JPH04104214A - Observation device - Google Patents
Observation deviceInfo
- Publication number
- JPH04104214A JPH04104214A JP22395390A JP22395390A JPH04104214A JP H04104214 A JPH04104214 A JP H04104214A JP 22395390 A JP22395390 A JP 22395390A JP 22395390 A JP22395390 A JP 22395390A JP H04104214 A JPH04104214 A JP H04104214A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- observation
- illumination
- optical axis
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 186
- 238000005286 illumination Methods 0.000 claims abstract description 108
- 238000005452 bending Methods 0.000 claims abstract 3
- 238000013459 approach Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 230000000007 visual effect Effects 0.000 abstract description 3
- 239000000835 fiber Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、観察装置、特に管内面を観察するのに好適な
側視観察装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an observation device, and particularly to a side-view observation device suitable for observing the inner surface of a tube.
近年、ガス管や水道管等の管内面の傷の検査や管接続部
の溶接状態の検査等には、側視内視鏡が多く用いられて
いるが、この種の側視内視鏡としては、第14図に示す
如く、ライトガイドと該ライトガイドの射出端に設けら
れた照明レンズを含む照明光学系と、側視プリズムと対
物レンズとイメージガイドを含む観察光学系とを、それ
らの射出端、入射端が内視鏡本体の長手方向に順に配置
されるように構成して、観察光学系の入射端の前方に照
明光を指向せしめるようにしたもの(実開昭53−10
1482号公報参照)や、第15図及び第16図に示す
如く、前方視の内視鏡の観察光学系の光軸上に反射ミラ
ーを配置して、照明光学系から出射した照明光をこの反
射ミラーを介して被観察面上へ指向させると共に、被観
察面からの観察光をこの反射ミラーを介して観察光学系
へ導入するように構成したもの(実開昭62−9431
2号及び特開昭61−109013号公報参照)が知ら
れている。In recent years, side-viewing endoscopes have been widely used to inspect damage on the inner surface of gas pipes, water pipes, etc., and to inspect the welding conditions of pipe connections. As shown in FIG. 14, the illumination optical system includes a light guide and an illumination lens provided at the exit end of the light guide, and the observation optical system includes a side viewing prism, an objective lens, and an image guide. The exit end and the entrance end are arranged in order in the longitudinal direction of the endoscope body, and the illumination light is directed in front of the entrance end of the observation optical system (Utility Model No. 53-10
1482) and as shown in FIGS. 15 and 16, a reflecting mirror is placed on the optical axis of the observation optical system of a forward-viewing endoscope, and the illumination light emitted from the illumination optical system is reflected from this mirror. A device configured to direct the observation light onto the surface to be observed through a reflection mirror and to introduce observation light from the surface to be observed into the observation optical system through the reflection mirror (Utility Model No. 62-9431).
No. 2 and Japanese Unexamined Patent Publication No. 61-109013) are known.
ところで、第14図に示した従来例では、内視鏡本体の
直径に較べて観察されるべき管の内径が余り大きくない
場合、観察光学系の入射端と被観察面との間の距離が短
いため、観察光学系の入射端と照明光学系の射出端との
離間による視差の影響が顕著に出て視野の片側が暗くな
り、実用に耐え得なくなってしまうという問題がある。By the way, in the conventional example shown in FIG. 14, when the inner diameter of the tube to be observed is not much larger than the diameter of the endoscope body, the distance between the entrance end of the observation optical system and the surface to be observed is Because it is short, there is a problem that the effect of parallax due to the separation between the entrance end of the observation optical system and the exit end of the illumination optical system becomes noticeable, and one side of the field of view becomes dark, making it impractical for practical use.
又、被観察面が比較的鏡面に近い場合には被観察面で反
射した照明光学系の射出端面の像が視野内に入ってこの
部分が強いハレーションとなり観察に支障を来たすとい
う問題点もある。Additionally, if the surface to be observed is relatively close to a mirror surface, there is a problem in that the image of the exit end face of the illumination optical system reflected from the surface to be observed enters the field of view, causing strong halation in this area, which hinders observation. .
又、第15図に示した従来例(実開昭62−94312
号公報参照)では、照明光学系の射出端から被観察面へ
向かう照明光と被観察面から観察光学系の入射端へ向か
う観察光とが共通の反射ミラーで反射されるようになっ
ているため、内視鏡本体の直径に較べて観察されるべき
管の内径が余り大きくない場合でも、被観察面から照明
光学系の射出端及び観察光学系の入射端までの光路長が
比較的長くとれるので、第14図の従来例に較べれば視
差の影響は少な(て済む。然しなから、近接の被観察面
の観察においては視差は無視し難く照明ムラが残ってし
まう。この場合、照明ムラをなくすため配光角を広げる
と照明効率が落ち実用上問題がある。又、被観察面が鏡
面に近い場合には第14図の従来例と同様の問題点があ
る。In addition, the conventional example shown in FIG.
(Refer to the publication), the illumination light directed from the exit end of the illumination optical system toward the observed surface and the observation light directed from the observed surface toward the input end of the observation optical system are reflected by a common reflection mirror. Therefore, even if the inner diameter of the tube to be observed is not very large compared to the diameter of the endoscope body, the optical path length from the surface to be observed to the exit end of the illumination optical system and the input end of the observation optical system is relatively long. Therefore, the influence of parallax is smaller compared to the conventional example shown in FIG. If the light distribution angle is widened in order to eliminate unevenness, the illumination efficiency decreases, which poses a practical problem.Furthermore, when the surface to be observed is close to a mirror surface, problems similar to those of the conventional example shown in FIG. 14 occur.
更に、第16図に示した従来例(特開昭61−1090
13号公報参照)は、照明光学系の射出端が円環状に配
置されている点で第15図の従来例とは異なるが、第1
5図の従来例と同様の問題点がある。Furthermore, the conventional example shown in FIG.
13) is different from the conventional example shown in Fig. 15 in that the exit end of the illumination optical system is arranged in an annular shape.
There are problems similar to those of the conventional example shown in FIG.
本発明は、従来の技術の有するこのような問題点に鑑み
なされたものであって、その目的とするところは、観察
されるべき管の内径が装置本体の外径に対して比較的大
きい場合から僅かに大きい場合に到るまで即ち被観察面
が比較的離れた位置にある場合から近接位置にある場合
まで被観察面を明るく且つ均一に照明することができ、
而も管内面が鏡面に近い場合でも照明光学系の出射端の
像が観察視野のハレーションにならず常に良好な観察像
を得ることのできる、第15図又は第16図に示す如き
形式の観察装置を提供しようとするものである。The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to solve the problem when the inner diameter of the tube to be observed is relatively large compared to the outer diameter of the main body of the device. The surface to be observed can be illuminated brightly and uniformly from a relatively large distance to a slightly large distance, that is, from a relatively distant position to a close position.
Moreover, even when the inner surface of the tube is close to a mirror surface, the image at the output end of the illumination optical system does not cause halation in the observation field, and a good observation image can always be obtained, as shown in Fig. 15 or 16. The aim is to provide equipment.
上記目的を達成するために、本発明による観察装置は、
照明光学系から射出する光の光路中に照明光軸を観察光
学系に近づくように曲げる偏向素子を備えていて観察光
学系の光軸と上記偏向素子を出射した照明光軸とが反射
ミラーにより側方へ曲げられるようになっているか、又
は観察光学系の光軸を曲げる反射面に対して、照明光学
系の光軸を曲げる反射面を、照明光軸が観察光軸に近づ
くように傾けて配置している。In order to achieve the above object, the observation device according to the present invention includes:
The optical path of the light emitted from the illumination optical system is equipped with a deflection element that bends the illumination optical axis to approach the observation optical system, and the optical axis of the observation optical system and the illumination optical axis emitted from the deflection element are connected by a reflecting mirror. The reflective surface that bends the optical axis of the illumination optical system is tilted so that the illumination optical axis approaches the observation optical axis relative to the reflective surface that bends the optical axis of the observation optical system. It is arranged as follows.
又、観察光学系と照明光学系に夫々偏光素子を設けて、
各偏光素子の振動方向がほぼ直角となるように配置する
か、少なくとも一方の偏光素子が光軸の周りに回動でき
るように配置されている。In addition, a polarizing element is provided in each of the observation optical system and the illumination optical system,
The polarizing elements are arranged so that their vibration directions are substantially perpendicular, or at least one polarizing element is arranged so that it can rotate around the optical axis.
反射ミラーを使用して観察光軸・照明光軸を折り曲げて
観察物体面に到達するようにしたことにより、管の内径
が装置本体の外径より僅かに大きい場合、即ち被観察面
が至近位置にある場合でも照明光学系の射出面から被観
察面まである程度の距離を確保している。従って、照明
光学系の射出面の前方に偏向素子を配置するか、或いは
照明光を反射する反射ミラーを傾けて配置することによ
り、被観察面上で照明範囲と観察範囲のずれ、いわゆる
視差(パララックス)を小さくすることができる。By using a reflective mirror to bend the observation optical axis and illumination optical axis so that they reach the observed object surface, the observation optical axis can be bent to reach the observed object surface. A certain distance is ensured from the exit surface of the illumination optical system to the surface to be observed even in the case of Therefore, by arranging a deflection element in front of the exit surface of the illumination optical system, or by arranging a reflective mirror that reflects the illumination light at an angle, the difference between the illumination range and the observation range on the observed surface, so-called parallax ( Parallax) can be reduced.
又、照明光学系と観察光学系中に互いに振動方向がほぼ
直角となるように配置された偏光素子により、観察者の
目や撮像素子等に達する観察光中から被観察面での鏡面
反射成分は有効に除去される。この場合、上記偏光素子
の少なくとも一方を光軸の周りに回動することにより、
鏡面反射成分を適当に観察視野内へ洩らし、それによっ
て観察像を適当に明るくすることができる。In addition, polarizing elements arranged in the illumination optical system and the observation optical system so that the vibration directions are almost perpendicular to each other allow the specular reflection component on the observed surface to be removed from the observation light that reaches the observer's eye or the image sensor. is effectively removed. In this case, by rotating at least one of the polarizing elements around the optical axis,
The specular reflection component can be appropriately leaked into the observation field of view, thereby making it possible to appropriately brighten the observed image.
以下、図示した各実施例に基づき本発明の詳細な説明す
る。Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
第1図は本発明の第一実施例を示している。図中、■は
ガラス板で挟持された赤外カットフィルター1a、モア
レを除去するため水晶フィルター等の複屈折を利用した
光学的ローパスフィルターlb、視野変換プリズムlc
等を含む対物レンズ、2はCCD等の固体撮像素子、3
はライトガイド、4はライトガイド3の射出端に設けら
れた偏角プリズム、5は反射面5aを有する反射ミラー
、Sは管内面等の被観察面である。この場合、対物レン
ズl及び固体撮像素子2は観察光学系を、ライトガイド
3と偏角プリズム4は照明光学系を夫々構成していて、
偏角プリズム4は照明光軸を観察光学系に近づくように
曲げる偏向素子として機能している。この実施例では、
固体撮像素子2を装置内にコンパクトに収納するため視
野変換プリズムlcで光路を曲げて固体撮像素子2を斜
めに配置している。この固体撮像素子の水平走査方向は
第1図(B)に矢印で示した方向であって、管内面の長
手方向の管と管との溶接部の長さを計測するのに適すよ
うに構成されている。即ち、固体撮像素子上に形成され
る像中において計測すべき管の長手方向が水平走査方向
と一致するように反射ミラー、観察光学系及び固体撮像
素子が配置されていて、水平走査により信号を取り出し
てその信号から上記溶接部の長さを換算するようになっ
ている。FIG. 1 shows a first embodiment of the invention. In the figure, ■ indicates an infrared cut filter 1a held between glass plates, an optical low-pass filter lb that uses birefringence such as a crystal filter to remove moiré, and a visual field conversion prism lc.
2 is a solid-state image sensor such as a CCD, 3 is an objective lens including
4 is a light guide, 4 is a deflection prism provided at the exit end of the light guide 3, 5 is a reflective mirror having a reflective surface 5a, and S is a surface to be observed such as the inner surface of a tube. In this case, the objective lens l and the solid-state image sensor 2 constitute an observation optical system, and the light guide 3 and the deflection prism 4 constitute an illumination optical system, respectively.
The deflection prism 4 functions as a deflection element that bends the illumination optical axis toward the observation optical system. In this example,
In order to store the solid-state image sensor 2 compactly within the apparatus, the optical path is bent by a visual field conversion prism lc and the solid-state image sensor 2 is disposed diagonally. The horizontal scanning direction of this solid-state image sensor is the direction shown by the arrow in FIG. has been done. That is, the reflecting mirror, observation optical system, and solid-state image sensor are arranged so that the longitudinal direction of the tube to be measured in the image formed on the solid-state image sensor coincides with the horizontal scanning direction, and the signal is detected by horizontal scanning. The length of the welded portion is calculated from the signal.
第2図は照明光学系の各種構成例を示しており、何れも
ライトガイド3の射出端に直接又は間接に偏向素子4が
設けられていて、照明光が反射ミラ5の反射面5aによ
り反射されて被観察面Sに達するまでに観察範囲と照明
範囲が一致するようになっている。即ち、第2図(A)
及び(B)は偏向素子4としてクサビプリズムが用いら
れた例を示しており、第2図(D)は偏向素子4として
クサビ凹レンズが用いられた例を示している。第2図(
B)においてはクサビ面をライトガイド3側に配置して
いるので、二回の屈折が行われて屈折角を大きくとれる
と共に、前面がフラットになる等の利点がある。何れの
場合も照明光の中心が観察範囲の中心とほぼ一致するよ
うにされているから、配光及び照明効率の点で従来のも
のを上まわることができる。第2図(C)及び(E)に
おいては、ライトガイド3と偏向素子4との間に単ファ
イバーが介在せしめられていると共に、偏向素子4も単
ファイバーで作られている。この構成例は、照明光の配
光角を大きくする必要がある場合や照明光学系を細径で
コンパクトに構成する必要がある場合等に好適である。FIG. 2 shows various configuration examples of the illumination optical system, in which a deflection element 4 is provided directly or indirectly at the exit end of the light guide 3, and the illumination light is reflected by the reflection surface 5a of the reflection mirror 5. The observation range and the illumination range match each other by the time the light reaches the surface S to be observed. That is, FIG. 2(A)
2B shows an example in which a wedge prism is used as the deflection element 4, and FIG. 2D shows an example in which a wedge concave lens is used as the deflection element 4. Figure 2 (
In B), since the wedge surface is placed on the light guide 3 side, there are advantages such as the refraction is performed twice and the refraction angle can be increased, and the front surface is flat. In either case, since the center of the illumination light is made to substantially coincide with the center of the observation range, it is possible to outperform conventional systems in terms of light distribution and illumination efficiency. In FIGS. 2C and 2E, a single fiber is interposed between the light guide 3 and the deflection element 4, and the deflection element 4 is also made of a single fiber. This configuration example is suitable when it is necessary to increase the light distribution angle of illumination light or when it is necessary to configure the illumination optical system with a small diameter and compactly.
この場合、比較的長い単ファイバー4′が用いられてい
るのは、偏向素子4の側面のクラッドとの境界部での反
射によりライトガイド3の射出端の像が被観察面上に放
射状のムラとなって映るのを軽減する目的で使用されて
いる。In this case, the relatively long single fiber 4' is used because reflection at the boundary with the cladding on the side surface of the deflection element 4 causes the image at the exit end of the light guide 3 to have radial unevenness on the observed surface. It is used for the purpose of reducing the appearance of
第3図(A)は照明光軸と観察光軸の管内面での配置状
態の一例を示している。前述の如く管溶接部を計測する
場合、溶接部は第3図(B)に示すように管の内周に沿
って内側に突出しているが、この突出部のエツジ部を影
ができないように照明するためには、第3図(A)に示
すように、観察光学系による観察位置と照明光学系によ
る照明位置とが同一円周上になるよう、照明光学系の射
出端と観察光学系の入射端が一直線上に並ぶように配置
し7て、反射ミラー5で折り曲げられた後の観察光軸及
び照明光軸を含む平面が反射される前の観察光軸に対し
てほぼ垂直になるように反射ミラー5で側方へ折り曲げ
るのが良い。このように配置することによって、計測す
べき溶接部を観察視野の中心位置へもって来たとき照明
光は溶接部を真上から照明する結果となる。FIG. 3(A) shows an example of the arrangement of the illumination optical axis and the observation optical axis on the inner surface of the tube. When measuring a pipe weld as described above, the weld protrudes inward along the inner periphery of the pipe as shown in Figure 3 (B), but the edge of this protrusion should be carefully measured to avoid shading. For illumination, as shown in Figure 3 (A), the exit end of the illumination optical system and the observation optical system must be aligned so that the observation position by the observation optical system and the illumination position by the illumination optical system are on the same circumference. are arranged so that their incident ends are aligned in a straight line 7, so that the plane containing the observation optical axis and the illumination optical axis after being bent by the reflection mirror 5 is almost perpendicular to the observation optical axis before being reflected. It is preferable to bend it laterally using the reflecting mirror 5 as shown in FIG. With this arrangement, when the weld to be measured is brought to the center of the observation field, the illumination light illuminates the weld from directly above.
次に本実施例では反射ミラー5は観察光軸の周りに回転
し得るように構成されているが、第4図及び第5図はそ
の構成例を示している。第4図には、反射ミラー5と観
察光学系と照明光学系とが一体的に回転し得るように構
成された例が示されている。即ち、観察装置の先端には
管内面に対し回転しないように保持され得る固定部6が
設けられていて、この中に組み込まれたモーター7等に
より反射ミラー5と観察光学系及び照明光学系を内蔵し
た装置本体とを一体的に回転させるようにしたものであ
る。この場合装置本体は可撓性材料で作られており、柔
軟にねじれるようになっている。このため、手元操作部
を動かすことなく管内面の全周を観察することができる
。勿論、先端部に設けられたモーター7で回転する代わ
りに、観察装置が手元操作部から装置本体先端部まで連
続している場合には、手元側をねじって反射ミラー5と
観察光学系及び照明光学系を一体に回転させるように構
成することも可能である。第5図はモーター7により反
射ミラー5のみが回転され得るようにした例を示してい
るが、この場合でも、既述の通りの配光特性及び照明効
率が得られることは云うまでもなく、管内面の観察は勿
論、観察装置の外面に近い位置にある平面等の観察にお
いても同様の効果があり有用である。Next, in this embodiment, the reflecting mirror 5 is configured to be able to rotate around the observation optical axis, and FIGS. 4 and 5 show an example of the configuration. FIG. 4 shows an example in which the reflecting mirror 5, the observation optical system, and the illumination optical system are configured so that they can rotate together. That is, a fixed part 6 is provided at the tip of the observation device and can be held so as not to rotate with respect to the inner surface of the tube, and a motor 7 etc. built into this part connects the reflecting mirror 5, the observation optical system, and the illumination optical system. It is designed to rotate integrally with the built-in device body. In this case, the device body is made of a flexible material and is adapted to be twisted flexibly. Therefore, the entire circumference of the inner surface of the tube can be observed without moving the hand control unit. Of course, instead of being rotated by the motor 7 provided at the tip, if the observation device is continuous from the hand operation section to the tip of the device body, the hand side can be twisted to connect the reflecting mirror 5, observation optical system, and illumination. It is also possible to configure the optical system to rotate together. FIG. 5 shows an example in which only the reflecting mirror 5 can be rotated by the motor 7, but it goes without saying that even in this case, the light distribution characteristics and illumination efficiency as described above can be obtained. This method has similar effects and is useful not only for observing the inner surface of a tube but also for observing a plane located close to the outer surface of the observation device.
尚、第1図に示された観察光学系の仕様を示せば下記の
通りである。The specifications of the observation optical system shown in FIG. 1 are as follows.
画角:44° FNO,:12 焦点距離:6.828mn 又、その数値データは以下の通りである。Angle of view: 44° FNO: 12 Focal length: 6.828mn Moreover, the numerical data is as follows.
r + = 9999.0000
d、 =0.5600 n、 =1.88300
!/、 =40.78r t = 3.8800
d、 =3.4100
r、 =9.7460
d r =2.500 n 2 =1.51633
ν2 =64.15r 、 = −12,1820
d、 =0.2000
r s = 4.9200
d (=1 3000
r + = 9999.0000
d、 =0.5000
r + = 9999.0000
dy =0.8600 n、 =1.51633
v、 =64.15r r = 9999.0
000 (赤外線カットフィルター)dl=1.50
00 n+ =1.52000 v、 =74.0
Or * ’= 9999.0000
d、 =0.3600 n、 =1.51633r1
゜=9999.0000 (絞り)dl。= 0.50
00
r 11=4,2430
cl、、=1.3000
r 1+= 23.6260
d 、2= 1.0000
r 1h =−2,8360
d 1+”’0.6400 n +
r 14= 9999.0000
d 、、= 1.1000
64.15
64.15
64.15
23、78
シG=10.78
ν 3
ν 6
シ 7
シ 言
1.51633
1.51633
1.84666
n+
n s = 1.68870
r 1s = −7,2590
d15=1.0000
r 、 、 = 9999.0000 (水晶)cl
、、=2.13
r l+ = 9999.0000 (水晶)d、、
=0.3
r 、 、−9999,0000(水晶)d、、=1.
07
r 、、= 9999.0000
d、、=7.7180 n、o=1.68893
シ、、=31.06r 、= 9999.0000
d2゜= 0.0020
r 2 l= 9999.0000
d、=1.0820 n、、=1.68893
シ、、=31.06r2□= 9999.0000
d、、=0.0010
r 2 、= 9999.0000
d t+=0.5000 n 12” 1.5165
5 シ12=64.15r t 4= 9999.
0000
尚、上記データにおいてI”+、dl nν1は夫々
各レンズ、フィルタ等の面の曲率半径、面間隔、屈折率
、アツベ数を表わす。r + = 9999.0000 d, = 0.5600 n, = 1.88300
! /, =40.78r t = 3.8800 d, =3.4100 r, =9.7460 d r =2.500 n 2 =1.51633
ν2 =64.15r, = -12,1820 d, =0.2000 r s = 4.9200 d (=1 3000 r + = 9999.0000 d, =0.5000 r + = 9999.0000 dy =0. 8600 n, =1.51633
v, =64.15r r = 9999.0
000 (infrared cut filter) dl=1.50
00 n+ =1.52000 v, =74.0
Or*'=9999.0000 d, =0.3600 n, =1.51633r1
°=9999.0000 (aperture) dl. = 0.50
00 r 11 = 4,2430 cl,, = 1.3000 r 1+ = 23.6260 d, 2 = 1.0000 r 1h = -2,8360 d 1+”'0.6400 n + r 14 = 9999.0000 d ,,= 1.1000 64.15 64.15 64.15 23, 78 S G = 10.78 ν 3 ν 6 S 7 S 1.51633 1.51633 1.84666 n+ n s = 1.68870 r 1s = -7,2590 d15=1.0000 r, , = 9999.0000 (crystal) cl
,,=2.13 r l+ = 9999.0000 (crystal) d,,
=0.3 r, , -9999,0000 (crystal) d, , =1.
07 r,,=9999.0000 d,,=7.7180 n,o=1.68893
shi,,=31.06r,=9999.0000 d2゜=0.0020 r2l=9999.0000 d,=1.0820 n,,=1.68893
,,=31.06r2□=9999.0000 d,,=0.0010 r 2 ,=9999.0000 d t+=0.5000 n 12” 1.5165
5 shi12=64.15r t4=9999.
0000 In the above data, I"+ and dl nv1 represent the radius of curvature, spacing between surfaces, refractive index, and Abbe number of each lens, filter, etc., respectively.
第6図は本発明の第二実施例を示している。この実施例
では、観察光学系の入射端Oと照明光学系の射出端■が
観察方向に対してほぼ垂直な線上に配置されている。反
射ミラー5は、第6図(C)に示す如く、観察光学系O
に対向した反射面5a’に対し、観察光学系の有効径外
で照明光学系■に対向した反射面5a’が成る角度を以
て傾くように構成されていて、照明光軸が観察光軸に近
づけられるようになっている。この実施例によれば、観
察光学系が使用する反射面と照明光学系が使用する反射
面とを実質上分離することができるので、反射面におい
て照明光が反射する時に生じる散乱光による観察光学系
内でのフレアーが有効に除去され得る。更に、本実施例
によれば、第一実施例と同様、管内面の観察部を管の長
平方向に対して同一の面内で観察方向に対し斜め方向か
ら照明することになるので、溶接部か内側に突出してい
る場合でも影ができ難いという利点がある。FIG. 6 shows a second embodiment of the invention. In this embodiment, the entrance end O of the observation optical system and the exit end 2 of the illumination optical system are arranged on a line substantially perpendicular to the observation direction. The reflecting mirror 5 is connected to the observation optical system O as shown in FIG. 6(C).
The reflective surface 5a' facing the illumination optical system outside the effective diameter of the observation optical system is tilted at an angle with respect to the reflective surface 5a' facing the illumination optical system, so that the illumination optical axis approaches the observation optical axis. It is now possible to According to this embodiment, since the reflective surface used by the observation optical system and the reflective surface used by the illumination optical system can be substantially separated, the observation optical system due to the scattered light generated when the illumination light is reflected on the reflective surface Flare within the system can be effectively removed. Furthermore, according to this embodiment, as in the first embodiment, the observation section on the inner surface of the tube is illuminated from an oblique direction to the observation direction in the same plane as the longitudinal direction of the tube. It has the advantage that it is difficult to cast a shadow even if it protrudes inward.
又、本実施例の場合は、反射ミラー5と観察光学系O及
び照明光学系■とを一体的に回転させる構成にするのが
好ましい。Further, in the case of this embodiment, it is preferable to adopt a configuration in which the reflecting mirror 5, the observation optical system O, and the illumination optical system (2) are rotated integrally.
第7図は本発明の第三実施例を示している。この実施例
は、第二実施例の変形例で観察光学系0の入射端を装置
本体の中央に配置し、その両側に照明光学系■の射出端
を配置して、反射ミラー5の観察光学系に対向する反射
面5a’に対し照明光学系に対向する反射面5a’を傾
け、第二実施例と同様照明光軸を観察光軸に近づけるよ
うに構成したものである。この実施例によれば、被観察
面を両側から照明することになるので、第二実施例に較
べて更に影が出難いという利点がある。この場合も、反
射ミラー5と観察光学系O及び照明光学系Iとを一体に
回転させて管内面の全周観察を行なうようにするのが好
ましい。尚、本実施例は第二実施例と同様、管内面のみ
ならず、装置本体の外径に密着するような至近距離にあ
る物体の観察にも有用である。FIG. 7 shows a third embodiment of the invention. This embodiment is a modification of the second embodiment, in which the entrance end of the observation optical system 0 is arranged at the center of the apparatus main body, the exit ends of the illumination optical system (2) are arranged on both sides, and the observation optical system of the reflection mirror 5 is arranged. The reflecting surface 5a' facing the illumination optical system is tilted with respect to the reflecting surface 5a' facing the system, so that the illumination optical axis approaches the observation optical axis as in the second embodiment. According to this embodiment, since the surface to be observed is illuminated from both sides, there is an advantage that shadows are less likely to appear compared to the second embodiment. In this case as well, it is preferable to rotate the reflecting mirror 5, the observation optical system O, and the illumination optical system I together so that the entire circumference of the inner surface of the tube can be observed. Note that, like the second embodiment, this embodiment is useful not only for observing the inner surface of a tube but also for observing objects at a close distance such as those that are in close contact with the outer diameter of the main body of the apparatus.
第8図は本発明の第四実施例を示している。この実施例
は、第二実施例の変形例で、観察光学系の使用する反射
面5a’と照明光学系の使用する反射面5a’とを完全
に分離して、両反射面が重なり合っている場合に生しる
反射面での乱反射光による観察光学系内でのフレアーを
除去し得るように構成したものである。即ち、照明光学
系Iの構成要素として従来普通に用いられていた凹レン
ズの代わりに凸レンズ8を用いて、射出端から出射した
照明光束を反射面5a’近傍で一度絞り込んで、その後
発散させるようにしたものである。FIG. 8 shows a fourth embodiment of the invention. This embodiment is a modification of the second embodiment, in which the reflective surface 5a' used by the observation optical system and the reflective surface 5a' used by the illumination optical system are completely separated, and both reflective surfaces overlap. This structure is designed to eliminate flare within the observation optical system caused by diffusely reflected light on a reflecting surface. That is, a convex lens 8 is used in place of the concave lens conventionally used as a component of the illumination optical system I, so that the illumination light flux emitted from the exit end is once narrowed down near the reflecting surface 5a' and then diverged. This is what I did.
従って、反射面5a’上での照明光の占める有効面積を
小さくすることができ、その結果観察光との分離が容易
となる。尚、照明光学系に本実施例のように凸レンズ8
を含めた場合は、ライトガイド3の端面が被観察面上に
結像して観察の邪魔になることがある。このため、本実
施例では第8図(B)及び(C)に示したように、凸レ
ンズ8とライトガイド3の間に単ファイバー4′を介在
させて、ライトガイド3の端面像をほがした後被観察面
S上へ投影することで、この問題を解決している。Therefore, the effective area occupied by the illumination light on the reflective surface 5a' can be reduced, and as a result, it can be easily separated from the observation light. Note that the illumination optical system includes a convex lens 8 as in this embodiment.
If the light guide 3 is included, the end face of the light guide 3 may form an image on the surface to be observed, which may interfere with the observation. Therefore, in this embodiment, as shown in FIGS. 8(B) and 8(C), a single fiber 4' is interposed between the convex lens 8 and the light guide 3, so that the end face image of the light guide 3 can be seen clearly. This problem is solved by projecting the image onto the surface S to be observed.
第9図は本発明の第五実施例を示している。この実施例
は、観察光学系Oを装置本体の中心部に配置して、その
周りに照明光学系Iを同心円環状に配置し、また反射ミ
ラー5においては、観察光学系に対向した反射面5a’
を平板状に、照明光学系に対向した反射面5a’を環状
に夫々形成して、而も反射面5a’を反射面5a’に対
し傾けることにより照明光を被観察面に向けて偏向させ
るようにしたものである。管内面の全周観察等はモータ
ー7により反射ミラー5のみを回転して行えばよいが、
本実施例によれば、反射ミラー5゜照明光学系I及び観
察光学系0は、観察装置の中心軸に対して対象配置にな
っているので、反射ミラー5が回転しても照明状態は殆
ど変化せず、常に最適状態で観察を行なうことができる
。勿論、この実施例の場合でも、反射ミラー5.照明光
学系I及び観察光学系Oを一体に回転するように構成し
てもよいことは云うまでもない。FIG. 9 shows a fifth embodiment of the invention. In this embodiment, the observation optical system O is arranged at the center of the apparatus main body, and the illumination optical system I is arranged around it in a concentric ring shape, and the reflection mirror 5 has a reflection surface 5a facing the observation optical system. '
are formed into a flat plate shape, and a reflecting surface 5a' facing the illumination optical system is formed into an annular shape, and by tilting the reflecting surface 5a' with respect to the reflecting surface 5a', the illumination light is deflected toward the surface to be observed. This is how it was done. The entire circumference of the inner surface of the tube can be observed by rotating only the reflecting mirror 5 using the motor 7.
According to this embodiment, the reflecting mirror 5° illumination optical system I and the observation optical system 0 are arranged symmetrically with respect to the central axis of the observation device, so even if the reflecting mirror 5 rotates, the illumination state remains almost unchanged. It does not change and can always be observed in the optimal state. Of course, even in this embodiment, the reflecting mirror 5. It goes without saying that the illumination optical system I and the observation optical system O may be configured to rotate together.
第1O図は本発明の第6実施例を示している。FIG. 1O shows a sixth embodiment of the invention.
この実施例は、照明光学系■を同一円周上に四個等間隔
に配置した点で上記の第五実施例とは異なるが、効果の
点では第五実施例と同じである。本実施例の場合、照明
光学系に照明レンズが用いられていないが、必要に応じ
て凹レンズ又は凸レンズを組み合わせてもよいし、クサ
ビプリズム等の偏向手段を組み合わせても良い。This embodiment differs from the fifth embodiment described above in that four illumination optical systems (1) are arranged at equal intervals on the same circumference, but is the same as the fifth embodiment in terms of effects. In the case of this embodiment, an illumination lens is not used in the illumination optical system, but a concave lens or a convex lens may be combined as necessary, or a deflection means such as a wedge prism may be combined as necessary.
第11図は本発明の第七実施例を示している。FIG. 11 shows a seventh embodiment of the invention.
この実施例は、被観察面が鏡面に近い状態の場合、被観
察面で反射した照明光学系の射出端の像が観察光学系内
に入って生じるハレーションを低減するようにしたもの
で、照明光学系Iと観察光学系O内に夫々互いに振動方
向がほぼ直角となるように偏光板8及び9を配置してい
る。又、第12図に示すように、観察光学系Oに固体撮
像素子2が用いられていて、この素子2の走査方向に空
間周波数特性を有する水晶フィルター10が挿入されて
いる場合には、この空間周波数特性が偏光板9を入れる
ことにより変化することのないように、複数の水晶フィ
ルターを有する場合でも最初の水晶フィルター10の光
の分離方向に対し振動方向が45°回転した方向となる
ように偏光板9の向きを合わせている。そして、照明光
学系Iに挿入される偏光板8は、その振動方向がこの偏
光板9の振動方向とほぼ直角をなすように配置されてい
る。この実施例では、照明光源からは自然偏光の光が出
るから、これが偏光板8を透過することにより直線偏光
となり、反射ミラー5で反射して被観察面Sを照射する
が、この被観察面が鏡面に近い場合には、その光は直線
偏光のままでその方向も保たれたまま反射される。従っ
て、この偏光成分は観察光学系に入射する時偏光板9に
より除去される。かくして、観察光学系内でハレーショ
ンを起こすべき光成分のみが効果的に除去される。This embodiment is designed to reduce halation that occurs when the image at the exit end of the illumination optical system reflected from the surface to be observed enters the observation optical system when the surface to be observed is close to a mirror surface. Polarizing plates 8 and 9 are arranged in the optical system I and the observation optical system O, respectively, so that their vibration directions are substantially perpendicular to each other. Furthermore, as shown in FIG. 12, if a solid-state image pickup device 2 is used in the observation optical system O and a crystal filter 10 having a spatial frequency characteristic is inserted in the scanning direction of this device 2, this In order to prevent the spatial frequency characteristics from changing due to the inclusion of the polarizing plate 9, the vibration direction is rotated by 45 degrees with respect to the light separation direction of the first crystal filter 10 even when there are multiple crystal filters. The polarizing plate 9 is oriented in the same direction. The polarizing plate 8 inserted into the illumination optical system I is arranged so that its vibration direction is approximately perpendicular to the vibration direction of the polarizing plate 9. In this embodiment, since naturally polarized light is emitted from the illumination light source, this becomes linearly polarized light by passing through the polarizing plate 8, and is reflected by the reflecting mirror 5 to illuminate the observed surface S. If the surface is close to a mirror surface, the light will be reflected as linearly polarized light and its direction will be maintained. Therefore, this polarized light component is removed by the polarizing plate 9 when it enters the observation optical system. In this way, only the light component that should cause halation within the observation optical system is effectively removed.
この場合、被観察面での散乱により生じた反射光は自然
光になると考えられるが、観察光学系の偏光板9により
入射光の半分はカットされて残った光が観察光として固
体撮像素子2に入射することになる。この入射光は、水
晶フィルターの光分離方向に対して45°傾いた直線偏
光であるので、等光量つつ水晶フィルターで分離され、
規定のローパス特性を示す。本実施例では、偏光板8,
9をクロスニコルに入れであるので、観察に有効な光は
光源光の1/4となるが、ハレーションを実質上零にす
ることができるので有効である。尚、照明光源として発
光ダイオードや半導体レーザー等を用いた場合の如く光
源光自体が偏光している場合は、その偏光面を観察光学
系の偏光板9の振動方向に対し90°傾けて置けば、照
明光学系の偏光板8を用いなくても同様の効果が得られ
るが、偏光板8を併用すればその効果は一層顕著となり
好ましい。又、近年、従来の有機系の偏光板のほかに、
ガラスの表面に偏光特性を有する層を形成して成るガラ
ス製の偏光板が開発されているが、これは耐熱性も優れ
ているので、従来の如くガラス板でサンドウィッチする
必要がなく、従って、照明光学系の射出面及び観察光学
系の入射面に薄い板として貼り付けることにより設置す
ることができるので便利である。更に、照明光学系内で
偏光光を作るには、上述の如く偏光板8を用いる以外に
下記の方法を利用してもよい。その一つは、ライトガイ
ドとして、偏光保存ファイバーを偏光方向を揃えて束ね
たものを使用する方法である。In this case, the reflected light caused by scattering on the observed surface is considered to be natural light, but half of the incident light is cut off by the polarizing plate 9 of the observation optical system and the remaining light is sent to the solid-state image sensor 2 as observation light. It will be incident. This incident light is linearly polarized light tilted at 45 degrees with respect to the light separation direction of the crystal filter, so it is separated by the crystal filter while maintaining the same amount of light.
Shows specified low-pass characteristics. In this embodiment, the polarizing plate 8,
9 is placed in a crossed nicol system, the light effective for observation is 1/4 of the light from the light source, but it is effective because halation can be reduced to substantially zero. If the light source light itself is polarized, such as when a light emitting diode or semiconductor laser is used as the illumination light source, the plane of polarization can be tilted 90 degrees to the vibration direction of the polarizing plate 9 of the observation optical system. Although the same effect can be obtained without using the polarizing plate 8 of the illumination optical system, it is preferable to use the polarizing plate 8 in combination because the effect becomes even more remarkable. In addition, in recent years, in addition to conventional organic polarizing plates,
A glass polarizing plate has been developed in which a layer with polarizing properties is formed on the surface of the glass, but this plate also has excellent heat resistance, so there is no need to sandwich it between glass plates as in the past. It is convenient because it can be installed by attaching it as a thin plate to the exit surface of the illumination optical system and the entrance surface of the observation optical system. Furthermore, in order to create polarized light within the illumination optical system, the following method may be used in addition to using the polarizing plate 8 as described above. One method is to use a bundle of polarization-maintaining fibers with their polarization directions aligned as a light guide.
他の一つは、通信用の石英ファイバーのように散乱の少
ないファイバー束を用い、光源内に偏光板を設置して、
偏光した光をそのファイバー束で伝送する方法である。The other method uses a fiber bundle with low scattering, such as quartz fiber for communication, and installs a polarizing plate inside the light source.
This is a method of transmitting polarized light through a fiber bundle.
第13図は、本発明の第八実施例を示している。FIG. 13 shows an eighth embodiment of the present invention.
この実施例は、照明光学系に設けられた偏光板8等の偏
光手段を光軸の周りに回動できるようにして、被観察面
の状態に応じてハレーションの低減効果を変化させ、常
に観察し易い観察像を得ることができるようにした点で
、前記第七実施例とは異なる。従って、反射ミラー及び
観察光学系は第1I図に示したのと同様のものが使用さ
れる。先づ、第13図(A)は、照明レンズ11の前に
偏光板8を設置して、その振動方向を観察光学系に設置
された偏光板9の振動方向に対し90°となる角度を含
む範囲で回動できるように構成したものである。第13
図(B)は、ライトガイド3として通信用石英ファイバ
ー束を用い、それと単ファイバー4′との間に偏光板8
を配置して石英ファイバー束に対し偏光板8を回動でき
るように構成したものである。第13図(C)は、光源
内のレンズ系中に偏光板8を配置してこれを回動できる
ように構成したものである。第13図(D)は、ライト
ガイド3として偏光保存ファイバーを用い、照明レンズ
11に対しライトガイド3を回動する(ねじる)ことに
より、偏光方向を変えるように構成したものである。こ
の場合、ライトガイド3を構成する各ファイバーー本−
本が同じ振動方向となるように配列されている。In this embodiment, the polarizing means such as the polarizing plate 8 provided in the illumination optical system can be rotated around the optical axis, so that the halation reduction effect can be changed depending on the state of the surface to be observed, so that it can be constantly observed. This embodiment differs from the seventh embodiment in that it is possible to obtain an easily observed image. Therefore, the same reflecting mirror and observation optical system as shown in FIG. 1I is used. First, in FIG. 13(A), a polarizing plate 8 is installed in front of the illumination lens 11, and its vibration direction is set at an angle of 90° with respect to the vibration direction of the polarizing plate 9 installed in the observation optical system. It is configured so that it can be rotated within the range that it includes. 13th
In Figure (B), a communication quartz fiber bundle is used as the light guide 3, and a polarizing plate 8 is placed between it and a single fiber 4'.
is arranged so that the polarizing plate 8 can be rotated relative to the quartz fiber bundle. FIG. 13(C) shows a configuration in which a polarizing plate 8 is arranged in a lens system within a light source and can be rotated. In FIG. 13(D), a polarization maintaining fiber is used as the light guide 3, and the light guide 3 is rotated (twisted) relative to the illumination lens 11 to change the polarization direction. In this case, each fiber composing the light guide 3 -
The books are arranged so that they vibrate in the same direction.
上述の如(、本発明によれば、被観察面全体を常に均−
且つ明るく照明することができ、又、被観察面が鏡面に
近いようにな場合でも鏡面反射成分で生じるハレーショ
ンを有効適切に除去できることができて、常に見易い観
察像を得ることができる。従って、本発明によれば、特
に管内面の観察等に最適の観察装置を提供することがで
きる。As described above (according to the present invention, the entire surface to be observed is always uniform).
In addition, bright illumination is possible, and even when the surface to be observed is close to a mirror surface, halation caused by specular reflection components can be effectively and appropriately removed, and an easy-to-see observation image can always be obtained. Therefore, according to the present invention, it is possible to provide an observation device that is particularly suitable for observing the inner surface of a tube.
第1図(A)及び(B)は本発明による観察装置の第一
実施例の互いに異なる方向から見た構成図、第2図(A
)乃至(E)は本発明に係る照明光学系の互いに異なる
構成例を示す図、第3図(A)は照明光学系と観察光学
系の配置の一例を示す説明図、第3図(B)は管の接続
部の状態を例示した部分斜視図、第4図及び第5図は反
射ミラーの回転機構の互いに異なる例を示す説明図、第
6図(A)、(B)及び(C)は本発明の第二実施例に
おける照明光学系と観察光学系の配置状態を示す端面図
、装置本体部分と反射ミラーとの配置関係を示す側面図
及び反射ミラーの斜視図、第7図(A)、(B)及び(
C)は本発明の第三実施例における照明光学系と観察光
学系の配置状態を示す端面図、装置本体部分と反射ミラ
ーとの配置関係を示す側面図及び反射ミラーの斜視図、
第8図(A)、(B)及び(C)は本発明の第四実施例
における照明光学系と観察光学系との配置状態を示す説
明図、照明光学系と反射ミラーとの配置関係を示す説明
図及び照明光学系と反射面位置と被観察面位置とにおけ
る配光状態を示す説明図、第9図(A)、(B)及び(
C)は本発明の第五実施例における照明光学系と観察光
学系と反射ミラーと反射ミラー駆動手段との配置関係を
示す断面図、照明光学系と観察光学系の配置関係を示す
端面図及び反射ミラーの斜視図、第1O図(A)及び(
B)は本発明の第六実施例における照明光学系と観察光
学系と反射ミラーと反射ミラー駆動手段との配置関係を
示す断面図及び照明光学系と観察光学系との配置状態を
示す端面図、第】1図(A)及び(B)は本発明の第七
実施例における観察光学系と反射ミラーとの配置関係を
示す説明図及び照明光学系と観察光学系の配置状態を示
す端面図、第12図は第七実施例における照明光学系と
観察光学系の構成を示す斜視図、第13図(A)、(B
)、(C)及び(D)は本発明の第八実施例における照
明光学系の互いに異なる構成例を示す説明図、第14図
はこの種の観察装置の代表的−従来例を示す図、第15
図(A)及び(B)は他の従来例の概略側面及び該側面
図のb−b線断面図、第16図(A)及び(B)は更に
他の従来例における照明光学系と観察光学系と反射ミラ
ーとの配置関係を示す説明図及び該説明図のb−b線に
沿う端面図である。
l・・・・対物レンズ、2・・・・固体撮像素子、3・
・・・ライトガイド、4・・・・偏光手段、5・・・・
反射ミラー 5a、5a’、5a ・・・・反射面、
7・・・・モーター 8.9・・・・偏光素子、11・
・・・照明レンズ、■・・・・照明光学系、0・・・・
観察光学系、S・・・・被観察面。
(A)
第2図
(B)
(C)
第3図
1P6図
(A)
(B)
(C)
オ8図
(A)
オフ図
(A)
(B)
(C)
第13図
第11図
(A)
(B)
1?12図
第14図
第15図
(A)
(B)
kJ1ミラ−
牙46
(A)
(B)1(A) and 1(B) are configuration diagrams of the first embodiment of the observation device according to the present invention viewed from different directions, and FIG. 2(A)
) to (E) are diagrams showing mutually different configuration examples of the illumination optical system according to the present invention, FIG. 3(A) is an explanatory diagram showing an example of the arrangement of the illumination optical system and the observation optical system, and FIG. ) is a partial perspective view illustrating the state of the connection part of the tube, FIGS. 4 and 5 are explanatory views showing mutually different examples of the rotating mechanism of the reflecting mirror, and FIGS. 6 (A), (B), and (C ) is an end view showing the arrangement of the illumination optical system and the observation optical system in the second embodiment of the present invention, a side view and a perspective view of the reflecting mirror showing the arrangement relationship between the device main body part and the reflecting mirror, and FIG. A), (B) and (
C) is an end view showing the arrangement of the illumination optical system and observation optical system in the third embodiment of the present invention, a side view showing the arrangement relationship between the device main body part and the reflecting mirror, and a perspective view of the reflecting mirror;
FIGS. 8(A), (B), and (C) are explanatory diagrams showing the arrangement of the illumination optical system and the observation optical system in the fourth embodiment of the present invention, and the arrangement relationship between the illumination optical system and the reflecting mirror. An explanatory diagram showing the illumination optical system, the light distribution state at the reflective surface position, and the observed surface position, FIGS.
C) is a sectional view showing the arrangement relationship between the illumination optical system, the observation optical system, the reflection mirror, and the reflection mirror driving means in the fifth embodiment of the present invention, and an end view showing the arrangement relationship between the illumination optical system and the observation optical system; Perspective views of reflective mirrors, Figure 1O (A) and (
B) is a sectional view showing the arrangement relationship among the illumination optical system, observation optical system, reflection mirror, and reflection mirror driving means in the sixth embodiment of the present invention, and an end view showing the arrangement state of the illumination optical system and observation optical system. , 1A and 1B are explanatory diagrams showing the arrangement relationship between the observation optical system and the reflecting mirror in the seventh embodiment of the present invention, and an end view showing the arrangement state of the illumination optical system and the observation optical system. , FIG. 12 is a perspective view showing the configuration of the illumination optical system and observation optical system in the seventh embodiment, and FIGS. 13(A) and (B
), (C) and (D) are explanatory diagrams showing mutually different configuration examples of the illumination optical system in the eighth embodiment of the present invention, FIG. 14 is a diagram showing a typical conventional example of this type of observation device, 15th
Figures (A) and (B) are a schematic side view of another conventional example and a sectional view taken along the line b-b of the side view, and Figures 16 (A) and (B) are the illumination optical system and observation in another conventional example. FIG. 2 is an explanatory diagram showing the arrangement relationship between an optical system and a reflecting mirror, and an end view taken along line b-b of the explanatory diagram. l...Objective lens, 2...Solid-state image sensor, 3...
...Light guide, 4...Polarizing means, 5...
Reflection mirror 5a, 5a', 5a...reflection surface,
7... Motor 8.9... Polarizing element, 11...
...Illumination lens, ■...Illumination optical system, 0...
Observation optical system, S...surface to be observed. (A) Fig. 2 (B) (C) Fig. 3 Fig. 1P6 (A) (B) (C) Fig. 8 (A) Off Fig. (A) (B) (C) Fig. 13 Fig. 11 ( A) (B) 1?12 Figure 14 Figure 15 (A) (B) kJ1 mirror fang 46 (A) (B)
Claims (4)
軸を反射ミラーで折り曲げることにより側方を観察でき
るようにした観察装置において、照明光学系から射出す
る光の光路中に照明光軸を観察光学系に近づくように曲
げる偏向素子を備え、観察光学系の光軸と前記偏向素子
を射出した照明光軸とが共通の反射ミラーにより側方へ
曲げられていることを特徴とする観察装置。(1) In an observation device that is equipped with an observation optical system and an illumination optical system, and enables side observation by bending each optical axis with a reflecting mirror, there is a It is characterized by comprising a deflection element that bends the illumination optical axis to approach the observation optical system, and that the optical axis of the observation optical system and the illumination optical axis emitted from the deflection element are bent laterally by a common reflecting mirror. observation device.
軸を反射ミラーで折り曲げることにより側方を観察でき
るようにした観察装置において、観察光学系の光軸を曲
げる反射面に対して、照明光学系の光軸を曲げる反射面
を、照明光軸が観察光軸に近づくように、傾けて配置し
たことを特徴とする観察装置。(2) In an observation device that is equipped with an observation optical system and an illumination optical system so that side observation can be performed by bending each optical axis with a reflecting mirror, a reflective surface that bends the optical axis of the observation optical system On the other hand, an observation device characterized in that a reflective surface that bends the optical axis of the illumination optical system is tilted and arranged so that the illumination optical axis approaches the observation optical axis.
でいて、これらの振動方向がほぼ直角となるように配置
されていることを特徴とする、特許請求の範囲(1)又
は(2)に記載の観察装置。(3) Claim (1) or (3) characterized in that the observation optical system and the illumination optical system each include a polarizing element and are arranged so that their vibration directions are approximately at right angles. The observation device described in 2).
でいて、少なくとも一方の偏光素子が光軸の周りに回動
できるように配置されていることを特徴とする、特許請
求の範囲(1)又は(2)に記載の観察装置。(4) Claims characterized in that the observation optical system and the illumination optical system each include a polarizing element, and at least one of the polarizing elements is arranged so as to be rotatable around the optical axis. The observation device according to (1) or (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22395390A JPH04104214A (en) | 1990-08-24 | 1990-08-24 | Observation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22395390A JPH04104214A (en) | 1990-08-24 | 1990-08-24 | Observation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04104214A true JPH04104214A (en) | 1992-04-06 |
Family
ID=16806286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22395390A Pending JPH04104214A (en) | 1990-08-24 | 1990-08-24 | Observation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04104214A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016181720A1 (en) * | 2015-05-13 | 2016-11-17 | ソニー株式会社 | Endoscopic device and control method for endoscopic device |
-
1990
- 1990-08-24 JP JP22395390A patent/JPH04104214A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016181720A1 (en) * | 2015-05-13 | 2016-11-17 | ソニー株式会社 | Endoscopic device and control method for endoscopic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6560013B1 (en) | Endoscope with variable direction of view | |
US4195904A (en) | Optical system of viewing-direction changing attachment for endoscopes | |
JPH1123972A (en) | Image-forming optical device | |
JPH1090603A (en) | Endscopic optical system | |
JPS623406B2 (en) | ||
WO2011058912A1 (en) | Illumination optical system | |
US6433910B2 (en) | Confocal optical system | |
US6483626B2 (en) | Direct-view-type confocal point optical system | |
JP2002186578A (en) | Light guide and endoscope | |
US10627615B2 (en) | Endoscope distal end portion, endoscope, and optical adaptor | |
JPS60262119A (en) | Optical lighting system for endoscope | |
US6063024A (en) | Observation apparatus | |
JP2941621B2 (en) | Wide-angle lighting device | |
JPH04104214A (en) | Observation device | |
JP2004513386A (en) | Apparatus for providing an image of a remote object accessible only through a finite diameter opening | |
JP4105785B2 (en) | Endoscopic imaging optical system | |
JPH0510647B2 (en) | ||
JP3187064B2 (en) | Side-view type endoscope for in-tube observation | |
FR2548793A1 (en) | OPTICAL COUPLER FOR CONNECTING OPTICAL FIBERS | |
JP2964976B2 (en) | Fiberscope | |
JPH0432649Y2 (en) | ||
JP3477314B2 (en) | Endoscope lighting system | |
JP3317451B2 (en) | Endoscope objective optical system | |
JP2000131735A (en) | Real image finder | |
JPH07333104A (en) | Visual angle measuring apparatus for liquid crystal display element |