JPH03182617A - Combustion chamber for direct injection type diesel engine - Google Patents

Combustion chamber for direct injection type diesel engine

Info

Publication number
JPH03182617A
JPH03182617A JP1321080A JP32108089A JPH03182617A JP H03182617 A JPH03182617 A JP H03182617A JP 1321080 A JP1321080 A JP 1321080A JP 32108089 A JP32108089 A JP 32108089A JP H03182617 A JPH03182617 A JP H03182617A
Authority
JP
Japan
Prior art keywords
fuel
combustion chamber
cavity
wall
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1321080A
Other languages
Japanese (ja)
Inventor
Makoto Matsuoka
信 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUOKA GIJUTSU JIMUSHO KK
NGK Insulators Ltd
Original Assignee
MATSUOKA GIJUTSU JIMUSHO KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUOKA GIJUTSU JIMUSHO KK, NGK Insulators Ltd filed Critical MATSUOKA GIJUTSU JIMUSHO KK
Priority to JP1321080A priority Critical patent/JPH03182617A/en
Publication of JPH03182617A publication Critical patent/JPH03182617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To enable the heating of combustion chamber walls to high temperature by forming the whole of a combustion chamber or only fuel spray collision wall surface parts of ceramic. CONSTITUTION:Spray collision walls 4a-4d, against which fuel spray injected from a fuel injection nozzle 3 to the inner wall of a cavity 2 in a piston 1 collides, are formed in such a way that the axial center of each nozzle hole is inclined being deviated to the swirl downstream side in their sectional forms vertical to a cylinder axis and expanded downward in their sectional forms in the axial direction of the cylinder. Protruding parts 7a-7d protruding inward the cavity 2 are formed more on the swirl downstream side than intersections between the inner wall of the cavity 2 and the respective axes of nozzle holes. In this case, the whole cavity 2 or only the parts around the spray collision walls 4a-4d are made of ceramic. The combustion chamber wall is thereby heated to high temperature so as to accelerate fuel evaporation as well as reduce initial combustion and combustion noise. In addition, unburnt fuel and soot discharge can be reduced by the high temperature combustion chamber wall.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は直噴式ディーゼルエンジンの燃焼室に関し、特
に燃料噴霧の分散の抑制とその後の燃料と空気との良好
なミキシングにより燃焼性を著しく向上することができ
る直噴式ディーゼルエンジンの燃焼室に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a combustion chamber of a direct injection diesel engine, and in particular, significantly improves combustibility by suppressing the dispersion of fuel spray and subsequently improving the mixing of fuel and air. The present invention relates to a combustion chamber of a direct injection diesel engine that can be used for direct injection.

[従来の技術] 従来、ピストンが上死点付近にあるとき、燃料噴射ノズ
ルの複数の噴孔から該ピストンの頂面に形成されたキャ
どティ内に燃料を噴射するようにした直噴式ディーゼル
エンジンにおける燃焼を解説したものとして、例えば昭
和60年1月発行の日本機械学会論文集(B編)51巻
461号における松岡信の研究展望「ディーゼル燃焼に
おけるブラックボックスの解明」が知られている。これ
によれば、燃料噴霧のモーメンタムは噴霧の中心軸上に
強く集中しているので、小形の直噴式ディーゼルエンジ
ンでは噴射ノズルとキャビティ内壁との距離か短いこと
もあるか、噴霧がキャビティ内壁に直角衝突するとその
壁面上に燃料・空気の混合気が集中分布し、外側か燃焼
・既燃ガスに覆われ、以後空気の供給が悪くなる(空気
導入−トラップ現象)。しかるに噴霧をスワール上流側
から所定の角度でもって壁に斜に衝突させると、まず噴
霧と空気との混合気が形成し、次いで生成される既燃ガ
スを巻き込んで三層構造より威る巻きカーペット形の混
合塊を形成することにより、既燃ガスによる上記トラッ
プ現象か減り燃料の分散が効果的に行なわれ、またこれ
に加速度の大きい渦か作用するとこの形成された混同見
境か破壊され、空気の利用率が向上することか明らかに
されている。
[Prior Art] Conventionally, a direct-injection diesel engine injects fuel from a plurality of injection holes of a fuel injection nozzle into a canty formed on the top surface of the piston when the piston is near the top dead center. For example, Makoto Matsuoka's research perspective ``Elucidation of the black box in diesel combustion'' in the Transactions of the Japan Society of Mechanical Engineers (B edition), Vol. 51, No. 461, published in January 1985, is known as an explanation of combustion in engines. . According to this, the momentum of the fuel spray is strongly concentrated on the central axis of the spray, so in small direct-injection diesel engines, the distance between the injection nozzle and the inner wall of the cavity may be short, or the spray may reach the inner wall of the cavity. When a collision occurs at right angles, the fuel/air mixture is concentrated on the wall surface, and the outside is covered with combustion/burnt gas, resulting in poor air supply (air introduction-trapping phenomenon). However, when the spray collides obliquely with the wall at a predetermined angle from the upstream side of the swirl, a mixture of the spray and air is first formed, and then the generated burnt gas is drawn in, creating a rolled carpet that is more powerful than the three-layer structure. By forming a shaped mixed mass, the above-mentioned trap phenomenon caused by the burnt gas can effectively disperse the reduced fuel, and when a vortex with a large acceleration acts on this, the formed mixed mass is destroyed and the air is It has been clarified that the usage rate will improve.

一方、小型直噴式ディーゼルエンジンの場合、燃焼騒音
の低減が要請されている。このため、出力、燃費性能等
を雑持しつつ静粛性を向上させるためには、上記松岡信
の展望を勘酌して、車両に搭載される小型直噴式ディー
ゼルエンジンの現実的な深皿型キャビティ(ピストン頂
部の燃焼室)に上記理論を導入発展させ、より燃焼性の
良い静粛な燃焼室の開発が可能と考えられる。
On the other hand, in the case of small direct injection diesel engines, reduction of combustion noise is required. Therefore, in order to improve quietness while maintaining output, fuel efficiency, etc., it is necessary to take into account Makoto Matsuoka's outlook and develop a realistic deep-dish type of compact direct-injection diesel engine installed in vehicles. It is thought that by introducing and developing the above theory into the cavity (combustion chamber at the top of the piston), it will be possible to develop a quieter combustion chamber with better combustibility.

そこで、本発明者らは特願昭62−28979号(特開
昭63−95315号公報参照)において、ピストンを
上死点付近にあるとき、燃料噴射ノズルの単数或は複数
の噴孔から該ピストンの頂面に形成されたキャビティ内
に燃料を噴射するようにした直噴式ディーゼルエンジン
の燃焼室において、燃料噴霧がキャビティ内壁に衝突す
る噴霧衝突壁を、そのシリンダ軸に横に垂直な輪切り断
面形状において上記各噴孔の軸心がそれぞれスワール下
流側に偏って傾斜するように且つシリンダ軸方向に沿っ
た縦断面形状において下方へ次第に拡がるように形成し
、しかもキャビティ内壁の各噴孔軸心との交点よりスワ
ール下流側にそれぞれキャビティ内方に突出した突起部
を設けた構造とした直噴式ディーゼルエンジンの燃焼室
を提案した。
Therefore, in Japanese Patent Application No. 62-28979 (see Japanese Patent Application Laid-Open No. 63-95315), the present inventors proposed that when the piston is near the top dead center, the fuel injection nozzle is injected from one or more nozzle holes. In the combustion chamber of a direct-injection diesel engine in which fuel is injected into the cavity formed on the top surface of the piston, the spray collision wall where the fuel spray collides with the cavity inner wall is cut into a cross section perpendicular to the cylinder axis. The shape is such that the axis of each nozzle hole is tilted toward the downstream side of the swirl, and gradually expands downward in the longitudinal cross-sectional shape along the cylinder axis direction, and the axis of each nozzle hole on the inner wall of the cavity is We proposed a combustion chamber for a direct-injection diesel engine that has a structure in which protrusions protrude inward from the swirl downstream of the intersection with the swirl.

燃焼室を上記のように構成することにより、初期燃焼を
減らしてその急激燃焼による騒音を静粛化しながら、従
来この急激初期燃焼により噴霧内への空気導入増加を図
っていたのを、前記混合気の巻きカーペット効果により
燃料噴霧と空気と既燃ガスが十分に層状化した混合気を
形成することで燃料噴霧の分散の抑制を図りつつ空気導
入を増加し、又、スワール下流側のそれぞれの突起によ
って以上のようにロールしている層状混合気を破壊させ
、かつ分散が抑制された燃料噴霧と空気とを良好に混合
し、又、キャビティ全体の残りの空気を取り込むための
乱流を発生させ全体のガスの混合を促進することが達成
される。
By configuring the combustion chamber as described above, while reducing the initial combustion and silencing the noise caused by the rapid combustion, the air-fuel mixture By forming a sufficiently stratified mixture of fuel spray, air, and burnt gas due to the wrapped carpet effect, the dispersion of fuel spray is suppressed and air introduction is increased, and each protrusion on the downstream side of the swirl This destroys the rolling stratified mixture as described above, mixes the fuel spray with suppressed dispersion and air well, and also generates turbulent flow to take in the remaining air from the entire cavity. Enhancing the mixing of the entire gas is achieved.

[発明が解決しようとする課題] しかしながら、上記従来の技術は、燃焼室の材質につい
ては伺ら言及していない。例えば燃焼室の材質として通
常の金属材料を用いる場合には、燃焼室を所定温度以上
に高温化できないため、低温の燃焼室壁面に沿って燃料
oiiを流すこととなり、燃料の蒸発、温度上昇が抑制
されてしまい、着火遅れが増大する結果、初期燃焼が急
激化するという逆効果が生じる問題がある。さらに、低
負荷や始動時の運転では燃焼室の壁面への燃料の付着が
起こり、未燃燃料の排出が増大するという問題がある。
[Problems to be Solved by the Invention] However, the above-mentioned conventional techniques do not mention the material of the combustion chamber. For example, when a normal metal material is used as the material for the combustion chamber, the combustion chamber cannot be heated above a predetermined temperature, so the fuel OII flows along the low-temperature combustion chamber wall, which prevents fuel evaporation and temperature rise. As a result, the ignition delay increases, resulting in the opposite effect of rapid initial combustion. Furthermore, during low-load or startup operation, fuel adheres to the wall surface of the combustion chamber, resulting in an increase in the amount of unburned fuel discharged.

本発明は上記の問題に鑑みてなされたものであり、上記
した特願昭62−28979号における利点を生かしつ
つ、即ち燃料噴霧をシリンダ軸に垂直な面とシリンダ軸
方向の面との双方において所定角度をもってキャビティ
内壁に衝突させ、キャビティ全体に強力に燃料噴霧をロ
ールさせることにより静粛性を損う急激燃焼を避けつつ
、燃料噴霧と空気と既燃ガスの十分な層状混合気を形成
して燃料噴霧の分散の抑制を図る燃焼室をセラミックで
作製することにより、燃焼室壁の高温化を可能とし、上
記特願昭62−28979号の利点を更に向上させ、初
期燃焼を低減し燃焼騒音を減少させることができること
を見出し1本発明に至ったものである。
The present invention has been made in view of the above-mentioned problems, and makes use of the advantages of the above-mentioned Japanese Patent Application No. 62-28979, namely, it sprays fuel both in a plane perpendicular to the cylinder axis and in a plane in the direction of the cylinder axis. By colliding with the inner wall of the cavity at a predetermined angle and forcefully rolling the fuel spray throughout the cavity, a sufficient stratified mixture of the fuel spray, air, and burnt gas is formed while avoiding rapid combustion that impairs quietness. By making the combustion chamber with ceramic to suppress the dispersion of fuel spray, it is possible to raise the temperature of the combustion chamber wall, further improving the advantages of the above patent application No. 62-28979, reducing initial combustion and reducing combustion noise. The present invention was based on the discovery that it is possible to reduce the

[課題を解決するための手段] 本発明によれば、ピストンが上死点付近にあるとき、燃
料噴射ノズルの1又は2以上の噴孔から該ピストンの頂
面に形成されたキャビティ内に燃料を噴射するようにし
た直噴式ディーゼルエンジンの燃焼室であって、 該燃焼室はセラミックにて作製され、前記キャビティ内
壁に前記噴孔より噴射された燃料噴霧が衝突する噴霧衝
突壁を、そのシリンダ軸に垂直な断面形状において前記
各噴孔の軸心がそれぞれスワール下流側に偏って傾斜し
且つシリンダ軸方向の断面形状において下方へ拡がる如
く形成されているとともに、キャビティ内壁と前記各噴
孔軸心との交点よりスワール下流側にそれぞれキャビテ
ィ内方に突出した突起部が形成されていることを特徴と
する直噴式ディーゼルエンジンの燃焼室、が提供される
[Means for Solving the Problems] According to the present invention, when the piston is near the top dead center, fuel is injected into the cavity formed in the top surface of the piston from one or more injection holes of the fuel injection nozzle. A combustion chamber of a direct injection diesel engine configured to inject fuel, the combustion chamber is made of ceramic, and a spray collision wall on which the fuel spray injected from the injection hole collides with the inner wall of the cavity is connected to the cylinder. In a cross-sectional shape perpendicular to the axis, the axes of each of the nozzle holes are inclined toward the downstream side of the swirl, and in a cross-sectional shape in the cylinder axis direction, the axes of the nozzle holes are formed so as to expand downward, and the inner wall of the cavity and the axis of each of the nozzle holes There is provided a combustion chamber for a direct injection diesel engine, characterized in that protrusions projecting inward of the cavity are formed on the downstream side of the swirl from the intersection with the center.

[作用] 本発明ては上記の構成を採用していることにより、燃料
噴射ノズルからの燃料噴霧は、噴霧衝突壁(キャビティ
内壁)に斜めに衝突し、シリンダ軸に垂直な面内及びシ
リンダ軸方向の面内でロールしつつ空気を介して既燃ガ
スを巻込んで三層構造の混合気を形威し、もって燃料噴
霧の分散を抑制してこの噴霧の蒸発、混合状態を緩慢に
し、騒音か問題となる急激燃焼を避けての良好な初期燃
焼を図る。
[Operation] By employing the above-described configuration, the present invention allows the fuel spray from the fuel injection nozzle to obliquely collide with the spray collision wall (inner wall of the cavity), in a plane perpendicular to the cylinder axis, and in a plane perpendicular to the cylinder axis. While rolling in the plane of the direction, burnt gas is drawn in through the air to form a three-layer mixture, thereby suppressing the dispersion of the fuel spray and slowing down the evaporation and mixing state of the spray. Aim for good initial combustion by avoiding rapid combustion that may cause noise problems.

さらに、このロールした混合気は下流側に、その流れに
対して略直角或は斜状になるよう設置された突起部(或
は層状断面部)に生成する剥離状乱流に遭遇し、このロ
ール状の三層構造の混合気(混合見境)が強力に破壊さ
れ、かつ壁面より剥離すること、キャビティ内の残りの
空気との接触面積の増加などにより燃料噴霧と空気とが
良好にミキシングされて初期燃焼後の燃焼性か向上する
Furthermore, on the downstream side, this rolled mixture encounters separation-like turbulent flow generated at a protrusion (or layered cross-section) installed approximately at right angles or obliquely to the flow. The roll-shaped three-layer mixture (mixture separation) is strongly destroyed and peeled off from the wall, and the contact area with the remaining air in the cavity increases, resulting in good mixing of the fuel spray and air. This improves combustibility after initial combustion.

更に本発明では、燃焼室の全体或は燃料噴霧衝突壁面部
付近のみをセラミックで構成している。
Furthermore, in the present invention, the entire combustion chamber or only the vicinity of the fuel spray collision wall is made of ceramic.

このため、燃焼室壁か高温化され、燃料の蒸発が促進さ
れることにより金属材料で構成される燃焼室に比し更に
初期燃焼が低減され、燃焼騒音もより減少する。また、
低負荷運転や始動時においても、燃焼室壁の高温化によ
り、未燃燃料の排出が低減される。さらに、セラミック
化による燃焼室壁の高温化により、有害排出物であるす
す等の反応速度は金属燃焼室に比べて増加され、上記し
た燃料噴霧と空気との良好なミキシングに充分対応した
燃焼反応速度か得られすすの排出量が低減しまた燃焼期
間が短縮され熱効率かさらに改善される。又、これによ
り窒素酸化物低減の為、噴射時期遅滞化やEGRを行な
っても熱効率の低下か少なくなる。
Therefore, the temperature of the combustion chamber wall is increased, and the evaporation of the fuel is promoted, so that the initial combustion is further reduced and the combustion noise is further reduced compared to a combustion chamber made of a metal material. Also,
Even during low-load operation or during start-up, the combustion chamber walls become hotter, reducing the amount of unburned fuel discharged. Furthermore, due to the high temperature of the combustion chamber wall due to ceramicization, the reaction rate of harmful emissions such as soot is increased compared to a metal combustion chamber, and the combustion reaction is sufficient to support the above-mentioned good mixing of the fuel spray and air. The resulting soot emissions are reduced and the combustion period is shortened, further improving thermal efficiency. Moreover, as a result, even if injection timing is delayed or EGR is performed in order to reduce nitrogen oxides, the thermal efficiency will be reduced or reduced.

本発明において燃焼室の材質として用いられるセラミッ
クは特にその種類を限定されるものではなく、アルミナ
、ジルコニア、窒化珪素、炭化珪素などのあらゆる種類
のセラミックか適用可能であるか、特に耐熱性などの観
点から窒化珪素、ジルコニアか好ましく用いられる。
The type of ceramic used as the material for the combustion chamber in the present invention is not particularly limited, and any type of ceramic such as alumina, zirconia, silicon nitride, silicon carbide, etc. can be used. From this point of view, silicon nitride and zirconia are preferably used.

又、本発明の燃焼室では、キャビティ内方に噴霧流方向
に対し略直角或は斜状になるよう突出した突起部の突出
量或は層状断面部を0.03D〜0.10(Dはキャビ
ティの基準径)の範囲に設定すると、燃料と空気とのミ
キシングがさらに良好となり、好ましい。
In addition, in the combustion chamber of the present invention, the protrusion amount or layered cross-section of the protrusion protruding inward of the cavity so as to be approximately perpendicular or oblique to the spray flow direction is 0.03D to 0.10 (D is It is preferable to set the diameter within the range of the reference diameter of the cavity), since the mixing of fuel and air will be even better.

突起部の突出量或は層状断面部が0.03Dより小さい
と乱流の強度か弱い為、ロール巻きの層状混合気が充分
に破壊されず、燃料と空気とのミキシングが悪くなる。
If the protrusion amount of the protrusion or the layered cross section is smaller than 0.03D, the strength of the turbulent flow will be weak, and the rolled layered mixture will not be sufficiently destroyed, resulting in poor mixing of fuel and air.

また、突出量或は層状断面部をO,1Dより大きくする
と、スワールの減衰が大きくなり過ぎ、それにより発生
していた乱れが減少し1強いスワールにより破壊された
層状混合気が乱れによるミキシング効果を受けられず、
燃料と空気とのミキシングは悪化する。
In addition, if the protrusion amount or layered cross section is made larger than O or 1D, the attenuation of the swirl becomes too large, which reduces the turbulence that has been generated. can't receive it,
Mixing of fuel and air becomes worse.

一方、燃焼室を金属で構成した場合、突起部の突出量或
は層状断面部をO,1D以上とすると、溶解あるいは亀
裂が発生し、破損する。
On the other hand, when the combustion chamber is made of metal, if the protrusion amount or the layered cross-section of the protrusion exceeds 0.1D, melting or cracking will occur, resulting in damage.

[実施例] 以下、本発明を図示の実施例に基づきさらに詳細に説明
するが1本発明はこれらの実施例に限られるものではな
い。
[Examples] Hereinafter, the present invention will be described in more detail based on illustrated embodiments, but the present invention is not limited to these embodiments.

第1図〜第3図は本発明に係る直噴式ディーゼルエンジ
ンの燃焼室の一実施例を示すもので、燃焼室は噴霧衝突
側付近のみ或は全体がセラミックで形成されており、l
はピストンであって、ピストン1の頂面にはキャビティ
2が凹陥状に形成されている。また、キャビティ2の上
方には複数の噴孔を有する燃料噴射ノズル3が配置され
、該6噴孔は水平面より0度(第4図〉下向きに設けら
れていて、該ピストン1か上死点付近にあるとき、上記
燃料噴射ノズル3の各噴孔からキャビティ2内に燃料を
噴射するようにしている。
FIGS. 1 to 3 show an embodiment of the combustion chamber of the direct injection diesel engine according to the present invention, in which the combustion chamber is made of ceramic only near the spray impingement side or entirely.
1 is a piston, and a cavity 2 is formed in the top surface of the piston 1 in a concave shape. Further, a fuel injection nozzle 3 having a plurality of injection holes is arranged above the cavity 2, and the six injection holes are provided downward at 0 degrees from the horizontal plane (Fig. 4), and the piston 1 is located at the top dead center. When the fuel injection nozzle 3 is nearby, fuel is injected into the cavity 2 from each injection hole of the fuel injection nozzle 3.

また、第3図に示すように、上記キャビティ2の内壁の
うち、燃料噴霧が衝突する噴霧衝突壁4a〜4dは、そ
のシリンダ軸に垂直な断面形状において、各噴孔の軸心
6a〜6dがそれぞれスワール下流側(太矢印側〉に0
.〜θ4偏って傾斜するように形成されている。この傾
斜角度01〜θ4は、例えばθ1と04は約15度、θ
、とθ3は約5度である。このそれぞれの傾斜角度0、
〜θ4の相違は、キャビティ2の中心に対して、燃料噴
射ノズル3の先端噴孔部中心がオフセットしていること
によるものであり、またこの程度の傾斜角度としたのは
、噴霧の衝突する角度か小さ過ぎると(01〜θ4が小
さい場合)、噴霧かシリンダ軸に垂直な面内で十分にロ
ールできずしかも燃料と空気と既燃ガスとが成層化して
いる場合にはスワールによる新旧ガスの交替混合効果か
十分に得られず、一方噴霧衝突角度が大き過ぎると(0
1〜θ4が大きい場合)、噴霧衝突部位によりスワール
下流側のキャビテイ壁のR(R2)が小さくなり過ぎ噴
霧のロールか小さくなって大きな層状混合気か形成でき
ず、またスワールが必要以上に減衰して噴霧に十分な乱
れを与えることが燃料と空気とのミキシングか不良にな
るからである。
Further, as shown in FIG. 3, among the inner walls of the cavity 2, the spray collision walls 4a to 4d with which the fuel spray collides have an axial center 6a to 6d of each nozzle hole in a cross-sectional shape perpendicular to the cylinder axis. are respectively 0 on the swirl downstream side (thick arrow side)
.. It is formed to be inclined by ~θ4. These inclination angles 01 to θ4 are, for example, θ1 and 04 are approximately 15 degrees, θ
, and θ3 are approximately 5 degrees. Each of these angles of inclination is 0,
The difference in ~θ4 is due to the fact that the center of the tip nozzle hole of the fuel injection nozzle 3 is offset from the center of the cavity 2, and the reason why the inclination angle is set to this degree is to prevent the collision of the spray. If the angle is too small (01 to θ4 is small), the spray cannot roll sufficiently in the plane perpendicular to the cylinder axis, and if the fuel, air, and burnt gas are stratified, the new and old gases will be separated by swirl. On the other hand, if the spray impact angle is too large (0
1 to θ4), the R (R2) of the cavity wall on the downstream side of the swirl becomes too small due to the spray collision site, and the roll of the spray becomes too small, making it impossible to form a large stratified mixture, and the swirl is attenuated more than necessary. This is because giving sufficient turbulence to the spray will result in poor mixing of fuel and air.

さらに、第4図に示すように、上記噴霧衝突壁4a〜4
dは、そのシリンダ軸方向の断面形状か下方へ次第に拡
がるように形成されており、水平面とのなす角度中は各
種実験の結果、中=75゜±10@程度とするのが好ま
しい。
Further, as shown in FIG. 4, the spray collision walls 4a to 4
d is formed so that its cross-sectional shape in the cylinder axis direction gradually expands downward, and as a result of various experiments, it is preferable that the angle between it and the horizontal plane is about 75°±10@.

さらに、第5図に示すように、シリンダ軸に垂直な面内
における噴霧軸心と突起部との位置関係、すなわち各軸
心6a〜6dのスワール下流側の突起部7a、7dと燃
料噴射ノズル3の先端部噴孔とを結ぶ縁立、と各軸心6
a〜6dとの成す角度なφ、とし、各軸心6a〜6dの
スワール上流側の突起部7a〜7dと噴孔とを結ぶ縁立
2と皇、との威す角度をφ。としたときのφ、/φ。
Furthermore, as shown in FIG. 5, the positional relationship between the spray axis and the protrusion in a plane perpendicular to the cylinder axis, that is, the protrusion 7a, 7d on the swirl downstream side of each axis 6a to 6d and the fuel injection nozzle. The rim connecting the tip nozzle nozzle 3 and each axis 6
Let φ be the angle formed by the axes 6 a to 6 d, and φ is the angle between the edge 2 and the edge connecting the protrusions 7 a to 7 d on the upstream side of the swirl of each axis 6 a to 6 d and the nozzle hole. When φ, /φ.

は、0.4D〜0.85の範囲とすることが騒音および
エンジン出力の改善の観点から好ましい。
is preferably in the range of 0.4D to 0.85 from the viewpoint of improving noise and engine output.

これは、噴霧の衝突部位がスワール下流側の突起部に近
すぎると(φ、/φ。が0.40より小さいと)、噴霧
か沿うキャビテイ壁の長さが短いことにより十分なロー
ルか形成できず、また乱流生成部分が近いことによりロ
ールが形成される前に破壊され、十分にロール巻きの層
状混合気が生成できないからである。
This is because if the collision site of the spray is too close to the protrusion on the downstream side of the swirl (φ, /φ is smaller than 0.40), the length of the cavity wall along which the spray runs is short, resulting in insufficient roll formation. This is because the roll is destroyed before it is formed due to the closeness of the turbulent flow generation part, and a sufficient layered mixture cannot be produced in the roll.

一方、噴霧の衝突部位がスワール下流側の突起部に達す
ぎると(φ1/φ0が0.85より大きいと)、乱流生
成部分まで遠いことによって、スワールがさほど強くな
いエンジンの低・中回転城においてロール巻きの層状混
合気と乱流とがうまく合致せずこの層状混合気が十分に
破壊されないからである。
On the other hand, if the collision site of the spray reaches the protrusion on the downstream side of the swirl too much (if φ1/φ0 is larger than 0.85), the swirl will not be as strong at low or medium speeds of the engine because it is far from the turbulence generation area. This is because the stratified mixture of rolls and the turbulent flow do not match well in the castle, and this stratified mixture is not sufficiently destroyed.

また、上記キャビティ2の周縁は内方に張り出していて
リップ部5か形成されており、噴流をキャビティ2内に
閉じ込めるとともに、スキッシュ流をピストン頂面から
キャビティ内方に巻込んでシリンダ軸方向の面内で小さ
なスワール(マイクロスワール)を形成して燃料と空気
とのミキシングを促進するようにしている。
Further, the circumferential edge of the cavity 2 extends inward to form a lip portion 5, which confines the jet flow within the cavity 2 and draws the squish flow from the top surface of the piston into the cavity so that it can move in the axial direction of the cylinder. Small swirls (micro-swirls) are formed within the plane to promote mixing of fuel and air.

さらに、上記キャビティ内壁における上記各噴孔軸心6
a〜6dとの交点よりスワール下流側には、それぞれキ
ャビティ内方に突出した突起部7a〜7dが形成されて
いる。ここで、突起部とは崖状断面部も含む意であり、
その図示例を第6図(イ)(突起部の例)、第6図(ロ
)(崖状断面部の例)の部分断面図に示す、また、第7
図は突起部或は層状断面部の4噴孔の場合の燃焼室内に
おける位置関係を示すもので、第7図(イ)は燃焼室内
の平面図、第7図(ロ)は燃焼室内の展開図、第7図(
ハ)は燃焼室内の断面図をそれぞれ示すものである。ま
た、第7図(ニ)は第7図(ハ)の変形例を示す断面図
である。第7図(イ)(ロ)(ハ)(ニ)から、噴霧流
8a〜8dが夫々突起部或は層状断面部7a〜7dに直
角より斜状に衝突していることがわかる。ここで、各突
起部或は層状断面部7a〜7dの突出量t1〜t4は、
上記の通り(103D〜0.1D(Dはキャビティの基
準径)の範囲内とする。
Further, each nozzle hole axis 6 on the inner wall of the cavity
Protrusions 7a to 7d projecting inward of the cavity are formed downstream of the swirl from the intersections a to 6d, respectively. Here, the protrusion includes a cliff-like section,
Examples of this are shown in the partial cross-sectional views of FIG. 6(a) (example of a protrusion) and FIG.
The figure shows the positional relationship in the combustion chamber in the case of four nozzle holes in the protrusion or layered cross section. Figure 7 (a) is a plan view of the interior of the combustion chamber, and Figure 7 (b) is an expanded view of the interior of the combustion chamber. Figure, Figure 7 (
C) shows a cross-sectional view of the inside of the combustion chamber. Moreover, FIG. 7(d) is a sectional view showing a modification of FIG. 7(c). It can be seen from FIGS. 7(a), 7(b), 7(c), and 7(d) that the spray streams 8a to 8d collide with the protrusions or layered cross sections 7a to 7d, respectively, obliquely rather than at right angles. Here, the protrusion amounts t1 to t4 of each protrusion or layered cross-section portion 7a to 7d are as follows:
As mentioned above, it is within the range of 103D to 0.1D (D is the standard diameter of the cavity).

尚、キャビティ2の基準径りとキャビティ2の深さHと
の比D/)lは2.2〜3.2程度が好ましく、噴射高
さhとキャビティ深さHとの比h/Hは0.2〜0.5
程度が好ましい、また、第3図に示すように突起部間の
キャビティ周縁のRはスワール上流側のR1は帯状の噴
霧(約20”程度の幅をもつ噴霧)全体かキャビテイ壁
面に対してスワール下流側に指向できるような大きなR
であって(0,4〜0.6〉・D程度とし、スワール下
流側のR2は、ロール巻きの層状混合気が生成する前に
破壊されるような鋭利な突起部にならないよう、かつR
によって十分なロール巻きが生成できるよう上記R1よ
り小さい(0,5〜0.7)・R00程とするのが好ま
しい。
Incidentally, the ratio D/)l between the reference diameter of the cavity 2 and the depth H of the cavity 2 is preferably about 2.2 to 3.2, and the ratio h/H between the injection height h and the cavity depth H is 0.2-0.5
Also, as shown in Figure 3, R1 of the cavity periphery between the protrusions is swirl upstream R1 is the width of the entire band-shaped spray (spray with a width of about 20") or the swirl relative to the cavity wall surface. Large R that can be directed downstream
R2 on the downstream side of the swirl should be set to about (0.4 to 0.6>・D), and R2 should be set so that it does not become a sharp protrusion that could be destroyed before the roll-wound stratified mixture is generated.
It is preferable to set R00 to be smaller than R1 (0.5 to 0.7) so that a sufficient roll can be generated.

次に、実施例の作用について説明する。Next, the operation of the embodiment will be explained.

ピストンlが上死点付近にあるとき、燃料噴射ノズル3
の複数の噴孔から噴射された噴霧は、上記各噴霧衝突壁
4a〜4dに、そのシリンダ軸に垂直な面内で傾斜角度
θ、〜θ4で且つシリンダ軸方向の面内で傾斜角度(9
0−マ+α)で高温セラミック壁に衝突し、液状燃料は
急速に蒸発し、第1図及び第2図に示すようにシリンダ
軸に垂直な面内及びシリンダ軸方向の面内でロールしつ
つ空気を介し既燃ガスを巻込んで三層構造の混合気を形
成することにより、燃料の分散化か抑制され、従来のエ
ンジンに較べて、燃焼を促進させる空気と燃焼を阻害す
る既燃ガスを割合よく巻込むことによって、急激燃焼を
抑制した良好な初期燃焼が行なわれ、騒音が低減する。
When the piston l is near the top dead center, the fuel injection nozzle 3
The spray injected from the plurality of nozzle holes hits each of the spray collision walls 4a to 4d at an inclination angle of θ, -θ4 in a plane perpendicular to the cylinder axis, and at an inclination angle of (9) in a plane in the cylinder axis direction.
The liquid fuel collides with the high-temperature ceramic wall at a temperature of 0 - ma + α), evaporates rapidly, and rolls in the plane perpendicular to the cylinder axis and in the cylinder axis direction, as shown in Figures 1 and 2. By drawing in burnt gas through air to form a three-layer mixture, fuel dispersion is suppressed, and compared to conventional engines, air promotes combustion and burnt gas inhibits combustion. By involving the fuel in a good proportion, good initial combustion is achieved with rapid combustion suppressed, and noise is reduced.

さらに、ロールしながらスワール下流側へ移動する混合
気は、各突起部或は層状断面部7a〜7dが噴霧流に対
して略直角或は斜状になるよう設置されていることより
壁面より剥離し、又そこで生成する乱流とうまく(第5
図に示すφ、の角度によって)合致し、新気の導入が促
進されつつ三層構造の混合気が強力に破壊され、キャビ
ティ内の分散化が抑制された燃料と空気とが良好にミキ
シングされ、加えて上記マイクロスワールによってこの
ミキシングか一層促進されて燃焼性が著しく向上する。
Furthermore, the air-fuel mixture that moves to the downstream side of the swirl while rolling is separated from the wall surface because each of the protrusions or layered cross sections 7a to 7d are installed so as to be approximately perpendicular or oblique to the spray flow. However, it also works well with the turbulent flow generated there (fifth
According to the angle of φ shown in the figure), the introduction of fresh air is promoted, the three-layer mixture is strongly destroyed, and the fuel and air are mixed well, suppressing dispersion in the cavity. In addition, this mixing is further promoted by the microswirl, and the combustibility is significantly improved.

このことにより、従来の金属製の燃焼室を用いたエンジ
ンに較べて初期燃焼が抑制されて騒音か減少し、中期の
燃焼か活発化されてエンジン出力が増大するとともに後
記の燃焼が早期に終了して燃費およびスモークが減少す
る。
As a result, compared to engines using conventional metal combustion chambers, initial combustion is suppressed and noise is reduced, mid-term combustion is activated, engine output increases, and combustion (described below) ends earlier. This reduces fuel consumption and smoke.

尚、本発明では、燃料噴射ノズルにおける噴孔をl及至
6個程度設けることが好ましい。
In the present invention, it is preferable that the fuel injection nozzle has about 1 to 6 nozzle holes.

また、第8図は燃料噴霧衝突壁部分のみセラミックで形
成している場合の燃焼室の縦断側面説明図であり、噴霧
衝突壁4の部分のみセラミ・ンクで形成し、他のキャビ
ティ2の部分は金属で形成した例を示すものである。
Further, FIG. 8 is a longitudinal cross-sectional side view of the combustion chamber in the case where only the fuel spray collision wall portion is formed of ceramic. shows an example formed of metal.

以下、本発明の詳細な説明するため、具体的な実施結果
を説明する。
Hereinafter, in order to provide a detailed explanation of the present invention, specific implementation results will be described.

(実施例1) 第1図〜第3図とほぼ同一の燃焼室形状を有するピスト
ンであって、従来の金属製ピストン2種類(へ二衝突角
度θ(第3図)=90”  B:衝突角度θ(第3図)
=90”−140°)と、上記ピストンBをセラミック
化(窒化珪素製)した本発明のピストン(C)を用い、
噴孔数が4、スワール比2.5、噴射タイミングを固定
し、スモークを一定にし、回転数2200rpmの運転
条件で、騒音レベルと正味平均有効圧の関係を比較した
。その結果を第9図のグラフに示す。
(Example 1) A piston having almost the same combustion chamber shape as in FIGS. 1 to 3, two types of conventional metal pistons (2 types of impact angle θ (FIG. 3) = 90" B: Impact Angle θ (Figure 3)
=90''-140°), and using the piston (C) of the present invention, which is made of ceramic (made of silicon nitride) of the piston B,
The relationship between the noise level and the net average effective pressure was compared under the following operating conditions: the number of injection holes was 4, the swirl ratio was 2.5, the injection timing was fixed, the smoke was constant, and the rotation speed was 2200 rpm. The results are shown in the graph of FIG.

金属製ピストンAおよびBにおいて、BがAより静粛に
なっているのは壁面への衝突角度が斜めになってカーペ
ットロール効果が生じたからである。また、同形のピス
トンBをセラミックにて製作したピストンCは、はぼ同
一の正味平均有効圧において騒音レベルが低くなり、本
発明のピストンが静粛化に有効であることかわかる。
Among the metal pistons A and B, the reason why B is quieter than A is because the angle of impact with the wall surface was oblique, creating a carpet roll effect. In addition, piston C, which is made of ceramic and has the same shape as piston B, has a lower noise level at almost the same net average effective pressure, indicating that the piston of the present invention is effective in reducing noise.

また、本発明のピストンCについて、その噴射タイくン
グを変化させた場合の排出ガス中のN。
Further, regarding the piston C of the present invention, N in the exhaust gas when the injection timing is changed.

X量変化を第io図に示す。第io図から明らかなよう
に、最も噴射タイミングを遅らせたXの場合、NOxは
最も低くなり、さらに第11図に示すように、正味平均
有効圧はZ+Yでは大きくなり、Y−+Xては同一を保
ちつついずれても騒音が減少している。
The change in the amount of X is shown in Figure io. As is clear from Figure io, NOx is the lowest in the case of X, where the injection timing is delayed the most, and as shown in Figure 11, the net average effective pressure is larger in Z+Y, and is the same in Y-+X. In both cases, noise is reduced while maintaining the same level of noise.

これは、噴射タイミングを(Z−4Y−4X)の如く遅
らせたため、ガス温度が低下してNOxが減少し、又ピ
ストン位置が変化して噴霧の壁面衝突角度が最適化し、
正味平均有効圧の上昇或は雑持と騒音の減少化が達成さ
れたものと推定される。
This is because the injection timing is delayed as shown in (Z-4Y-4X), which lowers the gas temperature and reduces NOx, and also changes the piston position to optimize the wall collision angle of the spray.
It is estimated that an increase in the net average effective pressure or a reduction in noise and interference was achieved.

[発明の効果] 以上説明したように、本発明の直噴式ディーゼルエンジ
ンの燃焼室によれば、燃料噴霧の分散を抑制すると共に
キャビティ内の燃料と空気と既燃ガスが良好にミキシン
グし、しかも部分的或は全体のセラミック化により燃料
衝突燃料室壁の高温化を可能としたため、キャビティ内
の燃料蒸発か促進され空気と良好にミキシングして燃焼
性が著しく向上するとともに、エンジンの出力の向上及
び初期燃焼を低減し燃焼騒音を減少させることができる
[Effects of the Invention] As explained above, according to the combustion chamber of the direct injection diesel engine of the present invention, the dispersion of fuel spray is suppressed, and the fuel, air, and burnt gas in the cavity are well mixed, and moreover, By partially or entirely ceramicizing, it is possible to raise the temperature of the fuel chamber wall during fuel collision, which promotes fuel evaporation within the cavity and mixes well with air, significantly improving combustibility and improving engine output. In addition, initial combustion can be reduced and combustion noise can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はピストンの平面図、第2図はその縦断側面図、
第3図はキャビティの拡大平面図、第4図はその縦断側
面図、第5図は噴霧軸心と突起部との位置関係を示す説
明図、第6図は突起部の部分拡大図で、(イ)は突起部
の例、(0)は崖状断面部の例を示す。第7図は突起部
或は崖状断面部の燃焼室内における位置関係を示すもの
で、第7図(イ)は燃焼室内の平面図、第7図(ロ)は
燃焼室内の展開図、第7図(ハ)は燃焼室内の断面図、
第7図(ニ)は第7図(ハ)の変形例の断面図をそれぞ
れ示すものである。第8図は燃料噴霧衝突壁部分のみセ
ラミックで形成している場合の燃焼室の縦断側面説明図
、第9図は3種の燃焼室の騒音レベルと正味平均有効圧
の関係を比較したグラフ、第10図は本発明ピストンC
(第9図)において噴射タイミングとNO,量の関係を
比較したグラフ第11図は本発明ピストンにおいて噴射
タイミングを変化させた場合の騒音レベルと正味平均有
効圧の関係を比較したグラフである。 l・・・ビスI・ン、2・・・キャビティ、3・・・燃
料噴射ノズル、4a〜4d・・・噴霧衝突壁、63〜6
d・・・軸心、7a〜7d・・・突起部或は崖状断面部
、8a〜8d・・・噴N流。
Figure 1 is a plan view of the piston, Figure 2 is its vertical side view,
Fig. 3 is an enlarged plan view of the cavity, Fig. 4 is a vertical side view thereof, Fig. 5 is an explanatory diagram showing the positional relationship between the spray axis and the protrusion, and Fig. 6 is a partially enlarged view of the protrusion. (A) shows an example of a protrusion, and (0) shows an example of a cliff-like cross section. Figure 7 shows the positional relationship of the protrusion or cliff-like cross-section in the combustion chamber. Figure 7 (a) is a plan view of the inside of the combustion chamber, Figure 7 (b) is a developed view of the interior of the combustion chamber, and Figure 7 (c) is a cross-sectional view inside the combustion chamber.
FIG. 7(d) shows a sectional view of a modification of FIG. 7(c). Figure 8 is a longitudinal cross-sectional side view of a combustion chamber in which only the fuel spray collision wall is made of ceramic, and Figure 9 is a graph comparing the relationship between noise level and net average effective pressure for three types of combustion chambers. Figure 10 shows the piston C of the present invention.
(FIG. 9) is a graph comparing the relationship between injection timing, NO, and amount. FIG. 11 is a graph comparing the relationship between noise level and net average effective pressure when the injection timing is changed in the piston of the present invention. l...Biss I/N, 2...Cavity, 3...Fuel injection nozzle, 4a-4d...Spray collision wall, 63-6
d...Axle center, 7a-7d...Protrusion or cliff-like cross section, 8a-8d...N jet flow.

Claims (2)

【特許請求の範囲】[Claims] (1)ピストンが上死点付近にあるとき、燃料噴射ノズ
ルの1又は2以上の噴孔から該ピストンの頂面に形成さ
れたキャビティ内に燃料を噴射するようにした直噴式デ
ィーゼルエンジンの燃焼室であって、 該燃焼室はセラミックにて作製され、前記キャビティ内
壁に前記噴孔より噴射された燃料噴霧が衝突する噴霧衝
突壁を、そのシリンダ軸に横に垂直な輪切り形断面形状
において前記各噴孔の軸心がそれぞれスワール下流側に
偏って傾斜し且つシリンダ軸方向に沿った縦断面形状に
おいて下方へ拡がる如く形成されているとともに、キャ
ビティ内壁と前記各噴孔軸心との交点よりスワール下流
側にそれぞれキャビティ内方に突出した突起部が形成さ
れていることを特徴とする直噴式ディーゼルエンジンの
燃焼室。
(1) Combustion of a direct injection diesel engine in which fuel is injected from one or more injection holes of a fuel injection nozzle into a cavity formed on the top surface of the piston when the piston is near top dead center. The combustion chamber is made of ceramic, and has a spray collision wall on which the fuel spray injected from the nozzle hole collides with the inner wall of the cavity, and has a cross-sectional shape perpendicular to the cylinder axis. The axis of each nozzle hole is inclined toward the downstream side of the swirl, and is formed so as to expand downward in the longitudinal cross-sectional shape along the cylinder axis direction, and from the intersection of the inner wall of the cavity and the axis of each nozzle hole. A combustion chamber for a direct injection diesel engine, characterized in that protrusions projecting inward from the cavity are formed on the downstream side of the swirl.
(2)上記突起部の突出量が0.03D〜0.1Dであ
る請求項1記載の直噴式ディーゼルエンジンの燃焼室。 (但し、Dはキャビティの基準径を示す。)(3)燃料
噴射ノズルにおける噴孔を4以上設けた請求項1または
2記載の直噴式ディーゼルエンジンの燃焼室。
(2) The combustion chamber of a direct injection diesel engine according to claim 1, wherein the protrusion amount of the protrusion is 0.03D to 0.1D. (However, D indicates the standard diameter of the cavity.) (3) The combustion chamber of a direct injection diesel engine according to claim 1 or 2, wherein the fuel injection nozzle has four or more injection holes.
JP1321080A 1989-12-11 1989-12-11 Combustion chamber for direct injection type diesel engine Pending JPH03182617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1321080A JPH03182617A (en) 1989-12-11 1989-12-11 Combustion chamber for direct injection type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1321080A JPH03182617A (en) 1989-12-11 1989-12-11 Combustion chamber for direct injection type diesel engine

Publications (1)

Publication Number Publication Date
JPH03182617A true JPH03182617A (en) 1991-08-08

Family

ID=18128587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1321080A Pending JPH03182617A (en) 1989-12-11 1989-12-11 Combustion chamber for direct injection type diesel engine

Country Status (1)

Country Link
JP (1) JPH03182617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276125A (en) * 1991-02-28 1992-10-01 Hino Motors Ltd Piston for diesel engine
FR2739896A1 (en) * 1995-10-11 1997-04-18 Inst Francais Du Petrole Combustion chamber for IC engine with shaped piston head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276125A (en) * 1991-02-28 1992-10-01 Hino Motors Ltd Piston for diesel engine
FR2739896A1 (en) * 1995-10-11 1997-04-18 Inst Francais Du Petrole Combustion chamber for IC engine with shaped piston head

Similar Documents

Publication Publication Date Title
JP3743896B2 (en) In-cylinder injection engine
US7165526B2 (en) Direct injection engine and controller for the same
EP0105933A1 (en) Combustion chamber of diesel engine
JP3743895B2 (en) In-cylinder injection engine
JP3747351B2 (en) In-cylinder injection engine
JP4026784B2 (en) In-cylinder injection engine
JP2011174388A (en) Structure of combustion chamber of internal combustion engine
JP3781536B2 (en) Combustion chamber structure of in-cylinder injection engine
JPH04272425A (en) Combustion chamber for diesel engine
JPH03182617A (en) Combustion chamber for direct injection type diesel engine
JP3781537B2 (en) Combustion chamber structure of in-cylinder injection engine
KR100289775B1 (en) Combustion chamber of diesel engine
JP2008267155A (en) Fuel injector for diesel engine
JP3293372B2 (en) Direct injection diesel engine
JP3293217B2 (en) Subchamber engine
JP3275470B2 (en) Subchamber engine
JPH03264725A (en) Subchamber type combustion chamber for internal combustion engine
JP2563061Y2 (en) Swirling combustion chamber
JP3956535B2 (en) Sub-chamber engine
JP2500397B2 (en) Adiabatic chamber engine
JPH11280477A (en) Sub-chamber type engine
JP3163842B2 (en) Subchamber engine
JPH08135449A (en) Combustion chamber structure for direct injection type engine
JP3212457B2 (en) Combustion chamber of subchamber internal combustion engine
JP2594054B2 (en) Direct injection diesel engine