JPH0424181B2 - - Google Patents

Info

Publication number
JPH0424181B2
JPH0424181B2 JP58209574A JP20957483A JPH0424181B2 JP H0424181 B2 JPH0424181 B2 JP H0424181B2 JP 58209574 A JP58209574 A JP 58209574A JP 20957483 A JP20957483 A JP 20957483A JP H0424181 B2 JPH0424181 B2 JP H0424181B2
Authority
JP
Japan
Prior art keywords
gear
indexing
drive
planetary
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58209574A
Other languages
Japanese (ja)
Other versions
JPS60104632A (en
Inventor
Yoshito Kitamura
Meikichiro Kume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP20957483A priority Critical patent/JPS60104632A/en
Publication of JPS60104632A publication Critical patent/JPS60104632A/en
Publication of JPH0424181B2 publication Critical patent/JPH0424181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q16/00Equipment for precise positioning of tool or work into particular locations not otherwise provided for
    • B23Q16/02Indexing equipment
    • B23Q16/022Indexing equipment in which only the indexing movement is of importance
    • B23Q16/025Indexing equipment in which only the indexing movement is of importance by converting a continuous movement into a rotary indexing movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Positioning Apparatuses (AREA)
  • Transmission Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、工作機械、或いは、産業機械におけ
る割出装置に関し、特に、電動機による定速回転
を動力として回転体を短時間で衝撃無く、割出し
を行なう割出装置に関する。 従来、機械的割出装置としては、ゼネバ機構、
および、カム機構が一般的である。しかし、ゼネ
バ機構は角速度、角加速度共に高く、かつ角加速
度の変化率が第7図に示すように大きいため負荷
の大きいものに使用することができず、また駆動
系の振動を起しやすいという欠点にも継かつた。
また、カム機構はカム形状により所望の運動特性
が得られるが機構上大形化が難かしく、小型機械
に使用が限られている。 本発明は、上記欠点に鑑みてなされたもので、
遊星歯車を介して割出歯車に回転を伝達すると共
に、揺動アームにより該遊星歯車を揺動させて、
加速度の急激な変化を押え、回転割出時の発進・
停止を円滑にして、滑らかな加速度曲線が得ら
れ、慣性による衝撃を無くして、重量物の高速割
出を可能とした高速無衝撃割出装置を提供するこ
とを目的とする。 上記目的を達成すべく本発明は、次の要素にて
構成される。即ち、 基台と、この基台に回転可能に設けられ、駆動
歯車を固設した駆動軸と、前記基台に回転可能に
設けられ、前記駆動歯車と噛合する従動歯車と、
前記駆動軸軸線上に揺動可能に枢支され、一端に
放射方向に長溝を形成した揺動アームと、この揺
動アームの他端に回転自在に設けられ、前記駆動
歯車と噛合する第1の遊星歯車と、この第1の遊
星歯車と同一軸上に形成される第2の遊星歯車
と、前記駆動軸と同一軸線上まわりに回転し前記
第2の遊星歯車と、噛合する割出し歯車と、この
割出し歯車を固設し前記駆動軸と同一軸線上に前
記基台に枢支される出力軸と、前記従動歯車の回
転軸心から偏心した位置に突設して設けられ、前
記長溝に摺動自在に嵌合される係合部材とを備
え、駆動歯車と第1の遊星歯車および第2の遊星
歯車と割出し歯車の噛合する歯数比を変えること
により、駆動軸に対する出力軸の割出し数を所定
数に設定可能にするとともに、遊星歯車の遊星運
動で割出しの際の急激な加速度変化を防ぎ割出し
加減速時の衝撃を無くしたことを特徴とする割出
し装置にて構成される。 以下、本発明の実施例について図面を参照して
説明する。 第1図は本発明高速無衝激割出装置の一実施例
を示す断面図、第2図はそのA−A線要部断面図
である。 これらの図において、駆動歯車1は、基台13
に回転可能に設けられた駆動軸(入力軸)6に連
結して設けられている。駆動軸6は、ウオームホ
イール11およびウオーム12を介して、図示し
ないブレーキ付電動機等に連結され、駆動歯車1
を回転せしめる。この駆動歯車1の下方には、従
動軸15に連結された従動歯車5が配設してあ
り、該駆動歯車1と噛合つて従動回転する。一
方、駆動歯車1の上方には、遊星歯車2が配置さ
れ、該動歯車1と噛合つて遊星運動を行なう。該
遊星歯車2には、第2の遊星歯車3が同軸連結し
てある。該遊星歯車3と噛合う割出歯車4は、出
力軸10に連結され、前記駆動軸6と同軸で回転
可能に支持される。又、前記駆動歯車1と遊星歯
車2,3の位置関係を保つため、保持部材14が
揺動可能にこれらに取付けてある。 前記従動歯車5の半径rの偏心した位置に、前
記従動軸15の軸心と平行にクランピン7が嵌込
んであり、これに係合部材9が取付けられてい
る。一端がこの係合部材9と係合する揺動アーム
8は、その中央部を前記駆動軸6に回動自在に取
付け、一端には半径方向に長い長溝8aが設けて
あり、該長溝8aに前記係合部材9をスライド可
能に係合保持する。又、該揺動アーム8の他端側
は、前記遊星歯車2,3の連結軸に固定される。 このような構成において、駆動歯車1の回転力
により遊星歯車2,3が回転して、割出歯車4及
びこれが連結されている出力軸10が回転する。
同時に、従動歯車5が回転し、その回転中心から
偏心した位置に設けられた係合部材9が、これに
伴なつて、円運動する。この係合部材9は、揺動
アーム8の長溝8aと係合しているため、該係合
部材9が該長溝8a内を長手方向(アーム8の半
径方向)に沿つてスライドして、該揺動アーム8
を円周方向に揺動させる。この揺動に応じて遊星
歯車2,3が揺動し、該遊星歯車2,3の回転に
応じて回転する割出歯車4及び出力軸が、1行程
の不等速割出運動を行なう。 この場合、各歯車1,2,3,4の歯数の比率
を変えることにより、駆動軸6の1回転に対し、
出力軸10の割出し数を変えることができる。こ
こで、駆動歯車1の歯数をZ1、遊星歯車2の歯数
をZ2、遊星歯車3の歯数をZ3、割出歯車の歯数を
Z4、前記遊星歯車2,3の減速比をJ及び割出数
をIとすると、歯数は次式で表わされる。 Z4=Z1 I/J ……(1) Z2=J(Z4−Z1)/(J+I) ……(2) Z3=Z2/J ……(3) 割出数I、駆動歯車1の歯数Z1及び減速比Jを
決定して、前記(1)、(2)、(3)式を用いて各歯車の歯
数を算出する。歯数の例を示すと次の通りであ
る。
The present invention relates to an indexing device for a machine tool or an industrial machine, and more particularly to an indexing device for indexing a rotating body in a short time and without impact using constant speed rotation by an electric motor as power. Conventionally, mechanical indexing devices include Geneva mechanism,
And cam mechanisms are common. However, the Geneva mechanism has high angular velocity and angular acceleration, and the rate of change in angular acceleration is large, as shown in Figure 7, so it cannot be used in applications with large loads, and it tends to cause vibrations in the drive system. It also inherited its shortcomings.
Further, although the cam mechanism can obtain desired motion characteristics due to the shape of the cam, it is mechanically difficult to increase the size of the cam mechanism, and its use is limited to small machines. The present invention has been made in view of the above drawbacks, and
Transmitting rotation to the index gear via the planet gear, and swinging the planet gear with a swing arm,
Prevents sudden changes in acceleration and prevents starting and rotation during rotation indexing.
To provide a high-speed impactless indexing device that can smoothly stop, obtain a smooth acceleration curve, eliminate impact due to inertia, and enable high-speed indexing of heavy objects. In order to achieve the above object, the present invention is comprised of the following elements. That is, a base, a drive shaft rotatably provided on the base and having a drive gear fixed thereto, a driven gear rotatably provided on the base and meshing with the drive gear;
a swing arm that is swingably supported on the axis of the drive shaft and has a long groove formed in a radial direction at one end; a first swing arm that is rotatably provided at the other end of the swing arm and meshes with the drive gear; a second planetary gear formed on the same axis as the first planetary gear, and an indexing gear that rotates about the same axis as the drive shaft and meshes with the second planetary gear. an output shaft having the index gear fixed thereon and pivotally supported on the base on the same axis as the drive shaft; It is equipped with an engaging member that is slidably fitted into the long groove, and by changing the ratio of the number of meshing teeth between the driving gear and the first planetary gear, and between the second planetary gear and the indexing gear, the output to the drive shaft can be adjusted. An indexing device characterized by being able to set the number of indexes on a shaft to a predetermined number, and also preventing sudden changes in acceleration during indexing by planetary motion of planetary gears, eliminating shocks during indexing acceleration/deceleration. Consists of. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the high-speed impactless indexing device of the present invention, and FIG. 2 is a cross-sectional view of the main part thereof taken along the line A-A. In these figures, the drive gear 1 is mounted on the base 13
The drive shaft (input shaft) 6 is connected to a drive shaft (input shaft) 6 rotatably provided. The drive shaft 6 is connected via a worm wheel 11 and a worm 12 to an electric motor with a brake (not shown), etc., and the drive gear 1
Rotate. A driven gear 5 connected to a driven shaft 15 is disposed below the driving gear 1, and is meshed with the driving gear 1 to rotate as a driven gear. On the other hand, a planetary gear 2 is disposed above the driving gear 1, and meshes with the moving gear 1 to perform planetary motion. A second planetary gear 3 is coaxially connected to the planetary gear 2 . An index gear 4 that meshes with the planetary gear 3 is connected to an output shaft 10 and is rotatably supported coaxially with the drive shaft 6. Further, in order to maintain the positional relationship between the driving gear 1 and the planetary gears 2 and 3, a holding member 14 is swingably attached to them. A clamp pin 7 is fitted in parallel to the axis of the driven shaft 15 at an eccentric position with a radius r of the driven gear 5, and an engagement member 9 is attached to this. The swinging arm 8, whose one end engages with the engaging member 9, is rotatably attached to the drive shaft 6 at its center, and has a long groove 8a extending in the radial direction at one end. The engaging member 9 is slidably engaged and held. The other end of the swing arm 8 is fixed to the connecting shaft of the planetary gears 2 and 3. In such a configuration, the planetary gears 2 and 3 are rotated by the rotational force of the drive gear 1, and the index gear 4 and the output shaft 10 to which it is connected are rotated.
At the same time, the driven gear 5 rotates, and the engagement member 9, which is provided at a position eccentric from the center of rotation, moves circularly. Since this engaging member 9 is engaged with the long groove 8a of the swing arm 8, the engaging member 9 slides in the long groove 8a along the longitudinal direction (radial direction of the arm 8), Swing arm 8
oscillate in the circumferential direction. The planetary gears 2 and 3 oscillate in response to this oscillation, and the indexing gear 4 and output shaft, which rotate in response to the rotation of the planetary gears 2 and 3, perform one stroke of inconstant velocity indexing motion. In this case, by changing the ratio of the number of teeth of each gear 1, 2, 3, 4, for one rotation of the drive shaft 6,
The number of indexes of the output shaft 10 can be changed. Here, the number of teeth of drive gear 1 is Z 1 , the number of teeth of planetary gear 2 is Z 2 , the number of teeth of planetary gear 3 is Z 3 , and the number of teeth of index gear is
Z 4 , the reduction ratio of the planetary gears 2 and 3 is J, and the index number is I, the number of teeth is expressed by the following formula. Z 4 = Z 1 I / J ... (1) Z 2 = J (Z 4 - Z 1 ) / (J + I) ... (2) Z 3 = Z 2 / J ... (3) Index number I, The number of teeth Z 1 and the reduction ratio J of the drive gear 1 are determined, and the number of teeth of each gear is calculated using equations (1), (2), and (3). Examples of the number of teeth are as follows.

【表】 次に、上記実施例の割出動作について、第2図
乃至第6図をも参照して更に詳細に説明する。 第2図において、従動歯車5上の係合部材9
は、中心軸線g−g上の歯車1側から発進するも
のとする。この状態で、駆動歯車1をW1なる一
定の角度で矢印の方向に回転させると、係合部材
9の回転角θに従つて揺動アーム8が揺動する。
このとき、遊星歯車2,3は、駆動歯車1の回転
に応じて回転し、噛合つている割出歯車4を移動
せしめるが、揺動アーム8は、発進時には、該割
出歯車4の移動方向と反対に作動する。 ここで、駆動歯車1の周速に応じて移動しよう
とする割出歯車4の速度に対し、この速度を、遊
星歯車2,3の軸心の移動速度と、遊星運動によ
る遊星歯車2,3の減速速度とで打消すような揺
動アーム8の初速揺動速度が得られるように、前
記クランクピン7の偏心半径rを決める。これに
より、割出歯車4は、第5図に示すように、速度
0から発進し、徐々に加速されて速度を増し、係
合部材9の回転角θ=πに達すると、Vmaxにな
る。θ=π通過後は、割出歯車4が逆に除々に減
速されて、θ=2π(駆動歯車1が1回転)でスム
ースに停止する。この時の割出歯車の角変位Yの
変化を第5図に示す。 上記動作を理論的に解析すると以下の通りであ
る。即ち、第3図により従動歯車5の偏心位置に
設けたクランクピン7の (1) 0発進するための係合部材9の偏心量を算出
する場合、その半径をrとすると揺動アーム8
の揺動角は =tan-1(λsinθ/1−λcosθ) ……(1) 但し、λ=r/a 揺動アーム8の角速度w2は w2=d/dt=λ(coosθ−λ)/1−2λcosθ+λ2
×w1……(2) 遊星歯車2,3の軸心移動速度(初速)v1
は、 v1=w2×b=λ(cosθ−λ)w1/1−2λcosθ+λ2
……(3) 駆動歯車1の周速v0は v0=π・D1・N1=30・D1・w1(m/min)
……(4) 遊星歯車2の遊星運動による相対周速をv2
し、遊星歯車2の外周に噛合つていると仮定し
た仮想歯車2′の周速をv′2とすれば、仮想歯車
2′の0発進条件はv′2=v0−(v1+v2)、v′2=0
となるもつとも割出歯車4が遊星歯車2,3で
減速、または、増速されている場合割出歯車4
が0発進、停止するためには、その減速、また
は、増速比分だけ修正する必要がある。即ち、
割出歯車4の周速v4が0発進するためには、前
述のv3が0発進する条件を基準にして、遊星歯
車の減速された差だけ修正した。式(5)の関係が
必要である。 v0−(1+(J−1)/J)(v1+v2)=0 ……(5) v1=v2とみなし、式(3),(4)より(第4図) 30・D・w1/60−(J+1)×λ(cosθ−λ)w1/1
−2λcosθ+λ2 ×b=0 ……(6) θ=0として、 λ={2D+2(J+1)b−√{2D+2(J+1
)b}2−4{D1+2(J+1)b}×D/2{D+2
(J+1)b}……(7) r=a×λ ……(8) 従つて割出歯車4の周速v4が0発進するため
のクランクピンの偏心量rは(7)、(8)式より λ={2D+2(J+1)b−√{2D+2(J+1
)b}2−4{D1+2(J+1)b}D/2{D+2(
J+1)b}a……(9) 但しD1は駆動歯車1のピツチ径 (2) 割出しし速度Vは 揺動アーム8の相当回転数N:N=30w2
π 遊星歯車軸の回転数N2は N2=(1+Z1/Z2)N−Z1/Z2N1……(10) 但しN1=60/T(r.p.m)T:割出時間 遊星歯車3のピツチ径周速v3は v3=π・D3・N2/60(m/sec) ……(11) 割出歯車4のピツチ径周速Vは V=v1+v3=b・w1(cosθ−λ)λ/1−2λcos
θ+λ2+π・D3/60{(Z1+Z2)N−Z1N1/Z2}(m
/secc)……(12) 割出歯車4の割出角速度w4(第5図イ) w4=2V/D4=2・b・w1(cosθ−λ)λ/D4(1−2
λcosθ+λ2)+π・t)3/30・D4{(Z1+Z2)N−Z
1N1/Z2}(rad/sec)……(13) (3) 割出加速度 割出歯車4のピツチ径の割出加速度Aは A=dv/dt=dv1/dθ・dθ/dt+dv3/dθ・dθ/dt
=bw1λ(−sinθ)(1−λ2)/(1−2λcosθ+λ2
2・w1 +D3(Z1+Z2)λ・w(−sinθ)×(1−λ2)/
2Z2(1−2λcosθ+λ22・w1=w1・λ・sinθ(1−
λ2)/(1−2λcosθ+λ22 (b+D3(Z1+Z2)/2Z2)・w1(m/sec2)……
(14) 割出歯車4の割出角加速度xは、(第6図) x=2A/D4(rad/sec2) ……(15) (4) 割出歯車4の割出変位Sは 割出歯車4のピツチ径の変位Sは第4図より
次の関係がある。 S=J・l+J・l1+l2・(mm)……(16) 但し、動きが時計回りを(+)、反時計回り
を(−)とし、遊星歯車2,3の減速比をJと
する。 今遊星歯車2,3がg−g線の左側にあると
き割出数を4割出、遊星歯車の減速比をJ=
1/2とすると、 S=1/2・θ/360・π・D1−1/2・ζ/360・π
・D1−bζ/180・π=π・D1/720(θ−4)−ζ/18
0・π・b(mm) ……(17) 割出歯車4の角変位Y(第5図ロ) Y=S・180/π・1/R=360・S/π・D4(度) ……(18) 第5図、第6図は本発明による割出装置の動作
特性線図の実施例である。第5図の角速度曲線及
び角変位曲線で示す如く、割出歯車4はスムーズ
に発進し、急激な速度変化なく連続的に速度を変
化させスムーズに停止することが明らかである。
加速度は第6図に示す如く加速度の最高が駆動歯
車1の回転角60゜と300゜の位置にある変形正弦曲
線となつており、始点、終点の値が0で角加速度
曲線が連続しているため、衝撃や振動に対し、す
ぐれた性質をもつているといえる。 図7は従来から多く使用されているゼネバ機構
による前述の実施例と同条件の動作特性線図を示
す。 ゼネバ機構は駆動ピンが1回転する内の1部の
回転角を使つて割出しを行なうため(4割出しの
場合は90゜)、最高速度最高加速度共本装置よりも
かなり高く、割出しの始点、終点の角加速度が0
でないので角加速度曲線が不連続になり振動を起
しやすいという欠点がある。 これに対し、本発明装置は、上述したように最
高角速度、最高角加速度共に低く、しかも、割出
しの始点、終点の角加速度がDで連続しているた
め始点、終点時の衝撃が少ない。 第8図に示すように、入力軸の連続回転に対し
て、出力軸が滑めらかなS字曲線状に連続した間
欠運動が可能である。 以上説明したように本発明は、遊星歯車を介し
て割出歯車に回転を伝達すると共に、揺動アーム
により該遊星歯車を揺動させる構成としたことに
より加速度の急激な変化を押え、回転割出時の発
進、停止を円滑にして、滑らかな加速度曲線が得
られ、慣性による衝撃を無くして、重量物の高速
割出を可能とする効果がある。
[Table] Next, the indexing operation of the above embodiment will be explained in more detail with reference to FIGS. 2 to 6. In FIG. 2, the engagement member 9 on the driven gear 5
is assumed to start from the gear 1 side on the central axis gg. In this state, when the drive gear 1 is rotated at a constant angle W1 in the direction of the arrow, the swing arm 8 swings according to the rotation angle θ of the engagement member 9.
At this time, the planetary gears 2 and 3 rotate in accordance with the rotation of the drive gear 1, and move the index gear 4 with which they are meshed; It works in the opposite way. Here, with respect to the speed of the index gear 4 which is about to move according to the circumferential speed of the drive gear 1, this speed is calculated as The eccentric radius r of the crank pin 7 is determined so as to obtain an initial swing speed of the swing arm 8 that cancels out the deceleration speed of the crank pin 7. As a result, as shown in FIG. 5, the index gear 4 starts from a speed of 0, is gradually accelerated and increases in speed, and reaches Vmax when the rotation angle θ=π of the engagement member 9 is reached. After passing through θ=π, the index gear 4 is gradually decelerated and stops smoothly at θ=2π (the drive gear 1 rotates once). FIG. 5 shows the change in the angular displacement Y of the index gear at this time. A theoretical analysis of the above operation is as follows. That is, when calculating the eccentricity of the engaging member 9 for starting (1) 0 of the crank pin 7 provided at the eccentric position of the driven gear 5 according to FIG. 3, if the radius is r, the swing arm 8
The swing angle of is =tan -1 (λsinθ/1-λcosθ)...(1) However, λ=r/a The angular velocity w2 of the swing arm 8 is w2 = d/dt=λ(coosθ-λ) /1−2λcosθ+λ 2
×w 1 ...(2) Axial center movement speed (initial speed) of planetary gears 2 and 3 v 1
is, v 1 = w 2 ×b = λ(cosθ−λ)w 1 /1−2λcosθ+λ 2 b
...(3) The peripheral speed v 0 of the drive gear 1 is v 0 = π・D 1・N 1 = 30・D 1・w 1 (m/min)
...(4) If the relative peripheral speed of the planetary gear 2 due to planetary motion is v 2 and the peripheral speed of the virtual gear 2', which is assumed to mesh with the outer periphery of the planetary gear 2, is v' 2 , then the virtual gear 2 The zero starting condition for ' is v' 2 = v 0 - (v 1 + v 2 ), v' 2 = 0
However, if the index gear 4 is decelerated or accelerated by the planetary gears 2 and 3, the index gear 4
In order for the vehicle to start and stop at 0, it is necessary to correct the deceleration or speed increase ratio. That is,
In order for the circumferential speed v 4 of the index gear 4 to start at 0, the above-mentioned condition for v 3 to start at 0 is corrected by the difference in deceleration of the planetary gear. The relationship shown in equation (5) is required. v 0 - (1 + (J-1) / J) (v 1 + v 2 ) = 0 ... (5) Assuming v 1 = v 2 , from equations (3) and (4) (Figure 4) 30. D・w 1 /60−(J+1)×λ(cosθ−λ)w 1 /1
-2λcosθ+λ 2 ×b=0 ...(6) Assuming θ=0, λ={2D+2(J+1)b-√{2D+2(J+1
)b} 2 −4{D 1 +2(J+1)b}×D/2{D+2
(J+1)b}...(7) r=a×λ...(8) Therefore, the eccentricity r of the crank pin for the peripheral speed v4 of the index gear 4 to start at 0 is (7), (8 ) From formula λ={2D+2(J+1)b−√{2D+2(J+1
)b} 2 −4{D 1 +2(J+1)b}D/2{D+2(
J+1)b}a...(9) However, D 1 is the pitch diameter of drive gear 1 (2) Indexing speed V is equivalent rotation speed of swing arm 8 N: N = 30w 2 /
π The rotation speed N 2 of the planetary gear shaft is N 2 = (1 + Z 1 / Z 2 ) N - Z 1 / Z 2 N 1 ... (10) However, N 1 = 60 / T (rpm) T: Indexing time Planet The pitch radial peripheral speed V 3 of gear 3 is v 3 = π・D 3・N 2 /60 (m/sec) ...(11) The pitch radial peripheral speed V of index gear 4 is V = v 1 + v 3 = b・w 1 (cosθ−λ)λ/1−2λcos
θ+λ 2 +π・D3/60 {(Z 1 + Z 2 )N−Z 1 N 1 /Z 2 }(m
/scc)...(12) Indexing angular velocity w 4 of indexing gear 4 (Fig. 5 A) w 4 =2V/D 4 =2・b・w 1 (cosθ−λ)λ/D 4 (1− 2
λcosθ+λ 2 )+π・t) 3/30・D 4 {(Z 1 +Z 2 )N−Z
1 N 1 /Z 2 }(rad/sec)...(13) (3) Indexing acceleration The indexing acceleration A of the pitch diameter of indexing gear 4 is A=dv/dt=dv 1 /dθ・dθ/dt+dv 3 /dθ・dθ/dt
=bw 1 λ(-sinθ)(1- λ2 )/(1-2λcosθ+ λ2
) 2・w 1 +D3(Z 1 +Z 2 )λ・w(−sinθ)×(1−λ 2 )/
2Z 2 (1−2λcosθ+λ 2 ) 2・w 1 =w 1・λ・sinθ(1−
λ 2 )/(1−2λcosθ+λ 2 ) 2 (b+D 3 (Z 1 +Z 2 )/2Z 2 )・w 1 (m/sec 2 )...
(14) The indexing angular acceleration x of the indexing gear 4 is (Fig. 6) x=2A/D 4 (rad/sec 2 ) ...(15) (4) The indexing displacement S of the indexing gear 4 is The displacement S of the pitch diameter of the index gear 4 has the following relationship from FIG. S=J・l+J・l 1 +l 2・(mm)...(16) However, if the movement is clockwise (+) and counterclockwise (-), the reduction ratio of planetary gears 2 and 3 is J. do. Now, when the planetary gears 2 and 3 are on the left side of the gg line, the index number is calculated by 40%, and the reduction ratio of the planetary gear is J=
If it is 1/2, S=1/2・θ/360・π・D1−1/2・ζ/360・π
・D1−bζ/180・π=π・D1/720(θ−4)−ζ/18
0・π・b (mm) ...(17) Angular displacement Y of index gear 4 (Figure 5 B) Y=S・180/π・1/R=360・S/π・D 4 (degrees) (18) FIGS. 5 and 6 are examples of operating characteristic diagrams of the indexing device according to the present invention. As shown by the angular velocity curve and angular displacement curve in FIG. 5, it is clear that the index gear 4 starts smoothly, changes speed continuously without sudden speed changes, and stops smoothly.
As shown in Fig. 6, the acceleration is a modified sine curve with the highest acceleration at the rotation angle of 60° and 300° of the drive gear 1, and the angular acceleration curve is continuous with values of 0 at the start and end points. Therefore, it can be said that it has excellent properties against shock and vibration. FIG. 7 shows an operating characteristic diagram under the same conditions as the above-mentioned embodiment using a Geneva mechanism that has been widely used in the past. Since the Geneva mechanism performs indexing using a portion of the rotation angle of one rotation of the drive pin (90 degrees in the case of 4 indexing), the maximum speed and maximum acceleration are both considerably higher than that of this device, making it difficult to index. The angular acceleration at the starting point and ending point is 0.
Since the angular acceleration curve is not continuous, the angular acceleration curve becomes discontinuous and vibrations are likely to occur. On the other hand, the device of the present invention has a low maximum angular velocity and a low maximum angular acceleration as described above, and since the angular accelerations at the start point and end point of indexing are continuous at D, the impact at the start point and end point is small. As shown in FIG. 8, while the input shaft is continuously rotated, the output shaft can continuously move intermittently in a smooth S-curve shape. As explained above, the present invention has a configuration in which rotation is transmitted to the index gear via the planetary gear, and the planetary gear is oscillated by the swing arm, thereby suppressing sudden changes in acceleration and rotating the index gear. Starting and stopping at the time of departure are smooth, a smooth acceleration curve is obtained, and the impact caused by inertia is eliminated, making it possible to index heavy objects at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明高速無衝撃割出装置の一実施例
を示す断面図、第2図はそのA−A線要部断面
図、第3図は各部速度説明図、第4図は割出し変
位の説明図、第5図は割出歯車の角速度変化及び
変位を示すグラフ、第6図は割出歯車の割出し加
速度の変化を示すグラフ、第7図はゼネバ歯車を
用いた従来装置における割出し加速度の変化を示
すグラフである。第8図は入力軸の回転と出力軸
の回転の関係を示すグラフ。 1……駆動歯車、2,3……遊星歯車、4……
割出歯車、5……従動歯車、6……駆動軸、7…
…クランクピン、8……揺動アーム、9……係合
部材、10……出力軸、11……ウオームホイー
ル、12……ウオーム、13……基台、14……
保持部材、15……従動軸。
Fig. 1 is a sectional view showing an embodiment of the high speed non-impact indexing device of the present invention, Fig. 2 is a sectional view of the main part thereof taken along the line A-A, Fig. 3 is a diagram explaining the speed of each part, and Fig. 4 is an indexing device. An explanatory diagram of displacement, Fig. 5 is a graph showing changes in angular velocity and displacement of the indexing gear, Fig. 6 is a graph showing changes in indexing acceleration of the indexing gear, and Fig. 7 is a graph showing changes in indexing acceleration of the indexing gear. It is a graph showing changes in indexing acceleration. FIG. 8 is a graph showing the relationship between the rotation of the input shaft and the rotation of the output shaft. 1... Drive gear, 2, 3... Planetary gear, 4...
Index gear, 5... Driven gear, 6... Drive shaft, 7...
... Crank pin, 8 ... Swing arm, 9 ... Engagement member, 10 ... Output shaft, 11 ... Worm wheel, 12 ... Worm, 13 ... Base, 14 ...
Holding member, 15...driven shaft.

Claims (1)

【特許請求の範囲】 1 基台と、 この基台に回転可能に設けられ、駆動歯車を固
設した駆動軸と、 前記基台に回転可能に設けられ、前記駆動歯車
と噛合する従動歯車と、 前記駆動軸軸線上に揺動可能に枢支され、一端
に放射方向に長溝を形成した揺動アームと、 この揺動アームの他端に回転自在に設けられ、
前記駆動歯車と噛合する第1の遊星歯車と、 この第1の遊星歯車と同一軸上に形成される第
2の遊星歯車と、 前記駆動軸と同一軸線上まわりに回転し前記第
2の遊星歯車と、噛合する割出し歯車と、 この割出し歯車を固設し前記駆動軸と同一軸線
上に前記基台に枢支される出力軸と、 前記従動歯車の回転軸心から偏心した位置に突
設して設けられ、前記長溝に摺動自在に嵌合され
る係合部材とを備え、 駆動歯車と第1の遊星歯車および第2の遊星歯
車と割出し歯車の噛合する歯数比を変えることに
より、駆動軸に対する出力軸の割出し数を所定数
に設定可能にするとともに、遊星歯車の遊星運動
で割出しの際の急激な加速度変化を防ぎ割出し加
減速時の衝撃を無くしたことを特徴とする割出し
装置。
[Scope of Claims] 1. A base, a drive shaft rotatably provided on the base and having a drive gear fixed thereto, and a driven gear rotatably provided on the base and meshing with the drive gear. , a swinging arm pivotably supported on the drive shaft axis and having a long groove formed in a radial direction at one end; and a swinging arm rotatably provided at the other end of the swinging arm;
a first planetary gear that meshes with the drive gear; a second planetary gear formed on the same axis as the first planetary gear; and a second planetary gear that rotates about the same axis as the drive shaft. a gear, an index gear that meshes with the gear; an output shaft to which the index gear is fixedly mounted and pivoted on the base on the same axis as the drive shaft; and a position eccentric from the rotation axis of the driven gear. an engaging member provided in a protruding manner and slidably fitted into the long groove; By changing the number of indexes of the output shaft relative to the drive shaft, it is possible to set the number of indexes to a predetermined number, and the planetary motion of the planetary gear prevents sudden changes in acceleration during indexing, eliminating shock during indexing acceleration/deceleration. An indexing device characterized by:
JP20957483A 1983-11-08 1983-11-08 High-speed non-shock indexing device Granted JPS60104632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20957483A JPS60104632A (en) 1983-11-08 1983-11-08 High-speed non-shock indexing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20957483A JPS60104632A (en) 1983-11-08 1983-11-08 High-speed non-shock indexing device

Publications (2)

Publication Number Publication Date
JPS60104632A JPS60104632A (en) 1985-06-10
JPH0424181B2 true JPH0424181B2 (en) 1992-04-24

Family

ID=16575084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20957483A Granted JPS60104632A (en) 1983-11-08 1983-11-08 High-speed non-shock indexing device

Country Status (1)

Country Link
JP (1) JPS60104632A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715079B2 (en) * 1987-09-25 1998-02-16 津田駒工業株式会社 High-precision rotary indexing device
JPH0429345U (en) * 1990-06-29 1992-03-09
US5692986A (en) * 1995-12-14 1997-12-02 Eastman Kodak Company Variable dwell cycloidal indexing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45255Y1 (en) * 1965-11-09 1970-01-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45255Y1 (en) * 1965-11-09 1970-01-08

Also Published As

Publication number Publication date
JPS60104632A (en) 1985-06-10

Similar Documents

Publication Publication Date Title
JP6140958B2 (en) Gear mechanism, reducer and robot arm
JPS624586A (en) Joint device for industrial robot
JPH03154791A (en) Articulated arm for robot
WO1995006546A1 (en) Articulated robot
JPH0247623B2 (en)
JPH0424181B2 (en)
JPH02190288A (en) Wrist mechanism for robot for industrial use
TW202020337A (en) Speed reducer
JPS63109994A (en) Wrist mechanism for industrial robot
JP2020026804A5 (en)
JPS632753B2 (en)
JPS6250700B2 (en)
JPH11198086A (en) Speed reduction gear for revolt joint driving of industrial robot
JPH0586506B2 (en)
JP2742912B2 (en) Industrial Robot Joint Device
JPH0356862B2 (en)
JPH0642089U (en) Articulated robot
JPS6225347Y2 (en)
SU1384820A1 (en) Arrangement for recuperating energy of oscillatory motion of turning member
JPH05253882A (en) Robot having wrist of three degrees of freedom
SU1692668A1 (en) Generator of polyharmonic oscillations
JPH0253589A (en) Driving device for arm of articulated robot
JPS6325108Y2 (en)
JPH02279293A (en) Speed reducing mechanism for robot
JPH0587204A (en) Paper take-out device