JPH04240718A - Electron beam lithography by variably forming type charged electron particle - Google Patents

Electron beam lithography by variably forming type charged electron particle

Info

Publication number
JPH04240718A
JPH04240718A JP2391791A JP2391791A JPH04240718A JP H04240718 A JPH04240718 A JP H04240718A JP 2391791 A JP2391791 A JP 2391791A JP 2391791 A JP2391791 A JP 2391791A JP H04240718 A JPH04240718 A JP H04240718A
Authority
JP
Japan
Prior art keywords
aperture
shaping
shaping aperture
mark
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2391791A
Other languages
Japanese (ja)
Inventor
Teruaki Okino
輝昭 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2391791A priority Critical patent/JPH04240718A/en
Publication of JPH04240718A publication Critical patent/JPH04240718A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To simply correct the rotation setting difference between a first forming aperture and a second forming aperture and perform beam lithography. CONSTITUTION:A forming signal and a deflecting signal are sent to an electromagnetic deflecting device 11 and an aligning deflecting device 9, respectively, from a CPU 14 and a mark is scanned by the formed image of a first overlapping area. Based on the intensity change of a reflecting electron generated from the mark by the scanning, the position of the sides of the overlapped area are measured. Then, different forming signals and deflecting signals are set to the electromagnetic deflecting device 11 and the aligning deflecting device 9 from the CPU 14 and the mark M is scanned by the formed image of a second overlapped area. Based on the intensity change of an reflecting electron generated from the mark by the scanning, the position of the sides of the overlapped area are measured. The rotation is set for a second forming aperture 6 by a rotation correcting mechanism 13 so as to permit the firstly measured sides and the secondly measured sides to be accorded. Then, different forming signals and deflecting signals are sent to the electromagnetic deflecting device 11 and the aligning deflecting device 9, respectively, the mark is scanned by the formed image of a third overlapped area, and the rotation is set for a first forming aperture 3 by a rotation correcting mechanism 12 so as to fix the wave height of the intensity change of a reflecting electron generated from the mark by the scanning.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】  本発明は、材料上に正確に荷
電粒子ビーム描画を行うようにした可変成形型荷電粒子
ビーム描画方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable-shaped charged particle beam drawing method that accurately performs charged particle beam drawing on a material.

【0002】0002

【従来の技術】  図6は可変成形型電子ビーム描画装
置の概略図を示したものである。図中1は電子銃、2は
照射レンズ、3は第1成形アパーチャ、4は成形レンズ
、5は成形偏向器、6は第2成形アパーチャ、7は縮小
レンズ、8は対物レンズ、9は位置決め偏向器、10は
被描画材料、11は電磁偏向器、12,13は回転補正
機構である。
2. Description of the Related Art FIG. 6 shows a schematic diagram of a variable shaping type electron beam lithography apparatus. In the figure, 1 is an electron gun, 2 is an irradiation lens, 3 is a first shaping aperture, 4 is a shaping lens, 5 is a shaping deflector, 6 is a second shaping aperture, 7 is a reduction lens, 8 is an objective lens, and 9 is a positioning A deflector, 10 is a material to be drawn, 11 is an electromagnetic deflector, and 12 and 13 are rotation correction mechanisms.

【0003】この様な装置において、電子銃1より出射
した電子ビームは照射レンズ2により第1成形アパーチ
ャ3上に照射される。該第1成形アパーチャ3の開口像
は、成形レンズ4により第2成形アパーチャ6上に結像
されるが、その結像の位置は成形偏向器5により変える
ことができる。第2成形アパーチャ6により成形された
像は縮小レンズ7,対物レンズ8を介して被描画材料1
0上に照射される。該被描画材料10への照射位置は位
置決め偏向器9により変えることができる。
In such an apparatus, an electron beam emitted from an electron gun 1 is irradiated onto a first shaping aperture 3 by an irradiation lens 2. The aperture image of the first shaping aperture 3 is formed onto the second shaping aperture 6 by the shaping lens 4, but the position of the image formation can be changed by the shaping deflector 5. The image formed by the second forming aperture 6 is transmitted to the drawing material 1 via a reduction lens 7 and an objective lens 8.
0 is irradiated. The irradiation position on the drawing material 10 can be changed by a positioning deflector 9.

【0004】ところで、前記第1及び第2成形アパーチ
ャ3,6の開口は矩形若しくは正方形をしており、第2
成形アパーチャの開口像の大きさは図7に示すように第
1成形アパーチャ3の開口像mが、第2成形アパーチャ
6の開口nと重なった領域(図の斜線領域)Pを可変す
ることで調節することができる。つまり、この重なった
領域Pの電子ビームが被描画材料10を照射することに
なるので、前記被描画材料10上に照射されるビームの
幅を拡げたい時には前記成形偏向器5を操作して図7に
示す重なり領域Pを増やし、ビームの幅を細くしたい時
には成形偏向器5を操作して重なり領域Pを少なくする
のである。この様にして、可変成形された電子ビームに
よる矩形像若しくは正方形像を被描画材料10上に照射
して、これら矩形若しくは正方形像を前記位置決め偏向
器9でつないで、目的とするパータンを作っている。
By the way, the openings of the first and second shaping apertures 3 and 6 are rectangular or square, and the openings of the first and second shaping apertures 3 and 6 are rectangular or square.
As shown in FIG. 7, the size of the aperture image of the shaping aperture can be determined by varying the area P where the aperture image m of the first shaping aperture 3 overlaps the opening n of the second shaping aperture 6 (shaded area in the figure). Can be adjusted. In other words, the electron beams in this overlapping region P irradiate the material 10 to be drawn, so when it is desired to widen the width of the beam irradiated onto the material 10 to be drawn, the shaping deflector 5 is operated. When it is desired to increase the overlapping area P shown in 7 and narrow the beam width, the shaping deflector 5 is operated to reduce the overlapping area P. In this way, a rectangular or square image formed by the variably shaped electron beam is irradiated onto the drawing material 10, and these rectangular or square images are connected by the positioning deflector 9 to create a desired pattern. There is.

【0005】ところで、前記成形アパーチャ3,6に回
転設定誤差があると、描画されたパターンのエッジが滑
らかでなくなってしまう。例えば図8に示すような長方
形の電子ビームを3ショットつなげてパターン描画する
場合、成形アパーチャ3,6に回転設定誤差がなければ
図8(イ)に示すようにエッジが滑らかなパターンが得
られる。しかしながら、成形アパーチャ3,6に回転設
定誤差があると図8(ロ)に示すようにエッジがギザギ
ザのパターンになってしまう。
By the way, if there is a rotational setting error in the forming apertures 3 and 6, the edges of the drawn pattern will not be smooth. For example, when drawing a pattern by connecting three rectangular electron beam shots as shown in Fig. 8, if there is no rotational setting error in the forming apertures 3 and 6, a pattern with smooth edges as shown in Fig. 8 (a) can be obtained. . However, if there is a rotation setting error in the molding apertures 3 and 6, the edges will become a jagged pattern as shown in FIG. 8(b).

【0006】本発明者は、先に、この様な成形アパーチ
ャ3,6の回転設定誤差を補正する方法を開発した。前
記電磁偏向器11は該開発により設けられたもので、成
形アパーチャ回転設定の調整用電磁偏向器である。
The present inventor has previously developed a method for correcting such rotational setting errors of the molding apertures 3 and 6. The electromagnetic deflector 11 was provided by this development, and is an electromagnetic deflector for adjusting the molding aperture rotation setting.

【0007】ところで、該電磁偏向器11を成す各X方
向,Y方向偏向器が理想的方向(基準座標軸方向)に対
し傾いていると、理想的方向にビームを移動できないの
で、該電磁偏向器の偏向補正を行なわねばならない。こ
の偏向補正は、前記第1成形アパーチャ3の開口像mが
第2成形アパーチャ6にさえぎられず完全に該第2成形
アパーチャ6の開口nに納まった状態で前記電磁偏向器
11をX方向及びY方向に駆動して前記被描画材料10
上の像のエッジ位置の変化から該電磁偏向器11に加え
る駆動信号の補正量を求め、この補正量により該電磁偏
向器11の駆動信号を補正すること事により行われてい
る(詳細は特願昭62−278829号参照)。
By the way, if each of the X-direction and Y-direction deflectors forming the electromagnetic deflector 11 is tilted with respect to the ideal direction (reference coordinate axis direction), the beam cannot be moved in the ideal direction. Deflection correction must be performed. This deflection correction is performed by moving the electromagnetic deflector 11 in the X direction and in the Y direction in a state where the aperture image m of the first shaping aperture 3 is not obstructed by the second shaping aperture 6 and is completely accommodated in the opening n of the second shaping aperture 6. The drawing material 10 is driven in the direction of
This is done by determining the amount of correction of the drive signal applied to the electromagnetic deflector 11 from the change in the edge position of the upper image, and correcting the drive signal of the electromagnetic deflector 11 using this amount of correction (details are given in the special section). (See Application No. 62-278829).

【0008】前記偏向補正が終わると、前記第1成形ア
パーチャ3の開口像mが第2成形アパーチャ6と重なり
合うように投影した状態で電磁偏向器11により第1ア
パーチャ3の矩形像mを移動させ、被描画材料10上の
像のエッジ位置の変化に基づいて前記回転補正機構12
,13を制御し、第1成形アパーチャ3及び第2成形ア
パーチャ6の回転設定誤差補正を行なう。
When the deflection correction is completed, the rectangular image m of the first shaping aperture 3 is moved by the electromagnetic deflector 11 with the aperture image m of the first shaping aperture 3 projected so as to overlap with the second shaping aperture 6. , the rotation correction mechanism 12 based on a change in the edge position of the image on the drawing material 10.
, 13 to correct rotational setting errors of the first shaping aperture 3 and the second shaping aperture 6.

【0009】[0009]

【発明が解決しようとする課題】  しかし、この様な
電磁偏向器11の偏向補正の操作は大変厄介である。
[Problems to be Solved by the Invention] However, such a deflection correction operation of the electromagnetic deflector 11 is very troublesome.

【0010】本発明は、この様な電磁偏向器の偏向補正
を行なわず、簡単に成形アパーチャの回転設定誤差補正
を行なって高精度の荷電粒子ビーム描画を行うようにし
た可変成形型荷電粒子ビーム描画方法を提供する事を目
的としたものである。
The present invention provides a variably shaped charged particle beam that does not require such deflection correction of an electromagnetic deflector, but simply corrects rotation setting errors of a shaping aperture to perform highly accurate charged particle beam drawing. Its purpose is to provide a drawing method.

【0011】[0011]

【課題を解決するための手段】  その為に本発明は、
荷電粒子ビーム源から射出され第1成形アパーチャを通
過したビームが第2成形アパーチャと重なり合うように
投影した状態で第1成形アパーチャと第2成形アパーチ
ャ間に配置された電磁偏向器により前記重なり合った成
形像を移動させ、材料上の像のエッジ位置の変化から第
2成形アパーチャの回転設定誤差補正を行い、次に、第
1成形アパーチャを通過したビームが第2成形アパーチ
ャと重なり合って帯状断面のビームが成形されるように
投影し、該成形ビーム断面の横方向の強度分布が一様に
なるように第1成形アパーチャの回転設定誤差補正を行
った後、ビーム描画を行う様にした。
[Means for solving the problem] To that end, the present invention
The beam emitted from the charged particle beam source and passed through the first shaping aperture is projected so as to overlap with the second shaping aperture, and the overlapping shaping is performed by an electromagnetic deflector disposed between the first shaping aperture and the second shaping aperture. The image is moved, and the rotation setting error of the second shaping aperture is corrected based on the change in the edge position of the image on the material, and then the beam passing through the first shaping aperture overlaps with the second shaping aperture to form a beam with a band-shaped cross section. The beam is projected so as to be shaped, and after correcting the rotational setting error of the first shaping aperture so that the lateral intensity distribution of the shaped beam cross section is uniform, beam drawing is performed.

【0012】0012

【実施例】  図1は本発明の方法を用いた可変成形型
電子ビーム描画装置の概略図である。図中前記図6と同
一番号を付したものは同一構成要素である。該図におい
て、14はCPU、15,17,19はDA変換器、1
6,18,20はアンプ、21は反射電子検出器である
。CPU14は描画パターンデータを出力する他、正確
なビーム描画を行う為のものである。DA変換器15は
CPU14から出力されるパターンデータをアナログ信
号に変換する為のもので、アンプ16は該DA変換器1
5の出力を入力として受けて、位置決め偏向器9を駆動
する為のものである。DA変換器17はCPU14から
の成形ビームサイズを調節するための偏向信号を受けて
アナログ信号に変換する為のもので、アンプ18は該D
A変換器17の出力を受けて、電磁偏向器11を駆動す
る為のものである。DA変換器19はCPU14から出
力される前記第1成形アパーチャ像mを偏向させるため
の偏向信号を受けてアナログ信号に変換する為のもので
、アンプ20は該DA変換器19の出力を受けて、成形
偏向器5を駆動する為のものである。
Embodiment FIG. 1 is a schematic diagram of a variable shaping type electron beam lithography apparatus using the method of the present invention. In the figure, the same components as in FIG. 6 are denoted by the same numbers. In the figure, 14 is a CPU, 15, 17, 19 are DA converters, 1
6, 18, and 20 are amplifiers, and 21 is a backscattered electron detector. The CPU 14 not only outputs drawing pattern data but also performs accurate beam drawing. The DA converter 15 is for converting pattern data output from the CPU 14 into an analog signal, and the amplifier 16 is for converting the pattern data output from the CPU 14 into an analog signal.
5 as an input to drive the positioning deflector 9. The DA converter 17 receives a deflection signal for adjusting the shaped beam size from the CPU 14 and converts it into an analog signal.
This is for receiving the output of the A converter 17 and driving the electromagnetic deflector 11. The DA converter 19 receives a deflection signal for deflecting the first shaped aperture image m output from the CPU 14 and converts it into an analog signal.The amplifier 20 receives the output of the DA converter 19 and converts it into an analog signal. , for driving the shaping deflector 5.

【0013】さて、パターン描画に先立ってアパーチャ
の回転設定誤差補正を以下の様にして行なう。先ず、前
記CPU14からDA変換器17,アンプ18を介して
前記電磁偏向器11に成形信号(X1 ,Y1 )を送
る。 該成形信号の供給により、図2に示すように、第1成形
アパーチャ像mは実線で示す第1位置に位置する。とこ
ろで、前記被描画材料10の近傍には、図3(イ)に示
すように、十字状マークMが付けられており、該マーク
Mは図3(ロ)に示すように、例えばSiのベース上に
Auの十字状パターンを形成したものである。次に、前
記CPU14からDA変換器15,アンプ16を介して
位置決め偏向器9に偏向信号を送り、マークM上を第1
の重なり領域Pの成形像で走査する。そして、該走査に
よりマークから発生した反射電子の強度変化に基づいて
a−2辺の位置を測定する。次に、前記CPU14から
DA変換器17,アンプ18を介して前記電磁偏向器1
1に成形信号(X2 ,Y1 )を送る。この時、前記
したように、該電磁偏向器11を成す各X方向,Y方向
偏向器が理想的方向に対し傾いていると、例えば、図2
に示すように、第1成形アパーチャ像mは破線で示す第
2位置に位置する。次に、前記CPU14からDA変換
器15,アンプ16を介して位置決め偏向器9に偏向信
号を送り、マークM上を第2の重なり領域P´の成形像
で走査する。そして、前記同様に該走査によりマークか
ら発生した反射電子の強度変化に基づいてb−2辺の位
置を測定する。そして、前記a−2辺とb−2辺の位置
が一致するように前記回転補正機構13により第2成形
アパーチャ6の回転設定を行なう。以上の操作により、
第2成形アパーチャ6の回転設定誤差の補正が成される
Now, prior to pattern drawing, aperture rotation setting error correction is performed as follows. First, a shaping signal (X1, Y1) is sent from the CPU 14 to the electromagnetic deflector 11 via the DA converter 17 and amplifier 18. By supplying the shaping signal, the first shaping aperture image m is located at the first position indicated by the solid line, as shown in FIG. By the way, a cross-shaped mark M is attached near the drawing material 10, as shown in FIG. A cross-shaped pattern of Au is formed on the top. Next, a deflection signal is sent from the CPU 14 to the positioning deflector 9 via the DA converter 15 and the amplifier 16, and the first
The formed image of the overlapping region P is scanned. Then, the position of the a-2 side is measured based on the change in the intensity of reflected electrons generated from the mark by the scanning. Next, the electromagnetic deflector 1 is transmitted from the CPU 14 to the DA converter 17 and the amplifier 18.
Send shaping signals (X2, Y1) to 1. At this time, as described above, if each of the X-direction and Y-direction deflectors forming the electromagnetic deflector 11 is tilted with respect to the ideal direction, for example, as shown in FIG.
As shown in , the first shaping aperture image m is located at the second position indicated by the broken line. Next, a deflection signal is sent from the CPU 14 to the positioning deflector 9 via the DA converter 15 and amplifier 16, and the mark M is scanned with the formed image of the second overlapping region P'. Then, in the same manner as described above, the position of the b-2 side is measured based on the change in the intensity of reflected electrons generated from the mark by the scanning. Then, the rotation of the second shaping aperture 6 is set by the rotation correction mechanism 13 so that the positions of the a-2 side and the b-2 side coincide. By the above operations,
The rotational setting error of the second shaping aperture 6 is corrected.

【0014】次に、前記CPU14からDA変換器17
,アンプ18を介して前記電磁偏向器11に成形信号(
X3 ,Y3 )を送る。該成形信号の供給により、図
4に示すように、第1成形アパーチャ像mは実線で示す
位置に位置する。次に、前記CPU14からDA変換器
15,アンプ16を介して前記位置決め偏向器9に偏向
信号を送り、マークM上を重なり領域P0 の成形像で
走査する。該走査によりマークから発生した反射電子の
強度変化(図5は前記マークから放出される反射電子信
号波形を示したものである)を検出する。そして、該反
射電子信号波形の波高値Kが一定になるように前記回転
補正機構12により第1成形アパーチャ3の回転設定を
行なう。以上により、第1成形アパーチャ3の回転設定
誤差の補正が成される。
Next, from the CPU 14 to the DA converter 17
, a shaping signal (
X3, Y3). By supplying the shaping signal, the first shaping aperture image m is located at the position indicated by the solid line, as shown in FIG. Next, a deflection signal is sent from the CPU 14 to the positioning deflector 9 via the DA converter 15 and amplifier 16, and the mark M is scanned with the formed image of the overlapping region P0. Through this scanning, changes in the intensity of reflected electrons generated from the mark (FIG. 5 shows the waveform of the reflected electron signal emitted from the mark) are detected. Then, the rotation of the first shaping aperture 3 is set by the rotation correction mechanism 12 so that the peak value K of the reflected electron signal waveform is constant. As described above, the rotation setting error of the first shaping aperture 3 is corrected.

【0015】又、前記図4中破線に示すような重なり領
域P0 ´の細長い成形像を作成し、該成形像で該成形
像の長手方向に前記マークM上を走査し、該走査により
得られる反射電子信号波形の波高値が一定になるように
第1成形アパーチャ3の回転設定を行なってもよい。
[0015] Furthermore, an elongated molded image of the overlapping region P0' as shown by the broken line in FIG. The rotation of the first shaping aperture 3 may be set so that the peak value of the reflected electron signal waveform is constant.

【0016】[0016]

【発明の効果】  本発明によれば、荷電粒子ビーム源
から射出され第1成形アパーチャを通過したビームが第
2成形アパーチャと重なり合うように投影した状態で第
1成形アパーチャと第2成形アパーチャ間に配置された
電磁偏向器により前記重なり合った成形像を移動させ、
材料上の像のエッジ位置の変化から第2成形アパーチャ
の回転設定誤差補正を行い、次に、第1成形アパーチャ
を通過したビームが第2成形アパーチャと重なり合って
帯状断面のビームが成形されるように投影し、該成形ビ
ーム断面の横方向の強度分布が一様になるように第1成
形アパーチャの回転設定誤差補正を行った後、ビーム描
画を行う様にしたので、従来の様な第1成形アパーチャ
と第2成形アパーチャ間に配置された電磁偏向器の偏向
方向誤差が生じないようにアパーチャの回転設定誤差補
正に先立って電磁偏向器の偏向補正をする必要はなく、
簡単に、第1成形アパーチャと第2成形アパーチャの回
転設定誤差補正を行なう事ができる。
Effects of the Invention According to the present invention, the beam emitted from the charged particle beam source and passed through the first shaping aperture is projected so as to overlap with the second shaping aperture, and the beam is projected between the first shaping aperture and the second shaping aperture. moving the overlapping formed images by a disposed electromagnetic deflector;
The rotation setting error of the second shaping aperture is corrected based on the change in the edge position of the image on the material, and then the beam passing through the first shaping aperture overlaps with the second shaping aperture to form a beam with a band-shaped cross section. After correcting the rotation setting error of the first shaping aperture so that the horizontal intensity distribution of the cross section of the shaped beam is uniform, beam drawing is performed. There is no need to perform deflection correction of the electromagnetic deflector prior to correction of the rotation setting error of the aperture so that an error in the deflection direction of the electromagnetic deflector disposed between the molding aperture and the second molding aperture does not occur;
It is possible to easily correct the rotation setting error between the first molding aperture and the second molding aperture.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の成形アパーチャ回転設定誤差補正
方法を説明する為に示した可変成形型電子ビーム描画装
置の概略図を示したものである。
FIG. 1 is a schematic diagram of a variable shaping type electron beam lithography apparatus shown for explaining the shaping aperture rotation setting error correction method of the present invention.

【図2,3,4,5】  本発明の説明に使用したもの
である。
FIGS. 2, 3, 4, 5 are used to explain the present invention.

【図6】  可変成形型電子ビーム描画装置の概略図を
示したものである。
FIG. 6 shows a schematic diagram of a variable shaping type electron beam lithography apparatus.

【図7,8】  可変成形描画の説明に使用したもので
ある。
FIGS. 7 and 8 are used to explain variable shaping drawing.

【符号の説明】[Explanation of symbols]

1…電子銃、2…照射レンズ、3…第1成形アパーチャ
、4…成形レンズ、5…成形偏向器、6…第2成形アパ
ーチャ、7…縮小レンズ、8…対物レンズ、9…位置決
め偏向器、10…被描画材料、11…電磁偏向器、12
,13…回転補正機構、14…CPU、15,17,1
9…DA変換器、16,18,20…アンプ、21…反
射電子検出器
DESCRIPTION OF SYMBOLS 1... Electron gun, 2... Irradiation lens, 3... First shaping aperture, 4... Shaping lens, 5... Shaping deflector, 6... Second shaping aperture, 7... Reduction lens, 8... Objective lens, 9... Positioning deflector , 10... Material to be drawn, 11... Electromagnetic deflector, 12
, 13... Rotation correction mechanism, 14... CPU, 15, 17, 1
9...DA converter, 16, 18, 20... Amplifier, 21... Backscattered electron detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  第1及び第2の成形アパーチャとこれ
らアパーチャ間に配置された成形偏向器により所望の断
面形状のビームを得、このビームを材料上に照射して所
定パータンを描画する様にした可変成形型荷電粒子ビー
ム描画方法において、荷電粒子ビーム源から射出され第
1成形アパーチャを通過したビームが第2成形アパーチ
ャと重なり合うように投影した状態で第1成形アパーチ
ャと第2成形アパーチャ間に配置された電磁偏向器によ
り前記重なり合った成形像を移動させ、材料上の像のエ
ッジ位置の変化から第2成形アパーチャの回転設定誤差
補正を行い、次に、第1成形アパーチャを通過したビー
ムが第2成形アパーチャと重なり合って帯状断面のビー
ムが成形されるように投影し、該成形ビーム断面の横方
向の強度分布が一様になるように第1成形アパーチャの
回転設定誤差補正を行った後、ビーム描画を行う様にし
た可変成形型荷電粒子ビーム描画方法。
Claim 1: A beam having a desired cross-sectional shape is obtained by first and second shaping apertures and a shaping deflector placed between these apertures, and this beam is irradiated onto a material to draw a predetermined pattern. In the variably shaped charged particle beam writing method, the beam emitted from the charged particle beam source and passed through the first shaping aperture is projected so as to overlap with the second shaping aperture, and the beam is projected between the first shaping aperture and the second shaping aperture. The overlapping forming images are moved by the arranged electromagnetic deflector, the rotation setting error of the second forming aperture is corrected based on the change in the edge position of the images on the material, and then the beam passing through the first forming aperture is After projecting the beam so that it overlaps with the second shaping aperture to form a beam with a band-shaped cross section, and correcting the rotational setting error of the first shaping aperture so that the lateral intensity distribution of the shaped beam cross section is uniform. , a variably shaped charged particle beam lithography method that performs beam lithography.
JP2391791A 1991-01-24 1991-01-24 Electron beam lithography by variably forming type charged electron particle Withdrawn JPH04240718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2391791A JPH04240718A (en) 1991-01-24 1991-01-24 Electron beam lithography by variably forming type charged electron particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2391791A JPH04240718A (en) 1991-01-24 1991-01-24 Electron beam lithography by variably forming type charged electron particle

Publications (1)

Publication Number Publication Date
JPH04240718A true JPH04240718A (en) 1992-08-28

Family

ID=12123854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2391791A Withdrawn JPH04240718A (en) 1991-01-24 1991-01-24 Electron beam lithography by variably forming type charged electron particle

Country Status (1)

Country Link
JP (1) JPH04240718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609362B2 (en) 2004-11-08 2009-10-27 Asml Netherlands B.V. Scanning lithographic apparatus and device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609362B2 (en) 2004-11-08 2009-10-27 Asml Netherlands B.V. Scanning lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
JP2829942B2 (en) Electron beam system
US8008631B2 (en) Method of acquiring offset deflection amount for shaped beam and lithography apparatus
JPH03108312A (en) Correction of astigmatism of charged particle beam
US5468969A (en) Method and apparatus for electron beam lithography
JP3508622B2 (en) Electron beam drawing apparatus and drawing method using electron beam
US4167676A (en) Variable-spot scanning in an electron beam exposure system
JPH04240718A (en) Electron beam lithography by variably forming type charged electron particle
US5744810A (en) Method and system for exposing pattern on object by charged particle beam
JP3785141B2 (en) Method for measuring reduction ratio of charged particle beam drawing apparatus, method for measuring stage phase of charged particle beam drawing apparatus, control method for charged particle beam drawing apparatus, and charged particle beam drawing apparatus
JP3550476B2 (en) Charged particle beam processing method and processing apparatus
JP2737220B2 (en) Scanning reflection diffraction electron microscope
JP2000182937A (en) Charged particle beam plotting apparatus
JPH0414490B2 (en)
JP4246374B2 (en) Electron beam exposure apparatus, irradiation position detection method, and electron detection apparatus
JP3195332B2 (en) Electron beam drawing method and electron beam drawing apparatus
JP2900640B2 (en) Charged beam irradiation device
JP2786662B2 (en) Charged beam drawing method
JPH0748471B2 (en) Charged particle beam drawing method
JPS5916401B2 (en) Electron beam exposure equipment
JPH07272994A (en) Signal detection method for charged particle beam lithography equipment
JPH02262326A (en) Charged beam pattern drawing method
JP2003297724A (en) Method for measuring state of pattern-drawing in variable area type charged particle beam lithographic apparatus
JP3461279B2 (en) Charged beam drawing equipment
JPH07161599A (en) Charged-particle-beam transfer apparatus
JPS6341025A (en) Lithography method in electron beam lithography device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514