JPH04242213A - Side view type endoscope for in-tube observation - Google Patents

Side view type endoscope for in-tube observation

Info

Publication number
JPH04242213A
JPH04242213A JP1708291A JP1708291A JPH04242213A JP H04242213 A JPH04242213 A JP H04242213A JP 1708291 A JP1708291 A JP 1708291A JP 1708291 A JP1708291 A JP 1708291A JP H04242213 A JPH04242213 A JP H04242213A
Authority
JP
Japan
Prior art keywords
optical system
tube
endoscope
illumination
entrance pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1708291A
Other languages
Japanese (ja)
Other versions
JP3187064B2 (en
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP01708291A priority Critical patent/JP3187064B2/en
Publication of JPH04242213A publication Critical patent/JPH04242213A/en
Application granted granted Critical
Publication of JP3187064B2 publication Critical patent/JP3187064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To remove halation and to improve light distribution and lighting efficiency. CONSTITUTION:An in-tube surface 17 is observed through the side view type endoscope by fitting a centering device to the endoscope or nearly equalizing the outer circumference to the internal diameter of the in-tube surface 17 as to the outward shape of the endoscope itself. The incidence window of an object optical system and the exit window 19 of a lighting optical system are provided to the tip part of the endoscope, and the objective optical system and lighting optical system are so arranged that the luminous flux area for forming an image 18a of the in-tube surface 17 by the light through the entrance pupil 18 of the objective optical system does not overlap with the exit window 19 of the lighting optical system. Consequently, the reflected right L of light irradiating the observation range 17a on the in-tube surface 17 from the exit window 19 of the lighting optical system is not made incident on the entrance pupil 18 and no halation is generated. Further, the exit window 19 is positioned by or nearby the incidence window.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ほぼ円形の管内面即ち
管内壁面を側視によって観察するための側視型内視鏡に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a side-viewing endoscope for observing a substantially circular inner surface of a tube, that is, a wall surface of a tube from the side.

【0002】0002

【従来の技術】近年、ガス管,水道管等のパイプ内面の
傷やパイプ接続部の溶接状態の検査等に、非破壊検査手
段として内視鏡が広く使用されている。前方視型の内視
鏡は有用ではあるが、管内面を斜めから観察することに
なるため、モニタ−画面上の位置に応じて傷や溶接部の
大きさが変化することになり、傷や溶接部の幅等を定量
的に計測する場合には不向きである。又、前方視型の内
視鏡の先端部前方に円錐状のミラ−を取り付ければ、管
内面のほぼ全周を一度に正面視できるが、画像の歪みが
大きく、これも正確な計測には不向きである。これに対
し、側視型内視鏡は管内面全周を一度に観察することは
できないが、管内面を正面視できると同時に画像の歪み
が少ないので、このような用途には非常に有用である。
2. Description of the Related Art In recent years, endoscopes have been widely used as a non-destructive inspection means for inspecting damage on the inner surface of gas pipes, water pipes, etc. and the welding condition of pipe connections. Forward-looking endoscopes are useful, but because they obliquely observe the inner surface of the tube, the size of scratches and welds changes depending on their position on the monitor screen, making it easier to avoid scratches and welds. It is not suitable for quantitatively measuring the width of a welded part, etc. Additionally, if a conical mirror is attached to the front of the tip of a forward-looking endoscope, it is possible to view almost the entire circumference of the tube's inner surface from the front at once, but the image distortion is large and this is also difficult for accurate measurements. Not suitable. On the other hand, although side-viewing endoscopes cannot observe the entire circumference of the inner surface of the tube at once, they are extremely useful for such applications because they can view the inner surface of the tube straight on and the image is less distorted. be.

【0003】ところで、側視型内視鏡を用いて管内面の
全周にわたって歪みの少ない画像を得るためには、例え
ば次のような手段が必要である。先ず、管内面全周の観
察を行うためには、内視鏡先端部の対物及び照明光学系
から成る観察光学系が管に対して回転可能であることが
必要である。内視鏡の先端部と手元側の後端部とが接続
されているものであれば、手元側をねじって回転させる
ことで先端部を回転させて、観察するようにした構造が
一般的である。しかし、先端部の正確な回転制御を行う
には、図25に示すような回転装置が必要である。即ち
、内視鏡1の先端部2内にモ−タ3を内蔵し、この先端
部を適当な方法で管内面に対して固定し、モ−タ3によ
って、内視鏡1内に軸支され且つミラ−4及び観察光学
系(図示せず)が一体になった本体5を回転させるよう
になっている。そして、本体5を通してモ−タ3の回転
制御信号や電力の供給等を行うようになっている。 又、本体5側は回転し易いようにねじれやすくできてお
り、ある角度だけ両方向に回転させることにより、管内
面の全周を観察できるようになっている。
By the way, in order to obtain an image with little distortion over the entire circumference of the inner surface of the tube using a side-viewing endoscope, the following means, for example, are required. First, in order to observe the entire circumference of the inner surface of the tube, it is necessary that the observation optical system consisting of an objective and an illumination optical system at the tip of the endoscope is rotatable with respect to the tube. If the distal end of the endoscope is connected to the rear end on the proximal side, the structure is generally such that the distal end can be rotated for observation by twisting and rotating the proximal end. be. However, in order to accurately control the rotation of the tip, a rotation device as shown in FIG. 25 is required. That is, a motor 3 is built into the distal end 2 of the endoscope 1, and the distal end is fixed to the inner surface of the tube by an appropriate method. The main body 5, in which a mirror 4 and an observation optical system (not shown) are integrated, is rotated. A rotation control signal and electric power are supplied to the motor 3 through the main body 5. Further, the main body 5 side is made to be easily twisted so that it can be easily rotated, and by rotating it by a certain angle in both directions, the entire circumference of the inner surface of the tube can be observed.

【0004】又、管内面の計測を行う場合には、管内面
の観察面に対して内視鏡との距離が、回転位置にかかわ
らず大幅に変わらないようにする必要がある。そのため
には、図26で示すように観察対象である管6の内径に
近い外径を有する内視鏡1を使用するか、或いは図27
及び図28に示すように、内視鏡1の外周にセンタリン
グデバイス7と呼ばれる管6内径に近い外径を有するゴ
ム製等の略リング状部材を装着する等すればよい。セン
タリングデバイス7として、管内径に応じて外径を伸縮
できるものと、径の異なるデバイス7を交換して使用す
るものとがある。
Furthermore, when measuring the inner surface of a tube, it is necessary to ensure that the distance between the endoscope and the observation surface of the inner surface of the tube does not change significantly regardless of the rotational position. For this purpose, an endoscope 1 having an outer diameter close to the inner diameter of the tube 6 to be observed is used as shown in FIG. 26, or an endoscope 1 as shown in FIG.
As shown in FIG. 28, a substantially ring-shaped member made of rubber or the like and having an outer diameter close to the inner diameter of the tube 6, called a centering device 7, may be attached to the outer periphery of the endoscope 1. There are two types of centering device 7: one whose outer diameter can be expanded and contracted according to the inner diameter of the pipe, and another which allows devices 7 of different diameters to be exchanged.

【0005】次に、従来の側視型内視鏡について説明す
る。実開昭53−101482号公報に示された図29
の内視鏡は、代表的な側視型内視鏡の例である。図中、
イメ−ジガイド8,側視プリズム9aを含む対物レンズ
9を有する対物光学系10の入射窓と、先端部分が管内
面方向へ屈曲しているライトガイド11,照明レンズ1
2を有する照明光学系13の射出窓とが、内視鏡1の長
手方向に配列されている。この内視鏡は、管内面との距
離がある程度離れている場合には使用できるが、内径が
小さくて細いパイプの場合には、観察距離が短くなるた
め、対物光学系10と照明光学系13の各窓の位置ずれ
によるパララックスの影響が顕著に出てしまうことにな
る。そのため、画像の片側が暗くなってしまい、計測な
どの実用に耐えられないという問題がある。また、観察
対象が金属パイプ等であって管内面が比較的鏡面に近い
場合、照明光が管内面で反射して(以下、鏡面反射とい
う)対物光学系の観察用光束領域(視野)内に入り、こ
の部分が非常に強烈なハレ−ションとなり、観察や計測
に支障をきたすという問題もある。
Next, a conventional side-viewing endoscope will be explained. Figure 29 shown in Utility Model Application Publication No. 53-101482
This endoscope is a typical example of a side-viewing endoscope. In the figure,
An entrance window of an objective optical system 10 having an objective lens 9 including an image guide 8 and a side viewing prism 9a, a light guide 11 whose tip portion is bent toward the inner surface of the tube, and an illumination lens 1.
2 and exit windows of the illumination optical system 13 are arranged in the longitudinal direction of the endoscope 1. This endoscope can be used when there is a certain distance from the inner surface of the tube, but in the case of a narrow pipe with a small inner diameter, the observation distance becomes short, so the objective optical system 10 and the illumination optical system 13 The effect of parallax due to the positional shift of each window becomes noticeable. As a result, one side of the image becomes dark, making it impractical for practical purposes such as measurement. In addition, when the object to be observed is a metal pipe, etc., and the inner surface of the tube is relatively mirror-like, the illumination light is reflected from the inner surface of the tube (hereinafter referred to as specular reflection) and falls within the observation light flux area (field of view) of the objective optical system. There is also the problem that very strong halation occurs in this area, which interferes with observation and measurement.

【0006】又、  実開昭62−94312号公報及
び特開昭61−109013号公報に開示された図30
及び図31に示す内視鏡は、対物光学系及び照明光学系
の光束を共通のミラ−で反射させるようにした反射ミラ
−14が夫々配置されている。又、図30では、内視鏡
中央部に設けた対物レンズ9の周囲に、略三日月状にラ
イトガイド11の複数の射出端面が配設されている(図
30(B)参照)。図31では、同じく対物レンズ9の
周囲に環状にライトガイド11の射出端面が配設されて
いる。従って、管内径が比較的小さくても上述の従来装
置に比べれば、反射ミラ−14で反射させる分だけ管内
面と対物光学系及び照明光学系との距離が大きくなるの
で、パララックスの影響は減少する。しかしながら、内
視鏡に近接する管内面の観察の際には、対物光学系と照
明光学系との配設位置の違いによるパララックスは無視
しがたく、管内面に対する照明のむらが残ってしまう問
題がある。一方で、照明ムラをなくすために配光を広げ
ると、照明の効率が落ちるため、配光の広さと照明の効
率とを同時に満たすことができない。又、観察物の管内
面が鏡面に近い場合には、上述の従来技術と同様に対物
光学系の観察用光束領域内に反射光が進入し、強烈なハ
レ−ションを生じさせるという欠点がある。
[0006] Also, FIG.
In the endoscope shown in FIG. 31, reflective mirrors 14 are respectively arranged to reflect the light beams of the objective optical system and the illumination optical system by a common mirror. Further, in FIG. 30, a plurality of exit end surfaces of the light guide 11 are arranged in a substantially crescent shape around the objective lens 9 provided at the center of the endoscope (see FIG. 30(B)). In FIG. 31, the exit end surface of the light guide 11 is similarly arranged in an annular manner around the objective lens 9. Therefore, even if the inner diameter of the tube is relatively small, compared to the conventional device described above, the distance between the inner surface of the tube and the objective optical system and the illumination optical system is increased by the amount of reflection by the reflection mirror 14, so the influence of parallax is reduced. Decrease. However, when observing the inner surface of a tube close to the endoscope, parallax due to the difference in the installation positions of the objective optical system and the illumination optical system is difficult to ignore, and uneven illumination remains on the inner surface of the tube. There is. On the other hand, if the light distribution is widened in order to eliminate uneven illumination, the efficiency of the illumination will drop, making it impossible to satisfy the requirements for wide light distribution and illumination efficiency at the same time. Furthermore, when the inner surface of the tube of the object to be observed is close to a mirror surface, there is a drawback that the reflected light enters the observation light flux area of the objective optical system, causing intense halation, similar to the above-mentioned conventional technology. .

【0007】これに対し、図32で示された特開昭61
−39019号公報記載の内視鏡は、ライトガイド11
の射出端面から射出する光束の半分を、側視プリズム9
aの手前側に位置するミラ−15aで反射させ、残りの
半分を側視プリズム9aの前方側に位置するミラ−15
bで反射させ、管内面の観察範囲に集光させるようにな
っている。しかも、この装置は、二つのミラ−15a,
15bの像が対物光学系の視野内に入らないように、両
ミラ−15a,15bを対物光学系の射出窓に対して前
後方向にかなり離して配置せしめている。これによって
、管内面での鏡面反射によるハレ−ションを防止できる
ようにすると共に配光を確保している。
[0007] On the other hand, Japanese Patent Application Laid-open No. 61 (1983) shown in FIG.
The endoscope described in Publication No. 39019 has a light guide 11
Half of the luminous flux emitted from the exit end face of the side viewing prism 9
a, and the remaining half is reflected by the mirror 15a located in front of the side viewing prism 9a.
The light is reflected at point b and focused on the observation range on the inner surface of the tube. Moreover, this device has two mirrors 15a,
Both mirrors 15a and 15b are arranged at a considerable distance from the exit window of the objective optical system in the longitudinal direction so that the image of the mirror 15b does not enter the field of view of the objective optical system. This makes it possible to prevent halation due to specular reflection on the inner surface of the tube and to ensure light distribution.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな構成では、ミラ−15a,15bの前後方向の離間
距離がかなり大きく、しかも両ミラ−を大きな角度に傾
けて配置するため、内視鏡の先端部が非常に長くなると
いう欠点がある。又、観察距離が変わると急速に配光ム
ラが生じるため、ある所定の内径の管にしか使用するこ
とができない。更に、管内面に対して斜めから照明する
ことになり、しかもこの構成では、照明に十分な大きさ
のミラ−を配置するスペ−スを内視鏡の特性上とれない
ため、照明の効率が悪く、暗くなる欠点がある。又、管
の内径が内視鏡の外径に近似する場合、ミラ−の傾斜角
度をさらに大きくすると共に対物光学系の射出窓から一
層離す必要があり、この点からも配光と照明の効率が悪
いという問題がある。
However, in such a configuration, the distance between the mirrors 15a and 15b in the front and back direction is quite large, and both mirrors are arranged at a large angle. The disadvantage is that the tip is very long. Furthermore, since uneven light distribution rapidly occurs when the observation distance changes, it can only be used for tubes with a certain predetermined inner diameter. Furthermore, the inner surface of the tube must be illuminated obliquely, and with this configuration, due to the characteristics of the endoscope, there is not enough space to place a mirror large enough for illumination, which reduces the efficiency of illumination. It has the disadvantage of being bad and dark. In addition, if the inner diameter of the tube is close to the outer diameter of the endoscope, it is necessary to increase the tilt angle of the mirror and further distance it from the exit window of the objective optical system, which also reduces the efficiency of light distribution and illumination. The problem is that it is bad.

【0009】本発明はこのような課題に鑑み、ハレ−シ
ョンを除去すると共に配光と照明効率の良好な管内観察
用側視型内視鏡を提供することを目的とする。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide a side-viewing endoscope for observing inside a tube, which eliminates halation and has good light distribution and illumination efficiency.

【0010】0010

【課題を解決するための手段】本発明による管内観察用
側視型内視鏡は、ほぼ円形の断面を有する管を観察対象
物とし、内視鏡に取り付けられるセンタリングデバイス
又は内視鏡自体の外形によってその外周が前記管の内径
に等しくなるようにして、前記管の内面を観察するため
に用いられる管内観察用側視型内視鏡において、先端部
に対物光学系の入射窓と照明光学系の射出窓とが備えら
れていて、対物光学系の入射瞳の管内面による像の光束
領域と、照明光学系の射出窓とが重ならないように、対
物光学系と照明光学系とが配置されていることを特徴と
するものである。
[Means for Solving the Problems] A side-viewing endoscope for observing inside a tube according to the present invention uses a tube having a substantially circular cross section as an object to be observed, and uses a centering device attached to the endoscope or a centering device attached to the endoscope itself. In a side-viewing endoscope for observing inside a tube, the outer circumference is made equal to the inner diameter of the tube, and the endoscope is used to observe the inner surface of the tube. The objective optical system and the illumination optical system are arranged so that the light flux area of the image formed by the inner surface of the tube of the entrance pupil of the objective optical system does not overlap with the exit window of the illumination optical system. It is characterized by the fact that

【0011】又、対物光学系の入射瞳が管の中心軸の近
傍に位置するように構成されている。
Further, the entrance pupil of the objective optical system is located near the central axis of the tube.

【0012】0012

【作用】観察時に、照明光学系の射出窓から照射される
照明光は、管内面の観察範囲を照射するが、その反射光
は対物光学系の入射瞳に入らないのでハレ−ションが発
生しない。
[Operation] During observation, the illumination light emitted from the exit window of the illumination optical system illuminates the observation range on the inner surface of the tube, but the reflected light does not enter the entrance pupil of the objective optical system, so no halation occurs. .

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。図1及び図2は、対物光学系の入射瞳が管内径の
ほぼ中心軸上にある場合の、本発明の原理図である。図
1において、17は観察対象である管のほぼ円形の内面
、18は管内面17のほぼ中心軸O上に位置する内視鏡
の対物光学系の入射瞳であり(説明を容易にするために
点として表されている)、この入射瞳18が図示しない
内視鏡外周の中心軸近傍に位置するように対物レンズ等
が配置されている。又、入射瞳18の管内面17に対す
る位置は、管内径の大きさに応じてセンタリングデバイ
スを内視鏡に嵌合させる等して調整する。19,19は
管内面17上の観察範囲17aの中心点と入射瞳18を
結ぶ線分に直交し且つ中心軸Oを含む平面A上に配置さ
れた一対の照明光学系の射出窓であり、これらの窓19
,19は中心軸Oに対して対称的に配置されている。
EXAMPLES The present invention will be explained in detail below based on examples. 1 and 2 are diagrams showing the principle of the present invention when the entrance pupil of the objective optical system is located approximately on the central axis of the inner diameter of the tube. In FIG. 1, 17 is the approximately circular inner surface of the tube to be observed, and 18 is the entrance pupil of the objective optical system of the endoscope located approximately on the central axis O of the tube inner surface 17 (for ease of explanation, (represented as a point in FIG. 1), an objective lens and the like are arranged so that the entrance pupil 18 is located near the central axis of the outer periphery of the endoscope (not shown). Further, the position of the entrance pupil 18 with respect to the tube inner surface 17 is adjusted by fitting a centering device to the endoscope depending on the size of the tube inner diameter. 19, 19 are exit windows of a pair of illumination optical systems arranged on a plane A that is perpendicular to a line segment connecting the center point of the observation range 17a on the tube inner surface 17 and the entrance pupil 18 and that includes the central axis O; these windows 19
, 19 are arranged symmetrically with respect to the central axis O.

【0014】ここで、図2に基づいて射出窓19の配設
位置について説明する。図2(A)は管の長手方向に直
交する方向の断面図(以下、直交断面という)であり、
(B)は管の長手方向の断面図(以下、長手断面という
)である。図(A)において、入射瞳18を物体とした
場合、そこから管内面17に向かう光束Laは観察範囲
17a(幅Do)で反射して再び入射瞳18に収束され
、結像する。又、図(B)において、入射瞳18から射
出した光束Laは観察範囲17aで反射して、観察範囲
17aの幅Doのほぼ2倍の広がり2Doをもって中心
軸Oを通過して、結像する。これらの反射光束Lによっ
て、入射瞳18の管内面17による像18aが形成され
るが、この線状に広がった反射光束Lと重ならない位置
に照明光学系の射出窓を配設すれば、照明光が管内面1
7で反射しても入射瞳18に進入することはない。よっ
て、図1において、このような位置に射出窓19,19
を配設すれば、管内面が鏡面に近いものであってもハレ
−ションが発生することはない。
Here, the arrangement position of the exit window 19 will be explained based on FIG. 2. FIG. 2(A) is a cross-sectional view in a direction perpendicular to the longitudinal direction of the tube (hereinafter referred to as orthogonal cross section),
(B) is a sectional view in the longitudinal direction of the tube (hereinafter referred to as longitudinal section). In Figure (A), when the entrance pupil 18 is an object, the light flux La heading from there toward the tube inner surface 17 is reflected at the observation range 17a (width Do), converged again on the entrance pupil 18, and forms an image. In addition, in Figure (B), the light beam La emitted from the entrance pupil 18 is reflected at the observation range 17a, passes through the central axis O with a spread 2Do that is approximately twice the width Do of the observation range 17a, and forms an image. . These reflected light fluxes L form an image 18a of the tube inner surface 17 of the entrance pupil 18, but if the exit window of the illumination optical system is arranged at a position that does not overlap with this linearly spread reflected light flux L, the illumination Light is inside the tube 1
Even if it is reflected by 7, it will not enter the entrance pupil 18. Therefore, in FIG. 1, the exit windows 19, 19 are located at such positions.
If this is provided, halation will not occur even if the inner surface of the tube is close to a mirror surface.

【0015】尚、射出窓19,19は図1では入射瞳1
8の真横に配置されているが、内視鏡の長手方向にずら
して配設してもよい。又、射出窓19の数は適宜選択す
ればよい。
Note that the exit windows 19, 19 are the entrance pupil 1 in FIG.
8, but it may be placed offset in the longitudinal direction of the endoscope. Further, the number of exit windows 19 may be selected as appropriate.

【0016】上述のように本発明の第一の原理によれば
、管内面17の観察時に、内視鏡の照明光学系の射出窓
19,19から管内面17の観察範囲17aを照射する
照明光の反射光が、対物光学系の入射瞳18に入射する
ことはなく、ハレ−ションは発生しない。しかも、上述
の従来技術のように照明光学系の射出窓を入射瞳の長手
方向の前後に、長い間隔を開けて配置する必要がなく、
内視鏡先端部を小型に構成できる。また、照明光は入射
瞳18の略横方向から観察範囲17aを照射することに
なるから、配光及び照明効率共に良好である。
As described above, according to the first principle of the present invention, when observing the tube inner surface 17, the illumination irradiates the observation range 17a of the tube inner surface 17 from the exit windows 19, 19 of the illumination optical system of the endoscope. The reflected light does not enter the entrance pupil 18 of the objective optical system, and no halation occurs. Moreover, there is no need to arrange the exit windows of the illumination optical system at long intervals before and after the longitudinal direction of the entrance pupil, as in the prior art described above.
The tip of the endoscope can be made compact. Furthermore, since the illumination light illuminates the observation range 17a from substantially lateral to the entrance pupil 18, both light distribution and illumination efficiency are good.

【0017】以下、本発明の第一の原理に基づく第一実
施例を図3によって説明する。図中、21は管内面17
の観察範囲17aの像を撮像する固体撮像素子、22は
固体撮像素子21の前面に位置する対物レンズ、23は
対物レンズ22の間に設けられた明るさ絞りであり、こ
れらは入射瞳18が管内面17の中心軸O上に位置する
ように配設されており(図(A),(B)参照)、対物
光学系を構成する。24,24は先端部が管内面17方
向へ屈曲している一対のライトガイド、25,25はラ
イトガイド24,24の先端において中心軸Oに対して
対称的に且つ入射瞳18より長手方向手前側に配置され
た(図C参照)一対の照明レンズであり、その射出面は
照明光が観察範囲17aへ向かって視野に重なるように
傾斜して形成されている。又、各照明レンズ25,25
の射出面は入射瞳18の反射光束Lの領域外に位置して
いる。本実施例は、入射瞳18に対して照明レンズ25
,25の位置を長手方向にずらして配置してあるので、
内視鏡を比較的小さい径にすることができる。尚、固体
撮像素子21に代えて先端部で屈曲するイメ−ジガイド
を配設してもよいことはいうまでもない。
A first embodiment based on the first principle of the present invention will be described below with reference to FIG. In the figure, 21 is the tube inner surface 17
22 is an objective lens located in front of the solid-state image sensor 21, and 23 is an aperture diaphragm provided between the objective lenses 22. It is arranged so as to be located on the central axis O of the tube inner surface 17 (see Figures (A) and (B)), and constitutes an objective optical system. 24, 24 are a pair of light guides whose tips are bent toward the inner surface 17 of the tube; 25, 25 are the tips of the light guides 24, 24 symmetrically with respect to the central axis O and in front of the entrance pupil 18 in the longitudinal direction; A pair of illumination lenses are arranged on the sides (see Figure C), and their exit surfaces are formed to be inclined so that the illumination light overlaps the field of view toward the observation range 17a. Moreover, each illumination lens 25, 25
The exit surface of is located outside the area of the reflected light beam L of the entrance pupil 18. In this embodiment, the illumination lens 25 is connected to the entrance pupil 18.
, 25 are shifted in the longitudinal direction, so
The endoscope can be made relatively small in diameter. It goes without saying that the solid-state image sensor 21 may be replaced with an image guide that is bent at its tip.

【0018】図4は第一実施例の変形例を示すものであ
り、図中、照明光学系はひとつのみ用い、ライトガイド
に代えて発光ダイオ−ド26又は半導体レ−ザが配置さ
れている(図(A),(B)参照)。又、照明レンズ2
5は入射瞳18の斜め前方に配置されている。
FIG. 4 shows a modification of the first embodiment, in which only one illumination optical system is used and a light emitting diode 26 or a semiconductor laser is arranged in place of the light guide. (See Figures (A) and (B)). Also, lighting lens 2
5 is arranged diagonally in front of the entrance pupil 18.

【0019】図5は第二実施例を示すものであり、対物
光学系として、入射窓に近接して側視プリズム28を配
置すると共に、その入射面に明るさ絞り29が設けられ
、側視プリズム28の後方に対物レンズ22及び固体撮
像素子21が配設されている。そのため、管内面17の
中心軸上の入射瞳18は明るさ絞り29と同一位置にな
る。照明光学系の射出窓を構成するライトガイド24,
24の射出端面24a,24aは、対物光学系の入射窓
の後方で斜め上方に傾斜して配置されている(図(B)
,(C)参照)。本実施例では、ライトガイド24,2
4の射出端面24a,24aは管の中心軸Oを含む平面
Aより少し上方で、しかも反射光束Lの領域外に配置さ
れることになる。この構成によれば、管内面17の観察
範囲17aに対して配光ムラの少ない効果的な照明を達
成することができる。
FIG. 5 shows a second embodiment, in which a side viewing prism 28 is disposed close to the entrance window as an objective optical system, and an aperture stop 29 is provided on the entrance surface of the side viewing prism 28. An objective lens 22 and a solid-state image sensor 21 are arranged behind the prism 28. Therefore, the entrance pupil 18 on the central axis of the tube inner surface 17 is located at the same position as the aperture stop 29. a light guide 24 that constitutes an exit window of the illumination optical system;
The exit end surfaces 24a, 24a of No. 24 are arranged obliquely upward behind the entrance window of the objective optical system (Figure (B)).
, (C)). In this embodiment, the light guides 24, 2
The exit end surfaces 24a, 24a of No. 4 are arranged slightly above the plane A including the central axis O of the tube and outside the area of the reflected light beam L. According to this configuration, effective illumination with less unevenness in light distribution can be achieved for the observation range 17a of the tube inner surface 17.

【0020】図6は第三実施例を示すものであり、照明
光学系を構成するライトガイド31は先端部で二またに
分岐されて管内面17方向へ屈曲し(図(A)参照)、
射出窓を構成する射出端面31a,31aは対物光学系
の入射窓の長手方向両側に直線状に広がっている(図(
B)参照)。しかも、射出端面31a,31aから射出
される照明光が観察範囲17aを効率よく照射するよう
に、射出端面31a,31aは内側に傾斜して配置され
ている(図(C)参照)。尚、射出端面31a,31a
の形状は、反射光束Lの領域外であれば、直線状に限定
されること無く弧状,環状等適宜のものを選択すること
が出来る。本実施例の場合、射出端面31a,31aが
細いので、入射窓の真横に配置されても内視鏡の先端部
を小径且つ短いものにすることが出来る。
FIG. 6 shows a third embodiment, in which a light guide 31 constituting an illumination optical system is bifurcated at the tip and bent toward the inner surface 17 of the tube (see FIG. (A)).
The exit end surfaces 31a, 31a constituting the exit window extend linearly on both sides in the longitudinal direction of the entrance window of the objective optical system (Fig.
See B). Furthermore, the emission end surfaces 31a, 31a are arranged to be inclined inward so that the illumination light emitted from the emission end surfaces 31a, 31a efficiently illuminates the observation range 17a (see figure (C)). In addition, the injection end surfaces 31a, 31a
As long as the shape is outside the area of the reflected light beam L, the shape is not limited to a straight line, and any suitable shape such as an arc or a ring can be selected. In the case of this embodiment, since the exit end faces 31a, 31a are thin, the distal end of the endoscope can be made small in diameter and short even if it is placed right next to the entrance window.

【0021】図7は第四実施例を示すものであり、図中
、33,33は一対のライトガイド34,34の先端前
方であって対物光学系の側視プリズム28の両側に夫々
配置された照明用単ファイバ−であり、断面が円形でコ
ア周囲にクラッドが形成された構成を有している。この
単ファイバ−33の入射側端面33aは斜めにカットさ
れて半透過反射面又はフレネル面を形成し、ライトガイ
ド34から入射する照明光の一部を管内面17の観察範
囲17aへ反射させると共に、残りの光を透過せしめる
。又、射出側端面33bも同一方向に斜めにカットされ
ていて、全反射面を形成し(金属被膜をコ−ティングし
てもよい)て照明光を観察範囲17a方向へ反射させる
ようにしてもよい。尚、図8に示すように、単ファイバ
−33の中間部に、斜めに半透過膜を配設した接合面3
3cを形成して一部の照明光を反射させるようにしても
よい。いずれにしても各単ファイバ−33において少な
くとも二方向から照明光を照射できるから、観察範囲1
7a内の影をなくすことに有効である。又、単ファイバ
−の構成については、実施例のものの他に、例えば四角
柱のガラス棒の周囲を低屈折率層で囲うなど、適宜のも
のを採用することが出来る。
FIG. 7 shows a fourth embodiment, and in the figure, reference numerals 33 and 33 are located in front of the tips of a pair of light guides 34 and 34, respectively, on both sides of the side viewing prism 28 of the objective optical system. It is a single fiber for illumination with a circular cross section and a cladding formed around the core. The input side end surface 33a of this single fiber 33 is cut obliquely to form a transflective surface or a Fresnel surface, which reflects a part of the illumination light incident from the light guide 34 to the observation range 17a of the tube inner surface 17. , allowing the remaining light to pass through. Furthermore, the exit side end surface 33b is also cut diagonally in the same direction to form a total reflection surface (it may be coated with a metal film) to reflect the illumination light toward the observation range 17a. good. In addition, as shown in FIG. 8, a bonding surface 3 in which a semi-transparent film is disposed obliquely in the middle part of the single fiber 33 is formed.
3c may be formed to reflect part of the illumination light. In any case, since each single fiber 33 can be irradiated with illumination light from at least two directions, the observation range 1
This is effective in eliminating shadows within 7a. Further, as for the structure of the single fiber, in addition to the structure of the embodiment, an appropriate structure such as a rectangular prism glass rod surrounded by a low refractive index layer can be adopted.

【0022】図9と図10は上述の各実施例の対物光学
系の変形例を示すものである。図9において、対物光学
系の入射窓に位置する明るさ絞り29と対物レンズ22
の間に位置する側視プリズム36は、二個のプリズム3
6a,36bがこれらプリズムより屈折率の小さい接合
層37を挟持して形成される。物体からの光束は明るさ
絞り29を通ってプリズム36に入射し、反射面36c
で反射して上方へ曲げられた後、接合層37で全反射し
て対物レンズ22に入射することになる。この構成によ
れば、対物レンズ22を内視鏡の中心に寄せやすいとい
う利点がある。
FIGS. 9 and 10 show modifications of the objective optical system of each of the above-described embodiments. In FIG. 9, an aperture stop 29 and an objective lens 22 located at the entrance window of the objective optical system are shown.
The side viewing prism 36 located between the two prisms 3
6a and 36b are formed with a bonding layer 37 having a smaller refractive index than these prisms sandwiched therebetween. The light flux from the object passes through the aperture diaphragm 29 and enters the prism 36, and is reflected by the reflecting surface 36c.
After being reflected and bent upward, it is totally reflected by the bonding layer 37 and enters the objective lens 22 . This configuration has the advantage that the objective lens 22 can be easily brought to the center of the endoscope.

【0023】図10は、対物光学系を、側視プリズム2
8を構成する直角プリズムと菱形ブリズム38とを組み
合わせて形成したものである。この構成によれば、対物
光学系が比較的上方に配置されるので、射出窓以外の部
分の照明光学系と対物光学系とを上下方向に重なるよう
に配置することができ、内視鏡の小型化に有効である。
FIG. 10 shows the objective optical system with side viewing prism 2.
8 and a diamond-shaped prism 38 are combined. According to this configuration, since the objective optical system is arranged relatively above, the illumination optical system of the part other than the exit window and the objective optical system can be arranged so as to overlap in the vertical direction, and the endoscope Effective for downsizing.

【0024】図11は第五実施例を示すものであり、対
物光学系が照明光学系と反対側である先端側に配置され
ている。即ち、照明光学系は、内視鏡の手元側から、一
対のライトガイド34,34及び照明光を上方へ曲げ且
つ観察範囲17a方向へ偏向させるための三角直角プリ
ズム40,40が、順次配置されている。一方、対物光
学系は、内視鏡の先端部から、固体撮像素子21,対物
レンズ22,一対の三角直角プリズム40,40間に位
置する側視プリズム28が順次配置されている。本実施
例の場合、対物光学系と照明光学系とが重ならないので
、細径の内視鏡を実現できる。しかも内視鏡先端部は比
較的短い長さにすることができる。
FIG. 11 shows a fifth embodiment, in which the objective optical system is arranged on the distal end side, which is the opposite side from the illumination optical system. That is, in the illumination optical system, a pair of light guides 34, 34 and triangular right angle prisms 40, 40 for bending the illumination light upward and deflecting it toward the observation range 17a are arranged in sequence from the proximal side of the endoscope. ing. On the other hand, in the objective optical system, a solid-state image sensor 21, an objective lens 22, and a side-viewing prism 28 located between a pair of triangular right-angle prisms 40, 40 are sequentially arranged from the distal end of the endoscope. In the case of this embodiment, since the objective optical system and the illumination optical system do not overlap, a small diameter endoscope can be realized. Moreover, the endoscope tip can be made relatively short in length.

【0025】図12は第六実施例を示すものであり、図
中、図11と同様に配置されたライトガイド(図示せず
)の間に、固体撮像素子21,像リレ−レンズ系42,
このリレ−レンズ系42に挟まれた明るさ絞り43,結
像レンズ44から成る対物光学系が配置されている。し
かも反射ミラ−45上に明るさ絞り43の像、即ち入射
瞳18が結像せしめられている。ここで、この反射ミラ
−45は、対物光学系の光束と照明光学系の照明光束を
反射させる共通のミラ−を構成し、しかもミラ−45上
で一対の照明光束と管内面17による入射瞳18の像と
が並列して重ならないように、各光学系が配置されてい
る。尚、46は結像レンズ44による観察範囲17aの
中間像である。又、対物光学系と照明光学系を別個の反
射ミラ−を用いる等完全に分離できて、フレア−等の影
響のない場合は、反射ミラ−を視野をカバ−するための
必要最小限の大きさとし、リレ−レンズ系42及び明る
さ絞り43を無くして反射ミラ−に入射瞳の機能を持た
せるようにしても良い。
FIG. 12 shows a sixth embodiment, in which a solid-state image sensor 21, an image relay lens system 42, and a light guide (not shown) arranged in the same manner as in FIG.
An objective optical system consisting of an aperture diaphragm 43 and an imaging lens 44 sandwiched between this relay lens system 42 is arranged. Moreover, the image of the aperture stop 43, that is, the entrance pupil 18, is formed on the reflection mirror 45. Here, this reflecting mirror 45 constitutes a common mirror that reflects the light beam of the objective optical system and the illumination light beam of the illumination optical system, and moreover, the pair of illumination light beams and the entrance pupil formed by the tube inner surface 17 are formed on the mirror 45. Each optical system is arranged so that the 18 images are parallel and do not overlap. Note that 46 is an intermediate image of the observation range 17a formed by the imaging lens 44. In addition, if the objective optical system and illumination optical system can be completely separated, such as by using separate reflection mirrors, and there is no influence of flare, etc., the reflection mirror should be set to the minimum size necessary to cover the field of view. Alternatively, the relay lens system 42 and the aperture diaphragm 43 may be omitted, and the reflecting mirror may have the function of an entrance pupil.

【0026】図13は、第七実施例を示すものであり、
内視鏡1の中央部にライトガイド34,三角直角プリズ
ム40,照明レンズ48が配置されて照明光学系を構成
している。照明レンズ48は、照明光をその後方(手前
側)上方に位置する管内面17の観察範囲17aへ偏向
せしめるべく、射出面が傾斜して形成されている。又、
照明レンズ48の後方でライトガイド34の両側には、
固体撮像素子21,対物レンズ49から成る一対の対物
光学系が配置されている。各対物レンズ49,49から
の光束が光軸に沿って進むように偏向するために、入射
面が互いに反対方向へ傾斜して形成されている。そして
、この偏向により管内面17で反射した反射光束Lは、
夫々他方の対物レンズ49の位置に長手方向へ広がるよ
うになっていて、照明光学系の射出窓とは重ならない。
FIG. 13 shows a seventh embodiment,
A light guide 34, a triangular right angle prism 40, and an illumination lens 48 are arranged in the center of the endoscope 1 to constitute an illumination optical system. The illumination lens 48 is formed with an inclined exit surface so as to deflect the illumination light toward the observation range 17a of the tube inner surface 17 located above the rear (front side) of the illumination lens 48. or,
Behind the illumination lens 48 and on both sides of the light guide 34,
A pair of objective optical systems consisting of a solid-state image sensor 21 and an objective lens 49 are arranged. In order to deflect the light beams from each of the objective lenses 49, 49 so as to proceed along the optical axis, the incident surfaces are formed to be inclined in opposite directions. The reflected light flux L reflected on the tube inner surface 17 due to this deflection is
Each of them extends in the longitudinal direction at the position of the other objective lens 49, and does not overlap with the exit window of the illumination optical system.

【0027】本実施例の場合、二つの対物光学系によっ
て観察範囲17aを異なる視野方向から観察することが
出来、観察像の立体視が可能になる。次に、立体視の方
法について述べれば、二つの対物光学系による観察画像
をモニタ−上に交互に表示するようにし、一方、観察者
はモニタ−画像の切り換えに同期して開閉作動するシャ
ッタ−付き眼鏡をかけて、観察を行うようにすればよい
。このようにして、いわゆる三次元表示装置を組み合わ
せれば、三次元観察が可能になる。更に、この対物光学
系によって、三次元計測のデ−タを得ることができる。 尚、照明光学系のライトガイド34に代えて、発光ダイ
オ−ドや半導体レ−ザ等を採用してもよいこと、照明光
学系の射出窓の配設位置を対物光学系の入射窓に対して
、長手方向の手前側又は真横等に配設できることは、上
述の各実施例と同様である。
In the case of this embodiment, the observation range 17a can be observed from different viewing directions using the two objective optical systems, and stereoscopic viewing of the observed image becomes possible. Next, regarding the stereoscopic viewing method, images observed by two objective optical systems are displayed alternately on a monitor, while the viewer uses a shutter that opens and closes in synchronization with the switching of the monitor images. All you have to do is wear glasses and observe. By combining so-called three-dimensional display devices in this way, three-dimensional observation becomes possible. Furthermore, three-dimensional measurement data can be obtained by this objective optical system. Note that a light emitting diode, semiconductor laser, etc. may be used in place of the light guide 34 of the illumination optical system, and that the exit window of the illumination optical system may be arranged in a position relative to the entrance window of the objective optical system. Similarly to the above-mentioned embodiments, it can be disposed on the front side in the longitudinal direction or just to the side.

【0028】又、上述の各実施例で、内視鏡にセンタリ
ングデバイスを取り付けた場合、両者の中心軸が一致し
ていることは必ずしも必要ではない。センタリングデバ
イスを内視鏡に取り付けた状態で、管の中心軸に対物光
学系の入射瞳が一致していればよい。
Furthermore, in each of the embodiments described above, when the centering device is attached to the endoscope, it is not necessarily necessary that the central axes of both devices coincide. It is only necessary that the entrance pupil of the objective optical system coincides with the central axis of the tube when the centering device is attached to the endoscope.

【0029】上述の各実施例は管内面の中心軸O上に観
察範囲に対向して対物光学系の入射瞳が位置するもので
あるが、本発明は、入射瞳が中心軸O上になくても、管
の直交断面において、中心軸Oから第一図に示した平面
Aに直交する線上でほぼ±R/2(R:管内面の半径)
の範囲内に入射瞳があれば、上述の場合と同様な効果を
得ることが出来る。このような本発明の第二の原理を、
図14乃至図16に基づいて説明する。図14において
、対物光学系の入射瞳18は管内面17の中心軸Oから
下方に距離x(図(A)において、下方向を+,上方向
を−とする)の位置にあるものとし、又管内面17の観
察範囲17aの長さをDoとして、入射瞳18の鏡面反
射による結像を考える。入射瞳18の中心から観察範囲
17a方向へ発した光束Laが、鏡面に近い管内面で反
射した反射光束Lの瞳位置18における広がりをDiと
する。管の直交断面と長手断面において現れる夫々の広
がりDiが、図(A)と図(B)とに表される。そのた
め、照明光学系の射出窓は光束La及び反射光束Lの領
域外に配置する必要がある。ここで、距離xに対する直
交断面方向の広がり(S方向とする)Diと長手断面方
向の広がり(T方向とする)Diとを、図15に示す線
分SとTとによって示すものとする。また、観察範囲1
7aの長さDoは、入射瞳18の距離xにかかわらず一
定とする。
In each of the embodiments described above, the entrance pupil of the objective optical system is located on the central axis O of the inner surface of the tube, facing the observation range, but in the present invention, the entrance pupil is not located on the central axis O. However, in the orthogonal cross section of the tube, approximately ±R/2 (R: radius of the inner surface of the tube) on a line perpendicular to the plane A shown in Figure 1 from the central axis O.
If the entrance pupil is within the range of , the same effect as in the above case can be obtained. The second principle of the present invention is
This will be explained based on FIGS. 14 to 16. In FIG. 14, the entrance pupil 18 of the objective optical system is located at a distance x downward from the central axis O of the tube inner surface 17 (in FIG. 14, the downward direction is + and the upward direction is -), Further, assuming that the length of the observation range 17a of the tube inner surface 17 is Do, consider image formation by specular reflection of the entrance pupil 18. A light beam La emitted from the center of the entrance pupil 18 in the direction of the observation range 17a is reflected on the inner surface of the tube, which is close to a mirror surface.The spread of the reflected light beam L at the pupil position 18 is defined as Di. The respective extensions Di appearing in the orthogonal cross section and the longitudinal cross section of the tube are shown in Figures (A) and (B). Therefore, the exit window of the illumination optical system needs to be placed outside the area of the light flux La and the reflected light flux L. Here, the extent Di in the orthogonal cross-sectional direction (denoted as the S direction) and the extent Di in the longitudinal cross-sectional direction (denoted as the T direction) with respect to the distance x are shown by line segments S and T shown in FIG. In addition, observation range 1
The length Do of 7a is constant regardless of the distance x of the entrance pupil 18.

【0030】従って、図15において、反射光束Lは、
S方向では、入射瞳18が管の中心軸O上に有る場合即
ちx=0のときは、Di=0となり、またx=R/2の
ときは、Di=Doとなる。また、T方向では、平面反
射であるから、xの値にかかわらず常にDi=2Doと
なる。このため、距離x=±Rの場合には、広がりDi
は、S方向とT方向とで等しくなり(Di=2Do)、
距離xが0の場合には、直線状になる。 尚、Di,Do,x,Rの関係は次式で表される。 Di/Do=2|x|/R
Therefore, in FIG. 15, the reflected light flux L is
In the S direction, when the entrance pupil 18 is on the central axis O of the tube, that is, when x=0, Di=0, and when x=R/2, Di=Do. Furthermore, in the T direction, since it is a plane reflection, Di=2Do is always true regardless of the value of x. Therefore, when the distance x=±R, the spread Di
is equal in the S direction and the T direction (Di=2Do),
When the distance x is 0, it becomes a straight line. Note that the relationship among Di, Do, x, and R is expressed by the following equation. Di/Do=2|x|/R

【0031】次に、入射瞳18が中心軸Oから上方即ち
観察範囲17a方向に距離x(≧−R/2)の位置にあ
る場合について説明する。図16は、x=−R/2の位
置に入射瞳18がある場合を示しており、図(A)に示
す管内面17の直交断面においては、反射光束Lは観察
範囲17aの長さDoと同一幅の平行光束となる。 (尚、図(B)に示す長手断面では、瞳位置xにおける
反射光束Lの広がりDiは2Doとなる。)従って、直
交断面図(A)における観察範囲17aの幅Doが管内
面17の円周の約1/3程度であれば、管径に対する反
射光束Lの幅の割合が大きくなるので、内視鏡における
照明光学系の射出窓の配設スペ−スは限界になる。又、
長さDoが円周の約1/10程度内であれば、反射光束
Lの広がりは少なく、照明光学系の射出窓の配設スペ−
スは十分に余裕がある。
Next, a case will be explained in which the entrance pupil 18 is located at a distance x (≧-R/2) upward from the central axis O, that is, in the direction of the observation range 17a. FIG. 16 shows the case where the entrance pupil 18 is located at the position of x=-R/2, and in the orthogonal cross section of the tube inner surface 17 shown in FIG. It becomes a parallel beam of light with the same width as . (In the longitudinal cross-section shown in Figure (B), the spread Di of the reflected light beam L at the pupil position x is 2Do.) Therefore, the width Do of the observation range 17a in the orthogonal cross-section (A) is If it is about 1/3 of the circumference, the ratio of the width of the reflected light beam L to the tube diameter becomes large, so the space for arranging the exit window of the illumination optical system in the endoscope is at its limit. or,
If the length Do is within about 1/10 of the circumference, the spread of the reflected light beam L will be small and the space for the exit window of the illumination optical system will be reduced.
There is plenty of space.

【0032】上述のように、本発明の第二の原理によれ
ば、入射瞳18が管内面17の中心軸O上に位置してい
なくても、中心軸Oから±R/2の距離内にあれば、ハ
レ−ションを排除すると共に配光と照明効率の良好な側
視型内視鏡を得ることができる。但し、管内面17の観
察範囲17aの直交断面方向の幅が管内周の1/3以上
になると、入射瞳18が−R/2の位置ではハレ−ショ
ンを排除し得る照明光学系の射出窓の配置は困難になる
。このような場合には、入射瞳18を−R/2の位置か
ら中心軸Oに近づければ、反射光束Lは収束するように
なるので、ハレ−ションを排除し得る射出窓の配置スペ
−スが広がり、これが可能になる。
As described above, according to the second principle of the present invention, even if the entrance pupil 18 is not located on the central axis O of the inner surface 17 of the tube, it is within a distance of ±R/2 from the central axis O. If so, it is possible to obtain a side-viewing endoscope that eliminates halation and has good light distribution and illumination efficiency. However, if the width of the observation range 17a of the tube inner surface 17 in the orthogonal cross-sectional direction becomes 1/3 or more of the tube inner circumference, the exit window of the illumination optical system can eliminate halation when the entrance pupil 18 is at the -R/2 position. placement becomes difficult. In such a case, if the entrance pupil 18 is brought closer to the central axis O from the position -R/2, the reflected light beam L will be converged, so the arrangement space of the exit window can be adjusted to eliminate halation. This will become possible as the space expands.

【0033】図17は、本発明の第二の原理に基づく第
八実施例を示すものである。図中、入射瞳18はx=+
R/2の位置にあり、対物光学系と照明光学系の各光束
は同一の反射ミラ−45によって曲げられるようになっ
ている。又、照明光学系は管内面17の中心軸O上にあ
って、その下側に対物光学系が配置されている。そのた
め、一対の照明光学系は対物光学系の両側に、その射出
窓が光束La及び反射光束Lの領域e外(図(A)参照
)に位置するように配置されている。照明レンズ51は
照明光が観察範囲17aに向かうように、射出面が傾斜
して構成されている。このような構成において、直交断
面方向の観察範囲17aの幅Doが円周の1/4程度内
であれば、光束La及び反射光束Lを避けた照明光学系
の射出窓の配置が可能である。特に、幅Doが管円周の
1/6〜1/10程度の範囲内であれば、ハレ−ション
のない射出窓の配置が容易である。
FIG. 17 shows an eighth embodiment based on the second principle of the present invention. In the figure, the entrance pupil 18 is x=+
It is located at a position R/2, and each light beam from the objective optical system and the illumination optical system is bent by the same reflecting mirror 45. Further, the illumination optical system is located on the central axis O of the tube inner surface 17, and the objective optical system is arranged below it. Therefore, the pair of illumination optical systems are arranged on both sides of the objective optical system so that their exit windows are located outside the area e of the light flux La and the reflected light flux L (see Figure (A)). The illumination lens 51 has an inclined exit surface so that the illumination light is directed toward the observation range 17a. In such a configuration, if the width Do of the observation range 17a in the orthogonal cross-sectional direction is within about 1/4 of the circumference, it is possible to arrange the exit window of the illumination optical system to avoid the light flux La and the reflected light flux L. . In particular, if the width Do is within a range of about 1/6 to 1/10 of the tube circumference, it is easy to arrange the exit window without halation.

【0034】図18は第九実施例を示すものである。図
中、入射瞳18はx=−R/2の位置にあり、直交断面
方向の観察範囲17aの幅Doは  管円周の約1/6
となっている(図(A)参照)。反射光束Lは平行であ
るから、照明光学系の射出窓を構成する一対の照明レン
ズ52,52は、反射光束Lの領域外に配置せしめられ
る。しかも、この照明レンズ52はくさびプリズムとし
て形成され、入射瞳18の真横から観察範囲17a方向
へ照明光を偏向せしめることになる。このため、配光,
照明効率共に良好である。尚、対物光学系とライトガイ
ド31の構成は、図6のものとほぼ同様である。
FIG. 18 shows a ninth embodiment. In the figure, the entrance pupil 18 is located at x=-R/2, and the width Do of the observation range 17a in the orthogonal cross-sectional direction is approximately 1/6 of the tube circumference.
(See figure (A)). Since the reflected light flux L is parallel, the pair of illumination lenses 52, 52 forming the exit window of the illumination optical system are arranged outside the area of the reflected light flux L. Moreover, this illumination lens 52 is formed as a wedge prism, and deflects the illumination light from right beside the entrance pupil 18 toward the observation range 17a. For this reason, light distribution,
Both lighting efficiency is good. Note that the configurations of the objective optical system and the light guide 31 are almost the same as those shown in FIG.

【0035】次に、入射瞳18が距離x≧R/2の位置
に配設された場合の、本発明の第三の原理を図19に基
づいて説明する。対物光学系の入射瞳18が管内面17
の中心軸Oより下側即ちx>0の場合、入射瞳18から
観察範囲17aへ向かう光束Laの領域に対し、反射光
束Lは中心軸Oの上側でしかも光束Laの領域内で収束
し、入射瞳の像を結像する事になる。即ち、図19にお
いて、入射瞳18の管内面17による像18aの位置を
、中心軸Oを原点としてx′で表すと、入射瞳像18a
の位置x′は次式で表される。 x′=R/2・(−x)/(R/2+x)この式に関連
して更に説明すれば、(1)入射瞳18が中心軸O上に
ある場合は、瞳像18aはこれに一致し、光束Laと反
射光束Lは重なる。(2)入射瞳18が無限遠にある場
合(x=∞)は、上式はx′=−R/2となる。しかも
、光束Laは幅Doの平行光束となるため、この領域内
に反射光束Lが含まれることになる。
Next, the third principle of the present invention in the case where the entrance pupil 18 is disposed at a position where the distance x≧R/2 will be explained based on FIG. 19. The entrance pupil 18 of the objective optical system is the tube inner surface 17
In other words, when x>0, the reflected luminous flux L converges above the central axis O and within the region of the luminous flux La, with respect to the region of the luminous flux La that goes from the entrance pupil 18 to the observation range 17a, This will form an image of the entrance pupil. That is, in FIG. 19, if the position of the image 18a of the entrance pupil 18 on the tube inner surface 17 is expressed by x' with the central axis O as the origin, the entrance pupil image 18a
The position x' is expressed by the following equation. x'=R/2・(-x)/(R/2+x) To further explain this equation, (1) When the entrance pupil 18 is on the central axis O, the pupil image 18a is They match, and the light flux La and the reflected light flux L overlap. (2) When the entrance pupil 18 is at infinity (x=∞), the above equation becomes x'=-R/2. Moreover, since the luminous flux La becomes a parallel luminous flux with a width Do, the reflected luminous flux L is included within this region.

【0036】従って、x>R/2の場合(0<x≦R/
2の領域については上述した)においても、光束Laの
領域外に照明光学系の射出窓を配置すれば、ハレ−ショ
ンを排除することができる。入射瞳18をx>R/2の
位置に配置する手段は、上述の実施例と同様に、反射ミ
ラ−を用いてもよく、或いは直接対物光学系を配置して
もよいが、この原理の場合、xがおおきいので、前者の
手段の方が容易である。
Therefore, when x>R/2 (0<x≦R/
Regarding the area (2) described above, halation can also be eliminated by arranging the exit window of the illumination optical system outside the area of the light beam La. As for the means for arranging the entrance pupil 18 at the position where x>R/2, a reflecting mirror may be used as in the above embodiment, or an objective optical system may be directly arranged. In this case, since x is large, the former method is easier.

【0037】尚、入射瞳18がx<−R/2の位置にあ
る場合について説明すれば、この場合、観察範囲17a
にかなり接近した位置に内視鏡1の対物光学系の入射窓
が位置することになり、しかも観察のための画角の仕様
が100°前後に設定されているために、照明光の反射
光が入射するのを排除するのが困難となる。そのため、
ハレ−ションを除去するには、照明光学系の射出窓をか
なり外側に配置しなければならず、上述の従来技術と同
様の欠点を生じるので好ましくない。
[0037] In addition, to explain the case where the entrance pupil 18 is at a position where x<-R/2, in this case, the observation range 17a
The entrance window of the objective optical system of endoscope 1 is located quite close to It becomes difficult to eliminate the incidence of Therefore,
In order to eliminate halation, the exit window of the illumination optical system must be placed considerably outside, which is undesirable because it causes the same drawbacks as the prior art described above.

【0038】図20は本発明の第三の原理を用いた第十
実施例を示すものである。図中、入射瞳18は管内径R
にほぼ近似した内視鏡外径と同一距離の位置にあり、反
射ミラ−45によって光束Laが折り曲げられるように
なっている。又、照明光学系は一対の円柱状発光体(蛍
光灯等)54を用い、管の長手方向且つ中心軸Oの上方
に、光束Laを避けた位置に配置せしめている。本実施
例の場合、照明光学系の射出窓が管内面17の観察範囲
17aに近接した位置にあるので、明るい画像が得られ
る。
FIG. 20 shows a tenth embodiment using the third principle of the present invention. In the figure, the entrance pupil 18 is the tube inner diameter R
It is located at the same distance as the outer diameter of the endoscope, which is approximately approximate to , and the light beam La is bent by the reflecting mirror 45. The illumination optical system uses a pair of cylindrical light emitters (such as fluorescent lamps) 54, which are arranged in the longitudinal direction of the tube and above the central axis O, away from the light beam La. In the case of this embodiment, since the exit window of the illumination optical system is located close to the observation range 17a of the tube inner surface 17, a bright image can be obtained.

【0039】図21は第十一実施例を示すものである。 図中、照明光学系は、照明光を伝送する一対のライトガ
イド34,34と、中央に光束Laを通過させるための
円形孔55aと入射側に傾斜して配置されるハ−フミラ
−面55bと出射側にアルミ等金属板を傾斜して配置せ
しめて全反射させる全反射面55cとから成る平板ガラ
ス55と、が備えられている。この平板ガラス55は、
その仮面に円形孔55aを除いて遮光板が配置されてお
り、漏洩光によるフレア−を防止できるようになってい
る。尚、本実施例では、照明光学系の射出窓は部分的に
反射光束Lと長手方向で重なり、ハレ−ションを発生さ
せる。
FIG. 21 shows an eleventh embodiment. In the figure, the illumination optical system includes a pair of light guides 34, 34 for transmitting illumination light, a circular hole 55a in the center for passing the light beam La, and a half mirror surface 55b arranged inclined toward the incident side. and a total reflection surface 55c on which a metal plate such as aluminum is arranged obliquely on the emission side to cause total reflection. This flat glass 55 is
A light-shielding plate is arranged on the mask except for the circular hole 55a, so that flare caused by leaked light can be prevented. In this embodiment, the exit window of the illumination optical system partially overlaps the reflected light beam L in the longitudinal direction, causing halation.

【0040】図22は第十二実施例を示すものである。 本実施例は、x=Rの位置に入射瞳18があるように対
物光学系が配設されている。照明光学系では、ライトガ
イド34,34の射出端面にアクリル,オパ−ルガラス
等の光拡散物質56,56が、光束Laの領域外で中心
軸Oの上方に配置されている。
FIG. 22 shows a twelfth embodiment. In this embodiment, the objective optical system is arranged so that the entrance pupil 18 is located at the position of x=R. In the illumination optical system, light diffusing materials 56, 56 such as acrylic or opal glass are arranged on the exit end surfaces of the light guides 34, 34 above the central axis O outside the area of the light beam La.

【0041】図23及び図24は上述の各実施例に適用
され得る照明手段の変形例である。図23は第十一実施
例の照明手段の変形例を示すものであり、図中、光束L
a(又は反射光束L)通過用の円形光57aが穿設され
たアクリル又はオパ−ルガラスから成る拡散板57に、
側面から一対のライトガイド34,34(図(A)参照
)又は側面と裏面から二本のライトガイド34,58(
図(B)参照)によって、照明光が供給される。そして
、拡散板57内の拡散物質によって光が均一に反射され
て曲げられ、管内面の観察範囲を照射するようになって
いる。又、拡散板57の裏面は円形孔57aを除いて遮
光膜が取り付けられている。この場合、照明光は長手方
向に関して反射光束Lの領域内からも観察範囲17aを
照射することになるから、ハレ−ションが発生するが、
拡散板57の表面全域で均一に拡散照明することになる
から、強烈なハレ−ションにはならず、観察及び計測等
に与える悪影響は小さい。
FIGS. 23 and 24 show modified examples of illumination means that can be applied to each of the above-described embodiments. FIG. 23 shows a modification of the illumination means of the eleventh embodiment, and in the figure, the luminous flux L
A (or reflected light flux L) is passed through a circular light 57a on a diffuser plate 57 made of acrylic or opal glass.
A pair of light guides 34, 34 from the side (see figure (A)) or two light guides 34, 58 from the side and back (see figure (A)).
(see Figure (B)) provides illumination light. The light is uniformly reflected and bent by the diffusing substance in the diffuser plate 57, and illuminates the observation range on the inner surface of the tube. Further, a light shielding film is attached to the back surface of the diffusion plate 57 except for the circular hole 57a. In this case, since the illumination light illuminates the observation range 17a from within the area of the reflected light beam L in the longitudinal direction, halation occurs.
Since the entire surface of the diffuser plate 57 is uniformly diffused and illuminated, strong halation does not occur, and the adverse effect on observation, measurement, etc. is small.

【0042】図24は、ライトガイドの射出端面を射出
窓とするものであって、対物光学系の入射窓をほぼ囲う
ように異形成形されている。図(A)は馬蹄形射出端面
59aを有するライトガイド59を示すものであり、図
(B)は略コ字状の射出端面60aを有するライトガイ
ド60,図(C)は矩形の射出端面61aを有するライ
トガイド61を夫々示すものである。これらの射出窓は
、長手方向に広がった反射光束Lと部分的に重なり、こ
の部分でハレ−ションを生じるが、管内面までの観察距
離が短い場合即ち近点の観察には有効である。
In FIG. 24, the exit end face of the light guide is used as an exit window, and is shaped differently so as to substantially surround the entrance window of the objective optical system. Figure (A) shows a light guide 59 having a horseshoe-shaped exit end face 59a, Figure (B) shows a light guide 60 having a substantially U-shaped exit end face 60a, and Figure (C) shows a light guide 60 having a substantially U-shaped exit end face 60a. The light guides 61 each have are shown. These exit windows partially overlap the reflected light beam L that spreads in the longitudinal direction, causing halation at this portion, but are effective when the observation distance to the inner surface of the tube is short, that is, for near-point observation.

【0043】[0043]

【発明の効果】上述のように本発明に係る管内観察用側
視型内視鏡によれば、対物光学系の入射瞳の管内面によ
る像の光束領域が、照明光学系の射出窓と重ならないよ
うにして対物光学系及び照明光学系が配置されているか
ら、管内面の鏡面反射によって生じるハレ−ションを排
除できると共に、配光特性と照明効率を改善出来て、管
内面の観察や計測等を良好に行うことができる。
Effects of the Invention As described above, according to the side-viewing endoscope for intraduct observation according to the present invention, the light flux area of the image formed by the tube inner surface of the entrance pupil of the objective optical system overlaps with the exit window of the illumination optical system. Since the objective optical system and the illumination optical system are arranged so as not to cause any interference, it is possible to eliminate halation caused by specular reflection on the inner surface of the tube, and improve light distribution characteristics and illumination efficiency, making it possible to observe and measure the inner surface of the tube. etc. can be performed well.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第一の原理を示す内視鏡先端の要部斜
視図である。
FIG. 1 is a perspective view of the main parts of the distal end of an endoscope, showing the first principle of the present invention.

【図2】(A)は管内面に対する入射瞳の像を形成する
光束を示す直交断面図であり、(B)は長手断面図であ
る。
FIG. 2(A) is an orthogonal sectional view showing a light beam forming an image of the entrance pupil on the inner surface of the tube, and FIG. 2(B) is a longitudinal sectional view.

【図3】本発明の第一実施例を示すものであり、(A)
は直交断面図、(B)は長手断面図、(C)は照明レン
ズと対物レンズの位置関係を示す図である。
FIG. 3 shows a first embodiment of the present invention, (A)
FIG. 5 is an orthogonal cross-sectional view, FIG. 3B is a longitudinal cross-sectional view, and FIG. 3C is a diagram showing the positional relationship between the illumination lens and the objective lens.

【図4】第一実施例の変形例を示す図3と同様な図であ
る。
FIG. 4 is a diagram similar to FIG. 3 showing a modification of the first embodiment.

【図5】第二実施例についての図3と同様な図である。FIG. 5 is a diagram similar to FIG. 3 for a second embodiment;

【図6】第三実施例を示すもので、夫々(A)は側面、
(B)は平面、(C)は正面からみた要部構成図である
FIG. 6 shows a third embodiment, in which (A) is a side surface;
(B) is a plan view, and (C) is a main part configuration diagram seen from the front.

【図7】第四実施例を示すもので、(A),(B),(
C)は図3と同様な図であり、(D)は単ファイバ−の
側面図である。
FIG. 7 shows the fourth embodiment, (A), (B), (
C) is a view similar to FIG. 3, and (D) is a side view of a single fiber.

【図8】図7の単ファイバ−の変形例を示す図である。FIG. 8 is a diagram showing a modification of the single fiber in FIG. 7;

【図9】対物光学系の変形例を示す図である。FIG. 9 is a diagram showing a modification of the objective optical system.

【図10】対物光学系の他の変形例を示す図である。FIG. 10 is a diagram showing another modification of the objective optical system.

【図11】第五実施例を示すもので、夫々(A)は正面
、(B)は側面からみた要部構成図、(C)は光学系の
要部斜視図である。
FIG. 11 shows a fifth embodiment, in which (A) is a front view, (B) is a configuration diagram of the main parts seen from the side, and (C) is a perspective view of the main parts of the optical system.

【図12】第六実施例の対物光学系を示す側面図である
FIG. 12 is a side view showing the objective optical system of the sixth embodiment.

【図13】第七実施例を示す図3と同様な図である。FIG. 13 is a diagram similar to FIG. 3 showing a seventh embodiment.

【図14】本発明の第二の原理の説明図であり、(A)
は管の直交断面図、(B)は長手断面図である。
FIG. 14 is an explanatory diagram of the second principle of the present invention, (A)
(B) is an orthogonal sectional view of the tube, and (B) is a longitudinal sectional view.

【図15】入射瞳の位置と光束の広がりとの関係を示す
図である。
FIG. 15 is a diagram showing the relationship between the position of the entrance pupil and the spread of the luminous flux.

【図16】入射瞳が中心軸Oの上方にある場合の図14
と同様な図である。
[Figure 16] Figure 14 when the entrance pupil is above the central axis O
This is a similar diagram.

【図17】第八実施例を示すもので、夫々(A)は正面
、(B)は側面からみた要部構成図である。
FIG. 17 shows an eighth embodiment, in which (A) is a front view and (B) is a side view of the main part configuration.

【図18】第九実施例を示すもので、夫々(A)は正面
、(B)は平面からみた要部構成図である
FIG. 18 shows a ninth embodiment, in which (A) is a front view and (B) is a main part configuration diagram seen from a plane.

【図19】本
発明の第三の原理を説明するための管内面の直交断面図
である。
FIG. 19 is an orthogonal sectional view of the inner surface of the tube for explaining the third principle of the present invention.

【図20】第十実施例を示すもので、夫々(A)は正面
、(B)は側面からみた要部構成図である
FIG. 20 shows a tenth embodiment, in which (A) is a front view and (B) is a side view of the main part configuration.

【図21】第
十一実施例を示すもので、夫々(A)は正面、(B)は
側面、(C)は平面からみた要部構成図、(D)は平板
ガラスの側面図である。
FIG. 21 shows an eleventh embodiment, in which (A) is a front view, (B) is a side view, (C) is a main part configuration diagram seen from a plane, and (D) is a side view of a flat glass. .

【図22】第十二実施例を示すもので、夫々(A)は正
面、(B)は側面からみた要部構成図である
FIG. 22 shows a twelfth embodiment, in which (A) is a front view and (B) is a side view of the configuration of the main parts.

【図23】
(A),(B)は照明光学系の照明手段の変形例である
[Figure 23]
(A) and (B) are modified examples of the illumination means of the illumination optical system.

【図24】(A),(B),(C)は夫々ライトガイド
射出端面の変形例を示す図である。
FIGS. 24A, 24B, and 24C are views showing modified examples of the light guide exit end surface, respectively.

【図25】従来の内視鏡先端部の回転装置を示す一部断
面図である。
FIG. 25 is a partial cross-sectional view showing a conventional rotating device for the distal end of an endoscope.

【図26】管内径とほぼ同一外径の内視鏡を示す長手方
向断面図である。
FIG. 26 is a longitudinal cross-sectional view showing an endoscope having an outer diameter that is approximately the same as the inner diameter of the tube.

【図27】センタリングデバイスを装着した内視鏡の直
交方向断面図である。
FIG. 27 is an orthogonal cross-sectional view of an endoscope equipped with a centering device.

【図28】図27の内視鏡の長手方向断面図である。FIG. 28 is a longitudinal cross-sectional view of the endoscope of FIG. 27;

【図29】従来の内視鏡の要部構成図である。FIG. 29 is a configuration diagram of main parts of a conventional endoscope.

【図30】従来の内視鏡を示すものであり、(A)は側
面図、(B)は矢印P方向からみた要部正面図である。
FIG. 30 shows a conventional endoscope, in which (A) is a side view and (B) is a front view of the main parts viewed from the direction of arrow P.

【図31】(A)は従来の内視鏡の要部構成図、(B)
は直交断面図である。
[Figure 31] (A) is a configuration diagram of the main parts of a conventional endoscope, (B)
is an orthogonal sectional view.

【図32】従来の内視鏡の要部構成図である。FIG. 32 is a configuration diagram of main parts of a conventional endoscope.

【符号の説明】[Explanation of symbols]

1            内視鏡 17          管内面 17a        観察範囲 18          入射瞳 21          固体撮像素子22,49  
  対物レンズ 23,29    明るさ絞り 24,34    ライトガイド 25,48    照明レンズ
1 Endoscope 17 Tube inner surface 17a Observation range 18 Entrance pupil 21 Solid-state image sensor 22, 49
Objective lens 23, 29 Brightness diaphragm 24, 34 Light guide 25, 48 Illumination lens

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ほぼ円形の断面を有する管を観察対象
物とし、内視鏡にセンタリングデバイスを取り付けるか
又は内視鏡自体の外形によってその外周が前記管の内径
にほぼ等しくなるようにして、前記管の内面を観察する
ために用いられる管内観察用側視型内視鏡において、先
端部に対物光学系の入射窓と照明光学系の射出窓とが備
えられていて、該対物光学系の入射瞳の前記管の内面に
よる像の光束領域と、前記照明光学系の射出窓とが重な
らないように、対物光学系と照明光学系とが配置されて
いることを特徴とする管内観察用側視型内視鏡。
1. A tube having a substantially circular cross section is an object to be observed, and a centering device is attached to the endoscope, or the outer circumference of the endoscope is made to be approximately equal to the inner diameter of the tube due to the outer shape of the endoscope itself. The side-viewing endoscope for observing inside the tube is used to observe the inner surface of the tube, and the distal end thereof is provided with an entrance window for an objective optical system and an exit window for an illumination optical system. An objective optical system and an illumination optical system are arranged so that a light flux area of an image formed by the inner surface of the tube in the entrance pupil does not overlap with an exit window of the illumination optical system. Visual endoscope.
【請求項2】  前記対物光学系の入射瞳が管の中心軸
の近傍に位置するように構成されていることを特徴とす
る、請求項1に記載の管内観察用側視型内視鏡。
2. The side-viewing endoscope for intraductal observation according to claim 1, wherein the entrance pupil of the objective optical system is located near the central axis of the tube.
JP01708291A 1991-01-17 1991-01-17 Side-view type endoscope for in-tube observation Expired - Fee Related JP3187064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01708291A JP3187064B2 (en) 1991-01-17 1991-01-17 Side-view type endoscope for in-tube observation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01708291A JP3187064B2 (en) 1991-01-17 1991-01-17 Side-view type endoscope for in-tube observation

Publications (2)

Publication Number Publication Date
JPH04242213A true JPH04242213A (en) 1992-08-28
JP3187064B2 JP3187064B2 (en) 2001-07-11

Family

ID=11934058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01708291A Expired - Fee Related JP3187064B2 (en) 1991-01-17 1991-01-17 Side-view type endoscope for in-tube observation

Country Status (1)

Country Link
JP (1) JP3187064B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025288A (en) * 2007-05-15 2009-02-05 Ioss Intelligente Optische Sensoren & Systeme Gmbh Device having view field mirror for inspecting optically surface
JP2009276545A (en) * 2008-05-14 2009-11-26 Olympus Corp Internal inspection device
JP2013506861A (en) * 2009-09-30 2013-02-28 シーメンス アクチエンゲゼルシヤフト Endoscope
JP2015219069A (en) * 2014-05-15 2015-12-07 大同特殊鋼株式会社 Fluorescent magnetic powder flaw detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025288A (en) * 2007-05-15 2009-02-05 Ioss Intelligente Optische Sensoren & Systeme Gmbh Device having view field mirror for inspecting optically surface
JP2009276545A (en) * 2008-05-14 2009-11-26 Olympus Corp Internal inspection device
JP2013506861A (en) * 2009-09-30 2013-02-28 シーメンス アクチエンゲゼルシヤフト Endoscope
JP2015219069A (en) * 2014-05-15 2015-12-07 大同特殊鋼株式会社 Fluorescent magnetic powder flaw detector

Also Published As

Publication number Publication date
JP3187064B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
US4711999A (en) Apparatus for photometrically detecting an optically focused condition of an optical system
JP4458221B2 (en) Endoscope with variable viewing direction
JP2020194115A5 (en)
JPH05142159A (en) Optical inspecting device
JPS61275713A (en) Microscope
US4628207A (en) Special endoscope for visually testing for cracks
WO2011058912A1 (en) Illumination optical system
JPH02287311A (en) Endoscope device with measuring mechanism
JPS6115401B2 (en)
JP2009045358A (en) Imaging apparatus
JPH0511196A (en) Visual field direction conversion optical system for endoscope
US4969177A (en) X-ray irradiation apparatus provided with irradiation range monitor
JPS60262119A (en) Optical lighting system for endoscope
JPH04242213A (en) Side view type endoscope for in-tube observation
JPH10142515A (en) Focus detection unit and microscope provided with the same
JP2964976B2 (en) Fiberscope
JP3388285B2 (en) Inspection device
JP3222233B2 (en) Endoscope observation system
RU2369999C1 (en) Laser positioner for x-ray emitter
JP2000131735A (en) Real image finder
JPH04104214A (en) Observation device
JPH09179033A (en) Observation device
JPH0219818A (en) Dark field binocular
JP3017268B2 (en) Back projection focusing method
US5253034A (en) Device for displaying the core of an optical fiber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991130

LAPS Cancellation because of no payment of annual fees