JPH04241722A - Vortex chamber type combustion chamber for diesel engine - Google Patents

Vortex chamber type combustion chamber for diesel engine

Info

Publication number
JPH04241722A
JPH04241722A JP1394191A JP1394191A JPH04241722A JP H04241722 A JPH04241722 A JP H04241722A JP 1394191 A JP1394191 A JP 1394191A JP 1394191 A JP1394191 A JP 1394191A JP H04241722 A JPH04241722 A JP H04241722A
Authority
JP
Japan
Prior art keywords
injection
chamber
fuel
gas
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1394191A
Other languages
Japanese (ja)
Other versions
JP2603560B2 (en
Inventor
Kiyoshi Hataura
潔 畑浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3013941A priority Critical patent/JP2603560B2/en
Publication of JPH04241722A publication Critical patent/JPH04241722A/en
Application granted granted Critical
Publication of JP2603560B2 publication Critical patent/JP2603560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To improve a mixing condition of injected fuel, a vortex flow and air by striking the fuel injected from a fuel injection nozzle againsat a gas expulsive means in a vortex chamber, setting an angle formed by an injection axial center and an injection fuel striking part to be an acute angle, and recessedly forming the injection fuel striking part. CONSTITUTION:An injection port 2 is tangentially communicated with a vortex chamber 1 of a Diesel engine, while a main combustion chamber 3 is communicated with the vortex chamber 1 through the injection port 2. A fuel injection nozzle 4 is faced to the vortex chamber 1, while a gas expulsive means 5 is arranged on a center of the vortex chamber 1. In the above-mentioned combustion chamber, an injection axial center 6 of the fuel injection nozzle 4 is set in a direction crossing with the gas expulsive means 5. The injected fuel is struck against an injected fuel striking part 9 on an outer peripheral surface of the gas expulsive means 5 and in the vicinity of an intersection 8 with the injection axial center 6. An angle formed by the injected fuel striking part 9 and the injection axial center 6 on an upstream side of a vortex flow 10 is set to be an acute angle. In addition, the injection fuel striking part 9 is recessedly formed along a revolving direction of the vortex flow 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ディーゼルエンジンの
うず室式燃焼室に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a swirl chamber combustion chamber for a diesel engine.

【0002】0002

【発明の背景】ディーゼルエンジンのうず室式燃焼室で
は、うず室にその噴口を接線状に連通させ、この噴口を
介して主燃焼室に前記うず室を連通させ、このうず室に
燃料噴射ノズルを臨ませたものが、一般的構造として採
用されている。
BACKGROUND OF THE INVENTION In a whirlpool type combustion chamber of a diesel engine, the whirlpool chamber has its nozzle tangentially communicated with the main combustion chamber through the nozzle, and a fuel injection nozzle is connected to the whirlpool chamber. The structure that faces the front is adopted as a general structure.

【0003】ところで、このような構造のうず室式燃焼
室では、うず流の旋回に基づく遠心力により、うず室内
で質量の異なる未燃ガスと既燃ガスとが分離して、うず
室の中央近傍に質量の小さい既燃ガスが集合し、ここが
局部的に高温となってN0Xの生成が促進される。この
ため、うず室式燃焼室では、NOXの低減が重要な課題
の一つとなっている。
By the way, in a whirlpool type combustion chamber having such a structure, unburned gas and burnt gas having different masses are separated in the whirlpool chamber by centrifugal force based on the swirling of the whirlpool, and the center of the whirlpool is separated. Burnt gas with a small mass gathers in the vicinity, and this becomes locally high temperature, promoting the generation of NOX. For this reason, reducing NOx has become one of the important issues in the whirlpool combustion chamber.

【0004】0004

【従来技術】従来、NOXの低減を図る技術として、実
開昭60−139030号公報に開示されたものがある
。これは、図5に示すように、うず室101の中央近傍
内にガス排斥具102を設けたものである。これによれ
ば、うず室101の中央近傍内に既燃ガスが流入するの
を阻止できるので、うず室101内での未燃ガスと既燃
ガスとの分離を妨げることができ、これによりうず室1
01内に既燃ガスの集合による高温領域が形成されるの
を防止してNOXの発生量を低減させることができる。
2. Description of the Related Art Conventionally, there is a technique disclosed in Japanese Utility Model Application Publication No. 139030/1983 as a technique for reducing NOx. As shown in FIG. 5, this is a device in which a gas repelling device 102 is provided in the vicinity of the center of a whirlpool chamber 101. According to this, it is possible to prevent the burnt gas from flowing into the vicinity of the center of the whirlpool chamber 101, thereby preventing the separation of unburnt gas and burnt gas within the whirlpool chamber 101. Room 1
It is possible to prevent the formation of a high-temperature region due to the collection of burnt gases in the 01, thereby reducing the amount of NOx generated.

【0005】ところで、この従来技術につき、上記公報
では、うず室101内にガス排斥具102を設けたので
、うず流の速度分布を均一化することができ、これによ
り、燃料の分布を均一にしてHC・COの発生量を低減
化させることができる旨説明されている。また、図5(
B)に示すように、特にガス排斥具102の両端部を細
くすることにより、うず室101から主燃焼室への燃焼
ガスの噴出を円滑に行わせることができるので、主燃焼
室の燃焼をスムーズに行わせることができ、これにより
エンジンの出力を向上させることができるとともに燃費
を低減化させることができる旨説明されている。
[0005] Regarding this prior art, the above-mentioned publication discloses that since the gas repelling device 102 is provided in the vortex chamber 101, the velocity distribution of the eddy flow can be made uniform, and thereby the fuel distribution can be made uniform. It is explained that the amount of HC and CO generated can be reduced. Also, Figure 5 (
As shown in B), by narrowing both ends of the gas ejector 102 in particular, combustion gas can be smoothly ejected from the swirl chamber 101 to the main combustion chamber, thereby reducing combustion in the main combustion chamber. It is explained that this can be done smoothly, thereby improving the output of the engine and reducing fuel consumption.

【0006】しかし、この従来技術には、うず流や燃焼
ガスについての改善手段が示されているのみで、HC・
COの低減化、エンジンの出力性能の向上、燃費の低減
化に最も重要な要素となる、噴射燃料の微細化や拡散の
促進についての工夫が欠けているため、次のような問題
が生じる。
[0006] However, this prior art only suggests means for improving eddy flow and combustion gas, and only improves HC/combustion gas.
The following problems arise because there is a lack of ingenuity in making the injected fuel finer and promoting its diffusion, which are the most important factors for reducing CO, improving engine output performance, and reducing fuel consumption.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術では、噴
射燃料の微細化や拡散を十分に図ることができないため
、噴射燃料と空気との混合性能の向上が望めない。この
ため、燃焼性能を十分に高めることができず、HC・C
Oの低減化、エンジンの出力性能の向上、燃費の低減化
が十分に行えない。
Problems to be Solved by the Invention In the above-mentioned prior art, it is not possible to achieve sufficient fineness and diffusion of the injected fuel, and therefore no improvement in the mixing performance of the injected fuel and air can be expected. For this reason, combustion performance cannot be sufficiently improved, and HC/C
It is not possible to sufficiently reduce O, improve engine output performance, and reduce fuel consumption.

【0008】本発明は、NOXの低減化を図ると同時に
、噴射燃料の微細化や拡散の促進によってエンジンの出
力性能の向上等を十分に図ること、をその課題とする。
An object of the present invention is to reduce NOx and at the same time sufficiently improve the output performance of the engine by making the injected fuel finer and promoting its diffusion.

【0009】[0009]

【課題を解決するための手段】(第1発明)第1発明は
、図1(A)に示すように、ディーゼルエンジンのうず
室1にその噴口2を接線状に連通させ、この噴口2を介
して主燃焼室3に前記うず室1を連通させ、このうず室
1に燃料噴射ノズル4を臨ませ、このうず室1の中央近
傍内にガス排斥具5を設けて構成した、ディーゼルエン
ジンのうず室式燃焼室において、次の点を特徴とする。
[Means for Solving the Problems] (First Invention) As shown in FIG. 1(A), the first invention has a jet nozzle 2 tangentially connected to a whirlpool chamber 1 of a diesel engine. A diesel engine is constructed in which the whirlpool chamber 1 is communicated with the main combustion chamber 3 through the whirlpool chamber 1, the fuel injection nozzle 4 is faced to the whirlpool chamber 1, and a gas displacement device 5 is provided in the vicinity of the center of the whirlpool chamber 1. The swirl chamber type combustion chamber has the following features.

【0010】すなわち、図1〜図4に示すように、前記
うず室1内で、前記燃料噴射ノズル4の噴射軸心6を前
記ガス排斥具5と交わる向きに方向づけ、その燃料噴射
ノズル4からの噴射燃料7が、そのガス排斥具5の外周
面のうちの上記噴射軸心6との交点8付近の噴射激突面
部分9に激突し、反射して飛散するように構成し、上記
噴射激突面部分9に対して上記噴射軸心6がうず流10
の上流側でなす角θを鋭角に設定し、前記噴射激突面部
分9を、前記うず流10の旋回方向に沿って凹曲状に形
成した、ことを特徴とする。
That is, as shown in FIGS. 1 to 4, within the swirl chamber 1, the injection axis 6 of the fuel injection nozzle 4 is oriented in a direction intersecting the gas displacement device 5, and the fuel injection nozzle 4 is The injected fuel 7 collides with the injection collision surface portion 9 near the intersection 8 with the injection axis 6 on the outer circumferential surface of the gas ejector 5, and is reflected and scattered. The jet axis 6 has a vortex flow 10 with respect to the surface portion 9.
The angle θ formed on the upstream side of the jet is set to an acute angle, and the injection collision surface portion 9 is formed in a concave shape along the swirling direction of the vortex flow 10.

【0011】(第2発明)第2発明は、上記第1発明に
おいて、図3に示すように、前記噴射激突面部分9を、
前記うず流10の下流側に進むにつれて溝幅が次第に狭
くなる前拡がりの溝状に形成した、ことを特徴とする。
(Second Invention) In the second invention, in the first invention, as shown in FIG.
It is characterized in that it is formed in the shape of a front-widening groove in which the width of the groove becomes gradually narrower as it progresses toward the downstream side of the eddy flow 10.

【0012】0012

【作用】第1発明の作用を図1(D)に基づいて説明す
る。
[Operation] The operation of the first invention will be explained based on FIG. 1(D).

【0013】■燃料噴射ノズル4の噴射軸心6をガス排
斥具5と交わる向きに方向づけ、燃料噴射ノズル4から
の噴射燃料7がガス排斥具5の噴射激突部分9に激突し
、反射して飛散するように構成したので、噴射燃料7の
微細化と拡散とを促進することができる。このため噴射
燃料7と空気との混合性能を高めて、燃焼性能を向上さ
せることができ、これによりHC・COの低減化、エン
ジンの出力性能の向上、燃費の低減化を十分に図ること
ができる。
■ The injection axis 6 of the fuel injection nozzle 4 is oriented in a direction that intersects with the gas displacement device 5, and the injected fuel 7 from the fuel injection nozzle 4 collides with the injection collision portion 9 of the gas displacement device 5 and is reflected. Since it is configured to scatter, the injected fuel 7 can be made finer and diffused. Therefore, it is possible to improve the mixing performance of the injected fuel 7 and air, and improve the combustion performance, thereby making it possible to sufficiently reduce HC and CO, improve engine output performance, and reduce fuel consumption. can.

【0014】■ガス排斥具5はうず室1内の燃焼熱を蓄
熱するので、噴射激突部分9に激突した噴射燃料7にそ
の熱を吸収させることができる。このため、うず室1内
での噴射燃料7の気化を促進して、噴射燃料の気化の遅
れに起因する発火遅れを防止して、ディーゼルノックの
発生を有効に防止できる。
[0014] Since the gas repelling device 5 stores the combustion heat in the swirl chamber 1, the injected fuel 7 that collides with the injection collision portion 9 can absorb the heat. Therefore, vaporization of the injected fuel 7 within the swirl chamber 1 is promoted, ignition delay due to delay in vaporization of the injected fuel is prevented, and diesel knock can be effectively prevented from occurring.

【0015】■噴射激突面部分9に対して噴射軸心6が
うず流10の上流側でなす角θを鋭角に設定したので、
噴射燃料7をうず流10の下流側に向かって反射させ、
噴射燃料7をうず流10にスムーズに巻き込ませること
ができる。このため、噴射燃料7と空気との混合性能を
高めることができ、これにより上記■で述べたHC・C
Oの低減化、エンジンの出力性能の向上、燃費の低減化
を、一層確実なものにすることができる。
■Since the angle θ formed by the injection axis 6 on the upstream side of the eddy flow 10 with respect to the injection collision surface portion 9 is set to an acute angle,
Reflecting the injected fuel 7 toward the downstream side of the eddy flow 10,
The injected fuel 7 can be smoothly drawn into the vortex 10. Therefore, it is possible to improve the mixing performance of the injected fuel 7 and air, and as a result, the HC/C
It is possible to further ensure a reduction in O, an improvement in engine output performance, and a reduction in fuel consumption.

【0016】■噴射激突部分9に対して噴射軸心6のな
す角θを鋭角に設定したので、噴射燃料7が噴射激突面
部分9に斜めから衝突し、噴射燃料7が正面から衝突す
る場合に比べて衝突面積が広がる。また、噴射激突面部
分9を、うず流10の旋回方向に沿って凹曲状に形成し
たので、これを凸曲状又は平坦状に形成した場合に比べ
て噴射激突面部分9が燃料噴射ノズル4から離れる分だ
け、先広がりに噴射される噴射燃料7の衝突面積が広が
る。このように、噴射激突部分9に噴射燃料7が衝突す
る面積が広がり、噴射燃料7がガス排斥具5から吸収す
る熱を増大させることができる。このため、うず室1内
での噴射燃料7の気化を促進することができ、これによ
り上記■で述べたディーゼルノックの発生防止を、一層
確実なものにすることができる。
■ Since the angle θ formed by the injection axis 6 with respect to the injection collision portion 9 is set to an acute angle, the case where the injected fuel 7 collides with the injection collision surface portion 9 obliquely and the injected fuel 7 collides head-on. The collision area is wider compared to . In addition, since the injection collision surface portion 9 is formed in a concave curved shape along the swirling direction of the eddy flow 10, the injection collision surface portion 9 is formed in a convex curved shape or a flat shape. The collision area of the injected fuel 7, which is injected in a divergent direction, increases by the distance from 4. In this way, the area where the injected fuel 7 collides with the injection collision portion 9 is expanded, and the heat absorbed by the injected fuel 7 from the gas repelling tool 5 can be increased. Therefore, the vaporization of the injected fuel 7 within the swirl chamber 1 can be promoted, thereby making it possible to further ensure the prevention of diesel knock described in the above (2).

【0017】(第2発明)第2発明は、上記第1発明の
作用■〜■の他、次のように作用する。
(Second invention) The second invention operates in the following manner in addition to the functions (1) to (4) of the first invention.

【0018】■図3に示すように、噴射激突面部分9を
、うず流10の下流側に進むにつれて溝幅が次第に広く
なる前拡がりの溝状に形成したので、噴射激突面部分9
で反射して飛散する噴射燃料7を噴射激突面部分9の両
溝壁26・26で案内して、噴射燃料7の飛散の偏りや
バラつきを防止し、噴射燃料7を確実にうず流10に向
けて飛散させることができる。このため、空気と噴射燃
料7との混合性能を高めることができ、これにより上記
■で述べたHC・COの低減化、エンジンの出力性能の
向上、燃費の低減化を、一層確実なものにすることがで
きる。
■As shown in FIG. 3, the injection collision surface portion 9 is formed in the shape of a front-widening groove whose groove width gradually becomes wider as it progresses toward the downstream side of the eddy flow 10.
The injected fuel 7 that is reflected and scattered is guided by the groove walls 26 and 26 of the injection collision surface portion 9 to prevent the injected fuel 7 from scattering unevenly or unevenly, and to ensure that the injected fuel 7 flows into the eddy flow 10. It can be thrown towards the enemy. Therefore, it is possible to improve the mixing performance of air and the injected fuel 7, which further ensures the reduction of HC and CO, improvement of engine output performance, and reduction of fuel consumption as described in (■) above. can do.

【0019】[0019]

【発明の効果】(第1発明)第1発明は、下記の効果■
〜■を奏する。
[Effects of the invention] (First invention) The first invention has the following effects ■
Play ~■.

【0020】■燃料噴射ノズルの噴射軸心をガス排斥具
と交わる向きに方向づけ、燃料噴射ノズルからの噴射燃
料がガス排斥具の噴射激突部分に激突し、反射して飛散
するように構成したので、噴射燃料の微細化と拡散とを
促進することができる。このため噴射燃料と空気との混
合性能を高めて、燃焼性能を向上させることができ、こ
れによりHC・COの低減化、エンジンの出力性能の向
上、燃費の低減化を十分に図ることができる。
■The injection axis of the fuel injection nozzle is oriented in a direction that intersects with the gas repellent, and the fuel injected from the fuel injection nozzle collides with the injection collision part of the gas repellent and is reflected and scattered. , it is possible to promote atomization and diffusion of the injected fuel. Therefore, it is possible to improve the mixing performance of the injected fuel and air and improve the combustion performance, which can sufficiently reduce HC and CO, improve engine output performance, and reduce fuel consumption. .

【0021】■ガス排斥具はうず室内の燃焼熱を蓄熱す
るので、噴射激突部分に激突した噴射燃料7にその熱を
吸収させることができる。このため、うず室内での噴射
燃料の気化を促進して、噴射燃料の気化の遅れに起因す
る発火遅れを防止して、ディーゼルノックの発生を有効
に防止できる。
[0021] Since the gas repelling device stores combustion heat in the whirlpool chamber, the injected fuel 7 that collides with the injection collision part can absorb the heat. Therefore, vaporization of the injected fuel in the swirl chamber is promoted, ignition delay due to delay in vaporization of the injected fuel is prevented, and diesel knock can be effectively prevented from occurring.

【0022】■噴射激突面部分に対して噴射軸心がうず
流の上流側でなす角を鋭角に設定したので、噴射燃料を
うず流の下流側に向かって反射させ、噴射燃料をうず流
にスムーズに巻き込ませることができる。このため、噴
射燃料と空気との混合性能を高めることができ、これに
より上記効果■で述べたHC・COの低減化、エンジン
の出力性能の向上、燃費の低減化を、一層確実なものに
することができる。
■Since the angle formed by the injection axis on the upstream side of the eddy flow with respect to the injection collision surface is set at an acute angle, the injected fuel is reflected toward the downstream side of the eddy flow, and the injected fuel flows into the eddy flow. It can be rolled up smoothly. Therefore, it is possible to improve the mixing performance of the injected fuel and air, which further ensures the reduction of HC and CO, the improvement of engine output performance, and the reduction of fuel consumption, as described in effect ① above. can do.

【0023】■噴射激突部分に対して噴射軸心のなす角
を鋭角に設定したので、噴射燃料が噴射激突面部分に斜
めから衝突し、噴射燃料が正面から衝突する場合に比べ
て衝突面積が広がる。また、噴射激突面部分を、うず流
の旋回方向に沿って凹曲状に形成したので、これを凸曲
状又は平坦状に形成した場合に比べて噴射激突面部分が
燃料噴射ノズルから離れる分だけ、先広がりに噴射され
る噴射燃料の衝突面積が広がる。このように、噴射激突
部分に噴射燃料が衝突する面積が広がり、噴射燃料がガ
ス排斥具から吸収する熱を増大させることができる。こ
のため、うず室内での噴射燃料の気化を促進することが
でき、これにより上記効果■で述べたディーゼルノック
の発生防止を、一層確実なものにすることができる。
■Since the angle between the injection axis and the injection collision part is set at an acute angle, the injected fuel collides with the injection collision surface obliquely, and the collision area is smaller than when the injected fuel collides head-on. spread. In addition, since the injection collision surface portion is formed in a concave curved shape along the swirling direction of the eddy flow, the injection collision surface portion is further away from the fuel injection nozzle compared to a case where the injection collision surface portion is formed in a convex curved shape or a flat shape. Therefore, the collision area of the injected fuel spreads out. In this way, the area where the injected fuel collides with the injection collision portion is expanded, and the heat absorbed by the injected fuel from the gas repelling device can be increased. Therefore, the vaporization of the injected fuel within the whirlpool chamber can be promoted, thereby making it possible to more reliably prevent the occurrence of diesel knock as described in the above-mentioned effect ①.

【0024】(第2発明)第2発明は、上記第1発明の
効果■〜■の他、次の効果■を奏する。
(Second invention) In addition to the effects (1) to (2) of the first invention, the second invention provides the following effect (2).

【0025】■噴射激突面部分を、うず流の下流側に進
むにつれて溝幅が次第に広くなる前拡がりの溝状に形成
したので、噴射激突面部分で反射して飛散する噴射燃料
を噴射激突面部分の両溝壁で案内して、噴射燃料の飛散
の偏りやバラつきを防止し、噴射燃料を確実にうず流に
向けて飛散させることができる。このため、空気と噴射
燃料との混合性能を高めることができ、これにより上記
効果■で述べたHC・COの低減化、エンジンの出力性
能の向上、燃費の低減化を、一層確実なものにすること
ができる。
■Since the injection collision surface portion is formed in the shape of a front-widening groove whose groove width gradually becomes wider as it advances toward the downstream side of the eddy flow, the injected fuel that is reflected and scattered by the injection collision surface portion is transferred to the injection collision surface. By guiding the injected fuel with both groove walls, it is possible to prevent the injected fuel from scattering unevenly or unevenly, and to reliably scatter the injected fuel toward the eddy flow. Therefore, it is possible to improve the mixing performance of air and injected fuel, which further ensures the reduction of HC and CO, the improvement of engine output performance, and the reduction of fuel consumption, as described in effect ① above. can do.

【0026】[0026]

【実施例】本発明の実施例を図面に基づいて説明する。 (第1実施例)図1は本考案の第1実施例に係るうず室
式燃焼室を説明する図で、図1(A)はうず室式燃焼室
の縦断面図、図1(B)は図1(A)のB−B線断面図
、図1(C)は第1実施例で用いるガス排斥具の斜視図
、図1(D)は図1(C)のD−D線断面図、図1(E
)は図1(D)のE−E線断面図である。
[Embodiment] An embodiment of the present invention will be explained based on the drawings. (First Embodiment) FIG. 1 is a diagram illustrating a whirlpool type combustion chamber according to a first embodiment of the present invention, and FIG. 1(A) is a longitudinal sectional view of the whirlpool type combustion chamber, and FIG. 1(B) 1(A) is a cross-sectional view taken along the line B-B in FIG. 1(A), FIG. 1(C) is a perspective view of the gas repellent used in the first embodiment, and FIG. 1(D) is a cross-sectional view taken along the line D-D in FIG. 1(C). Figure, Figure 1 (E
) is a sectional view taken along line E-E in FIG. 1(D).

【0027】図1(A)において、符号50はディーゼ
ルエンジンのうず室式燃焼室を示しており、これは次の
ようになっている。図1(A)に示すように、シリンダ
ブロック11のシリンダ12内にピストン13を嵌入し
、ピストン13の上側に主燃焼室3を形成している。 シリンダブロック11上に組み付けたシリンダヘッド1
4内にうず室1を形成しており、うず室1の上半部はシ
リンダヘッド14の肉壁内に形成し、うず室1の下半部
はシリンダヘッド14に嵌め込んだ噴口口金15内に形
成している。噴口口金15の底壁にうず室1に接線状に
連通する噴口2を形成し、この噴口2を介して主燃焼室
3にうず室1を連通させている。うず室1内には、燃料
噴射ノズル4を臨ませている。
In FIG. 1(A), reference numeral 50 indicates a spiral combustion chamber of a diesel engine, which is constructed as follows. As shown in FIG. 1(A), a piston 13 is fitted into a cylinder 12 of a cylinder block 11, and a main combustion chamber 3 is formed above the piston 13. Cylinder head 1 assembled on cylinder block 11
A whirlpool chamber 1 is formed within the cylinder head 14, and the upper half of the whirlpool chamber 1 is formed within the wall of the cylinder head 14, and the lower half of the whirlpool chamber 1 is formed within the nozzle mouthpiece 15 fitted into the cylinder head 14. is formed. A nozzle 2 is formed in the bottom wall of the nozzle nozzle 15 and communicates tangentially with the vortex chamber 1, and the vortex chamber 1 is communicated with the main combustion chamber 3 via the nozzle 2. A fuel injection nozzle 4 faces inside the swirl chamber 1.

【0028】このうず室式燃焼室50では、NOXの発
生量を低減させるため、図1(A)・(B)に示すよう
に、うず室1の中央近傍内にガス排斥具5を設けている
。このガス排斥具5は、図1(C)に示すように、円柱
状のもので、図1(B)に示すように、噴口口金15と
一体に形成し、うず流10の旋回中心軸18に沿って横
架させている。ガス排斥具5の軸心17はうず流10の
旋回中心軸18と一致させている。
In this swirl chamber type combustion chamber 50, in order to reduce the amount of NOx generated, a gas repelling device 5 is provided in the vicinity of the center of the swirl chamber 1, as shown in FIGS. 1(A) and (B). There is. As shown in FIG. 1(C), this gas ejector 5 has a cylindrical shape, and as shown in FIG. It is suspended horizontally along the The axis 17 of the gas ejector 5 is aligned with the center axis 18 of rotation of the eddy flow 10.

【0029】また、このうず室式燃焼室50では、噴射
燃料の微細化や拡散を促進するため、図1(D)に示す
ように、燃料噴射ノズル4の噴射軸心6をガス排斥具5
と交わる向きに向かわせ、燃料噴射ノズル4からの噴射
燃料7が、そのガス排斥具5の外周面のうちの上記噴射
軸心6との交点8付近の噴射激突面部分9に衝突し、反
射して飛散するように構成している。
In addition, in this swirl chamber type combustion chamber 50, in order to promote finer atomization and diffusion of the injected fuel, as shown in FIG.
The injected fuel 7 from the fuel injection nozzle 4 collides with the injection collision surface portion 9 near the intersection 8 with the injection axis 6 on the outer peripheral surface of the gas ejector 5, and is reflected. It is configured so that it scatters.

【0030】図1(C)に示すように、ガス排斥具5は
円柱体の外周面部を一部切除したもので、噴射激突面部
分9は、図1(D)に示すように、うず流10の旋回方
向に沿って凹曲状となり、図1(E)に示すように、う
ず流10の旋回中心軸18又はガス排斥具5の軸心17
方向に沿って平坦状になるようにしている。
As shown in FIG. 1(C), the gas repelling device 5 is a cylindrical body with a part of its outer circumferential surface removed, and the jet collision surface portion 9 has a eddy flow as shown in FIG. 1(D). 10, and as shown in FIG.
It is made to be flat along the direction.

【0031】また、このうず室式燃焼室50では、噴射
燃料をうず流の下流側に向かって反射させるため、図1
(D)に示すように、噴射激突面部分9に対して噴射軸
心6がうず流10の上流側でなす角θを鋭角に設定して
いる。符号19は前記交点8における噴射激突面部分9
の接線である。
In addition, in this whirlpool type combustion chamber 50, in order to reflect the injected fuel toward the downstream side of the whirlpool, as shown in FIG.
As shown in (D), the angle θ formed by the injection axis 6 on the upstream side of the eddy flow 10 with respect to the injection collision surface portion 9 is set to be an acute angle. Reference numeral 19 indicates the injection collision surface portion 9 at the intersection 8.
is the tangent line of

【0032】以下に示す第2実施例及び第3実施例は、
図2及び図3に示すように、いずれもこの第1実施例で
用いた円柱状のガス排斥具5の噴射激突面部分9の形状
のみを変化させたもので、図面には、ガス排斥具5のみ
を示す。
[0032] The second and third embodiments shown below are as follows:
As shown in FIGS. 2 and 3, only the shape of the injection collision surface portion 9 of the cylindrical gas repelling tool 5 used in the first embodiment has been changed, and the gas repelling tool Only 5 is shown.

【0033】(第2実施例及び第3実施例)第2実施例
及び第3実施例では、図2(B)及び図3(B)に示す
ように、第1実施例と同様、噴射激突面部分9がうず流
10の旋回方向に沿って凹曲状となるガス排斥具を用い
る。
(Second Embodiment and Third Embodiment) In the second and third embodiments, as shown in FIGS. 2(B) and 3(B), as in the first embodiment, the injection collision A gas repelling tool is used in which the surface portion 9 is concavely curved along the swirling direction of the eddy flow 10.

【0034】図2は第2実施例で用いるガス排斥具を説
明する図である。このガス排斥具5は、図2(A)に示
すように円柱体の外周面部の一部を切除したもので、噴
射激突面部分9は、図2(B)に示すように、うず流1
0の旋回方向に沿って凹曲状となり、図2(C)に示す
ように、うず流10の旋回中心軸18又はガス排斥具5
の軸心17方向に沿って凹曲状となるようにしている。
FIG. 2 is a diagram illustrating a gas repellent used in the second embodiment. As shown in FIG. 2(A), this gas ejector 5 has a part of the outer circumferential surface of a cylindrical body cut out, and the jet collision surface portion 9 has a eddy flow 1 as shown in FIG. 2(B).
0, and as shown in FIG.
It is made to have a concave curved shape along the axis 17 direction.

【0035】図3は第3実施例で用いるガス排斥具を説
明する図である。このガス排斥具5は、図3(A)に示
すように円柱体の外周面部の一部を切除したもので、噴
射激突面部分9は、図3(B)に示すように、うず流1
0の旋回方向に沿って凹曲状となり、図3(C)に示す
ように、うず流10の旋回中心軸18又はガス排斥具5
の軸心17方向に沿って凹曲状となるようにしている。 また、この噴射激突面部分9は、図3(D)に示すよう
に、うず流10の下流側に進むにつれて溝幅が広くなる
前拡がりの溝状に形成している。
FIG. 3 is a diagram illustrating a gas repellent used in the third embodiment. This gas ejector 5 has a cylindrical body with a part of its outer circumferential surface section removed as shown in FIG.
0, and as shown in FIG.
It is made to have a concave curved shape along the axis 17 direction. Further, as shown in FIG. 3(D), the injection collision surface portion 9 is formed in the shape of a front-widening groove whose groove width becomes wider as it progresses toward the downstream side of the eddy flow 10.

【0036】(第4実施例)図4は第4実施例を説明す
る図である。この第4実施例は、前記第1実施例に、次
のような複数の構成要素を付加したものである。すなわ
ち、図4(B)に示すように、ガス排斥具5内に中空部
30を形成し、ガス排斥具5の外周面下側に通路拡大用
凹入面31と圧入空気反転案内面32とを形成したもの
である。
(Fourth Embodiment) FIG. 4 is a diagram illustrating a fourth embodiment. The fourth embodiment has the following components added to the first embodiment. That is, as shown in FIG. 4(B), a hollow portion 30 is formed in the gas displacement device 5, and a passage enlarging concave surface 31 and a press-in air reversing guide surface 32 are formed on the lower side of the outer peripheral surface of the gas displacement device 5. was formed.

【0037】この第4実施例では、ガス排斥具5の噴射
激突面部分9の内部を中空部30により中空状に形成し
たので、始動直後の噴射激突面部分9の昇温が速い。こ
のため、寒冷時にも速やかな発火を行わせることができ
、これにより暖気性能を向上させることができる。
In this fourth embodiment, since the inside of the injection collision surface portion 9 of the gas repelling device 5 is formed into a hollow shape by the hollow portion 30, the temperature of the injection collision surface portion 9 increases quickly immediately after starting. Therefore, it is possible to ignite quickly even in cold weather, thereby improving the warming performance.

【0038】また、うず室1内で噴口2の延長空間33
とラップするガス排斥具5の噴口延長側周面部分に、通
路拡大用凹入面31を形成したので、噴口2の延長空間
33の通路断面積が広がる。このため、噴口2からうず
室1に押し込まれた空気が噴口2の延長空間33を通過
する際の抵抗が小さくなり、これによりうず流10の流
速が速まって噴射燃料7と空気との混合性能が高まる。
[0038] Furthermore, an extension space 33 of the spout 2 in the whirlpool chamber 1
Since the passage enlarging concave surface 31 is formed on the circumferential surface portion of the nozzle extension side of the gas ejector 5 that overlaps with the nozzle nozzle 2, the passage cross-sectional area of the extension space 33 of the nozzle nozzle 2 is expanded. Therefore, the resistance when the air pushed into the vortex chamber 1 from the nozzle 2 passes through the extension space 33 of the nozzle 2 is reduced, which increases the flow velocity of the vortex 10 and improves the mixing of the injected fuel 7 and air. Improves performance.

【0039】また、通路拡大用凹入面31からみてうず
流10の上流側に隣接する上流側隣接周面部分に、圧入
空気反転案内面32を形成し、この案内空気反転案内面
32は、噴口2からうず室1に押し込まれてきた空気の
一部34をうず流10に逆らう方向に案内する形状に形
成したので、噴口2から押し込まれた空気の一部34を
うず流10に衝突させることができる。このため、うず
流10内に微小うずを発生させることができ、これによ
り噴射燃料7と空気との混合性能を高めることができる
Further, a press-in air reversing guide surface 32 is formed on the upstream side adjacent circumferential surface portion adjacent to the upstream side of the eddy flow 10 when viewed from the passage enlarging concave surface 31, and this guide air reversing guide surface 32 is Since the shape is formed to guide the part 34 of the air pushed into the vortex chamber 1 from the nozzle 2 in the direction opposite to the eddy flow 10, the part 34 of the air forced from the nozzle 2 collides with the eddy flow 10. be able to. Therefore, minute eddies can be generated within the eddy flow 10, thereby improving the mixing performance of the injected fuel 7 and air.

【0040】本発明の実施例は以上の通りであるが、こ
の発明は上記実施例に限定されるものではない。例えば
、第4実施例で付加した構成要素の一種又は二種以上の
組み合わせを、第1実施例〜第3実施例に付加してもよ
い。
Although the embodiments of the present invention are as described above, the present invention is not limited to the above embodiments. For example, one or a combination of two or more of the components added in the fourth embodiment may be added to the first to third embodiments.

【0041】また、ガス排斥具5は柱形状のものに限ら
ず、球形その他のブロック状のものであってもよい。こ
の場合には、うず室1の周壁から突出させた支持扞等に
これを支持させておけばよい。
Further, the gas repellent 5 is not limited to a columnar shape, but may be spherical or other block-shaped. In this case, it may be supported by a support rod or the like protruding from the peripheral wall of the whirlpool chamber 1.

【0042】また、噴射燃料7を乱反射させるため、噴
射激突面部分9の表面に凹凸条を形成してもよい。この
凹凸条は平行に形成してもよいし、格子状に形成しても
よい。
Furthermore, in order to diffusely reflect the injected fuel 7, uneven lines may be formed on the surface of the injection collision surface portion 9. These uneven stripes may be formed in parallel or in a lattice shape.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本考案の第1実施例に係るうず室式燃焼
室を説明する図で、図1(A)はうず室式燃焼室の縦断
面図、図1(B)は図1(A)のB−B線断面図、図1
(C)は第1実施例で用いるガス排斥具の斜視図、図1
(D)は図1(C)のD−D線断面図、図1(E)は図
1(D)のE−E線断面図である。
FIG. 1 is a diagram illustrating a whirlpool type combustion chamber according to a first embodiment of the present invention, where FIG. 1(A) is a longitudinal cross-sectional view of the whirlpool type combustion chamber, and FIG. 1(B) is a diagram. 1(A) BB line cross-sectional view, Figure 1
(C) is a perspective view of the gas ejector used in the first embodiment, FIG.
(D) is a sectional view taken along the line DD in FIG. 1(C), and FIG. 1(E) is a sectional view taken along the line EE in FIG. 1(D).

【図2】図2は第2実施例で用いるガス排斥具を説明す
る図で、図2(A)はガス排斥具の斜視図、図2(B)
は図2(A)のB−B線断面図、図2(C)は図2(B
)のC−C線断面図である。
[Fig. 2] Fig. 2 is a diagram illustrating a gas ejector used in the second embodiment, and Fig. 2(A) is a perspective view of the gas ejector; Fig. 2(B) is a perspective view of the gas ejector.
is a sectional view taken along the line B-B in Fig. 2(A), and Fig. 2(C) is a sectional view taken along the line B-B in Fig. 2(A).
) is a sectional view taken along line CC.

【図3】図3は第3実施例で用いるガス排斥具を説明す
る図で、図3(A)はガス排斥具の斜視図、図3(B)
は図3(A)のB−B線断面図、図3(C)は図3(B
)のC−C線断面図、図3(D)は図3(B)のD方向
矢視図である。
[Fig. 3] Fig. 3 is a diagram for explaining a gas ejector used in the third embodiment, Fig. 3(A) is a perspective view of the gas ejector; Fig. 3(B) is a perspective view of the gas ejector.
is a sectional view taken along the line B-B in Fig. 3(A), and Fig. 3(C) is a sectional view taken along line B-B in Fig. 3(A).
), and FIG. 3(D) is a sectional view taken along the line C-C of FIG. 3(B).

【図4】図4は第4実施例で用いるガス排斥具を説明す
る図で、図4(A)はガス排斥具の斜視図、図4(B)
は図4(A)のB−B線断面図である。
FIG. 4 is a diagram illustrating a gas repelling tool used in the fourth embodiment, FIG. 4(A) is a perspective view of the gas repelling tool, and FIG. 4(B)
is a sectional view taken along line BB in FIG. 4(A).

【図5】図5は従来技術に係るうず室式燃焼室を説明す
る図で、図5(A)はうず室式燃焼室の縦断面図、図5
(B)は図5(A)のB−B線断面図である。
FIG. 5 is a diagram illustrating a whirlpool type combustion chamber according to the prior art, and FIG. 5(A) is a longitudinal cross-sectional view of the whirlpool type combustion chamber;
(B) is a sectional view taken along the line BB in FIG. 5(A).

【符号の説明】[Explanation of symbols]

1…うず室、2…1の噴口、3…主燃焼室、4…燃料噴
射ノズル、5…ガス排斥具、6…4の噴射軸心、7…噴
射燃料、8…交点、9…噴射激突面部分、10…うず流
、θ…角。
1... Whirl chamber, 2... Nozzle nozzle 1, 3... Main combustion chamber, 4... Fuel injection nozzle, 5... Gas ejector, 6... Injection axis center of 4, 7... Injected fuel, 8... Intersection, 9... Injection collision Surface part, 10... Eddy flow, θ... Angle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ディーゼルエンジンのうず室(1)に
その噴口(2)を接線状に連通させ、この噴口(2)を
介して主燃焼室(3)に前記うず室(1)を連通させ、
このうず室(1)に燃料噴射ノズル(4)を臨ませ、こ
のうず室(1)の中央近傍内にガス排斥具(5)を設け
て構成した、ディーゼルエンジンのうず室式燃焼室にお
いて、前記うず室(1)内で、前記燃料噴射ノズル(4
)の噴射軸心(6)を前記ガス排斥具(5)と交わる向
きに方向づけ、その燃料噴射ノズル(4)からの噴射燃
料(7)が、そのガス排斥具(5)の外周面のうちの上
記噴射軸心(6)との交点(8)付近の噴射激突面部分
(9)に激突し、反射して飛散するように構成し、噴射
激突面部分(9)に対して上記噴射軸心(6)がうず流
(10)の上流側でなす角(θ)を鋭角に設定し、前記
噴射激突面部分(9)を、前記うず流(10)の旋回方
向に沿って凹曲状に形成した、ことを特徴とするディー
ゼルエンジンのうず室式燃焼室。
Claim 1: A nozzle (2) thereof is tangentially communicated with a whirlpool chamber (1) of a diesel engine, and the whirlpool chamber (1) is communicated with a main combustion chamber (3) through the nozzle (2). ,
In a whirlpool-type combustion chamber of a diesel engine, a fuel injection nozzle (4) faces the whirlpool chamber (1), and a gas repellent (5) is provided near the center of the whirlpool chamber (1). Within the swirl chamber (1), the fuel injection nozzle (4
) is oriented so that the injection axis (6) of the gas ejector (5) intersects with the gas ejector (5), and the injected fuel (7) from the fuel injection nozzle (4) is directed toward the outer peripheral surface of the gas ejector (5). collides with the injection collision surface portion (9) near the intersection (8) with the injection axis center (6), and is configured so that the injection collision surface portion (9) is reflected and scattered. The angle (θ) formed by the center (6) on the upstream side of the eddy flow (10) is set to be an acute angle, and the injection collision surface portion (9) is formed into a concave curved shape along the swirling direction of the eddy flow (10). A swirl chamber type combustion chamber of a diesel engine is characterized by being formed in.
【請求項2】  前記噴射激突面部分(9)を、前記う
ず流(10)の下流側に進むにつれて溝幅が次第に広く
なる前拡がりの溝状に形成した、ことを特徴とする請求
項1に記載のディーゼルエンジンのうず室式燃焼室。
2. The jet collision surface portion (9) is formed in the shape of a front-widening groove in which the width of the groove gradually increases as it advances downstream of the eddy flow (10). The spiral combustion chamber of the diesel engine described in .
JP3013941A 1991-01-11 1991-01-11 Diesel engine swirl chamber Expired - Lifetime JP2603560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3013941A JP2603560B2 (en) 1991-01-11 1991-01-11 Diesel engine swirl chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013941A JP2603560B2 (en) 1991-01-11 1991-01-11 Diesel engine swirl chamber

Publications (2)

Publication Number Publication Date
JPH04241722A true JPH04241722A (en) 1992-08-28
JP2603560B2 JP2603560B2 (en) 1997-04-23

Family

ID=11847233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013941A Expired - Lifetime JP2603560B2 (en) 1991-01-11 1991-01-11 Diesel engine swirl chamber

Country Status (1)

Country Link
JP (1) JP2603560B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129523U (en) * 1980-03-03 1981-10-01
JPH03124914A (en) * 1989-10-05 1991-05-28 Mazda Motor Corp Vortex chamber of diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129523U (en) * 1980-03-03 1981-10-01
JPH03124914A (en) * 1989-10-05 1991-05-28 Mazda Motor Corp Vortex chamber of diesel engine

Also Published As

Publication number Publication date
JP2603560B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
JPH04241722A (en) Vortex chamber type combustion chamber for diesel engine
JPH04241726A (en) Vortex chamber type combustion chamber for diesel engine
JPH04241725A (en) Vortex chamber type combustion chamber for diesel engine
JPH04241723A (en) Vortex chamber type combustion chamber for diesel engine
JPH04241724A (en) Vortex chamber type combustion chamber for diesel engine
JP3330336B2 (en) Spark ignition internal combustion engine
JPH04241721A (en) Vortex chamber type combustion chamber for diesel engine
JPH04241720A (en) Voltex chamber type combustion chamber for diesel engine
JPH04292525A (en) Direct injection type internal combustion engine
JPH0134657Y2 (en)
JPH08319832A (en) Structure of swirling chamber of diesel engine
JP3275470B2 (en) Subchamber engine
JPH10238349A (en) Swirl chamber type diesel engine
JP2552579Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2853421B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH11210469A (en) Cylinder injection type spark ignition engine
KR790001675B1 (en) Combustion chamber of directly injected diesel engine
KR790001674B1 (en) Combustion chamber of directly injected diesel engine
JPH0143467Y2 (en)
JP2658022B2 (en) Combustion chamber of vortex chamber diesel engine
JPS6318126A (en) Direct injection type diesel engine
KR790000952B1 (en) A combustion chamber of direct-injeetion diesel engine
JP3013572B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPS60162012A (en) Vortex combustion chamber for diesel engine
JPH03182617A (en) Combustion chamber for direct injection type diesel engine