producing reinforced thermoplastic resins employing the pellets
EP0882558A1 (en) * 1997-06-06 1998-12-09 Kureha Chemical Industry Co., Ltd. Carbon fiber ball and process for manufacturing the same
JP2004244522A (en) * 2003-02-14 2004-09-02 Nagano Japan Radio Co Method for manufacturing carbon-fiber composite material and carbon-fiber composite material
JP2007158374A (en) * 2007-02-14 2007-06-21 Sanyo Electric Co Ltd Nitride semiconductor light emitting element and method for manufacturing the same
JP2008138157A (en) * 2006-03-23 2008-06-19 Sumitomo Chemical Co Ltd Granules and heat-conductive resin composition using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639807A (en) * 1994-08-05 1997-06-17 Akzo Nobel Nv Process for manufacturing carbon fiber pellets, the high density, streamlined pellets resulting therefrom and process for producing reinforced thermoplastic resins employing the pellets
JPH0899592A (en) * 1994-09-30 1996-04-16 Honda Motor Co Ltd Bumper beam
EP0882558A1 (en) * 1997-06-06 1998-12-09 Kureha Chemical Industry Co., Ltd. Carbon fiber ball and process for manufacturing the same
US6194071B1 (en) 1997-06-06 2001-02-27 Kureha Chemical Industries Co., Ltd. Carbon fiber ball and a process for manufacturing the same
JP2004244522A (en) * 2003-02-14 2004-09-02 Nagano Japan Radio Co Method for manufacturing carbon-fiber composite material and carbon-fiber composite material
JP2008138157A (en) * 2006-03-23 2008-06-19 Sumitomo Chemical Co Ltd Granules and heat-conductive resin composition using the same
JP2007158374A (en) * 2007-02-14 2007-06-21 Sanyo Electric Co Ltd Nitride semiconductor light emitting element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5591382A (en) High strength conductive polymers
JP6386114B2 (en) Method for producing conductive resin composition
US20180272565A1 (en) Chemical-free production of graphene-polymer pellets and graphene-polymer nanocomposite products
KR102085939B1 (en) A expanded bead having electrical conductivity and a method for manufacturing the same
JP2010514883A (en) Conductive thermoplastic resin composition and plastic molded article
JP2008509267A (en) Polymer blends composed of incompatible polymers
WO2013111862A1 (en) Method for producing master batch for conductive resin, and master batch
US20160122187A1 (en) Process for Covalently Grafting a Carbonaceous Material
US10290388B2 (en) Conductive resin composition and plastic molded product using the same
JPH0424259A (en) Granular carbon fiber aggregate
JP6737939B1 (en) Liquid crystal polyester resin composition, method for producing the same, and molded article
WO2007000817A1 (en) Carbon black loaded composition, colorant composition and conductive composition
KR101637632B1 (en) nylon composite And Method of nylon composite
JP3037021B2 (en) Manufacturing method of conductive resin material
KR20170112980A (en) Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same
WO2022265100A1 (en) Method for producing fiber assembly and method for producing prepreg sheet
JPH0314664A (en) Granular carbon fiber assembly
JPH0346009B2 (en)
JP2613252B2 (en) Method for producing homogeneously mixed preform powder of whisker and thermoplastic resin
JPH10265630A (en) Reinforced polypropylene composition
EP0012599B1 (en) Method of treating mica
KR20200118284A (en) A method for manufacturing agricultural covering material
JP3480096B2 (en) Pitch-based carbon fiber reinforced resin and method for producing the same
KR102394680B1 (en) Method of preparing polymer composition including recycle polyolefin
JPH0730211B2 (en) Method for producing thermoplastic resin composition