JPH04240585A - Buried object position search method and device - Google Patents

Buried object position search method and device

Info

Publication number
JPH04240585A
JPH04240585A JP3007669A JP766991A JPH04240585A JP H04240585 A JPH04240585 A JP H04240585A JP 3007669 A JP3007669 A JP 3007669A JP 766991 A JP766991 A JP 766991A JP H04240585 A JPH04240585 A JP H04240585A
Authority
JP
Japan
Prior art keywords
buried
buried object
detection
resonance
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3007669A
Other languages
Japanese (ja)
Inventor
Harumichi Kurumaya
車谷 治通
Naoki Taoka
田岡 直規
Tomoharu Nakamura
智春 中村
Yoshiaki Yoshida
吉明 吉田
Yoshiyuki Yamada
山田 良行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3007669A priority Critical patent/JPH04240585A/en
Publication of JPH04240585A publication Critical patent/JPH04240585A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To exactly discriminate the buried position of a target buried object of a plurality of buried objects. CONSTITUTION:Alternating current is allowed to flow in a buried object 3 of a metal pipe and the like which is requested to detect a buried position to generate an alternating magnetic field, when a receiving coil is moved to a buried equivalent position of the buried object 3, induced current varied in accordance with both distance is detected, the detection of the fluctuation of a resonance point is performed when a resonance coil excited in the neighborhood of the resonance point is moved to buried equivalent position and the buried position of the buried object 3 from both detection information is discriminated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、壁面や床面等に埋設さ
れた金属製配管等の長尺埋設物の位置を検出するための
埋設物位置探査方法及び埋設物位置探査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a buried object position detection method and a buried object position detection apparatus for detecting the position of long buried objects such as metal pipes buried in walls, floors, etc.

【0002】0002

【従来の技術】かかる埋設物位置探査として従来からよ
く使用されているものに、電磁誘導型ロケータといわれ
る発信器と受信器からなる装置を用いる方法がある。図
4に示すものはそのうちの2点法(ループ法)と呼ばれ
ている方法で、埋設位置を検出したい埋設管10の二箇
所の露出部P,Qに発信器11の出力を接続してループ
を構成し、100KHzの交流電流を流す。すると埋設
管10の周囲に交番磁界が発生する。地表では受信コイ
ルを備える検出器12を埋設管が埋設されていると思わ
れる付近で地面に沿って動かす。
2. Description of the Related Art A method that has been commonly used to locate buried objects is a method that uses a device called an electromagnetic induction locator, which is composed of a transmitter and a receiver. The one shown in Fig. 4 is a method called the two-point method (loop method), in which the output of the transmitter 11 is connected to two exposed parts P and Q of the buried pipe 10 whose buried position is to be detected. A loop is formed and an alternating current of 100 KHz is applied. Then, an alternating magnetic field is generated around the buried pipe 10. On the ground surface, a detector 12 equipped with a receiving coil is moved along the ground near where a buried pipe is believed to be buried.

【0003】受信コイルには前記交番磁界によって誘導
電流が発生するが、この誘導電流の大きさは受信コイル
と埋設管10との距離に反比例するので、埋設管10の
真上で最も大きくなる。従って、この誘導電流を受信器
13で処理して得られる検出値を表示出力し、又スピー
カから音に変換して出力すれば、その変化から埋設管1
0の埋設位置を判別できる。
An induced current is generated in the receiving coil by the alternating magnetic field, and since the magnitude of this induced current is inversely proportional to the distance between the receiving coil and the buried pipe 10, it is largest right above the buried pipe 10. Therefore, if this induced current is processed by the receiver 13 and the detected value obtained is displayed and output, or if it is converted into sound and output from the speaker, the change will be detected in the buried pipe 1.
The buried position of 0 can be determined.

【0004】上記2点法の他に1点法や3点法と呼ばれ
るものもあるが、埋設位置を検出したい埋設管に交流電
流を流して周囲に発生する交番磁界によって受信コイル
に発生する誘導電流を検出する点で上記2点法と同じで
あり、交流電流の流し方が少し異なるだけである。
In addition to the two-point method mentioned above, there are also methods called one-point method and three-point method, which are based on the induction generated in the receiving coil by the alternating magnetic field generated around the buried pipe when an alternating current is passed through the buried pipe whose buried position is to be detected. This method is the same as the two-point method described above in that current is detected, and the only difference is in how the alternating current is passed.

【0005】又、図5に示すレーダロケータといわれる
装置を用いて、埋設管10付近に発射した電波の反射状
況からその埋設位置を検出する埋設物位置探査方法もあ
る。
[0005] There is also a method of detecting the position of a buried object, which uses a device called a radar locator shown in FIG. 5 to detect the buried position from the reflection of radio waves emitted near the buried pipe 10.

【0006】[0006]

【発明が解決しようとする課題】上記電磁誘導型ロケー
タによる方法においては、発信器11から埋設管10の
露出部P,Qまでのリード線14、15によって発生す
る磁界の影響が大きく、埋設管10の位置検出に重大な
誤差を生じさせていた。即ち、図6に示すように、埋設
管10にて発生する磁界による本来の検出値の分布16
に、リード線14、15にて発生する磁界による検出値
の分布17が重畳されて、実際の受信コイルに発生する
誘導電流から得られる検出値の分布は破線のようになる
。その結果、分布のピークは埋設管10の真上からずれ
た箇所にできてしまうのである。リード線14、15に
発生する磁界の影響を無くするためにリード線14、1
5を遠く離れた場所に這わせるようとすると作業性が悪
くなる。
[Problems to be Solved by the Invention] In the method using the electromagnetic induction type locator, the influence of the magnetic field generated by the lead wires 14 and 15 from the transmitter 11 to the exposed parts P and Q of the buried pipe 10 is large, and the buried pipe This caused a serious error in the position detection of 10. That is, as shown in FIG. 6, the original detection value distribution 16 due to the magnetic field generated in the buried pipe 10
The distribution 17 of detection values due to the magnetic field generated in the lead wires 14 and 15 is superimposed on the distribution 17, and the distribution of detection values obtained from the induced current actually generated in the receiving coil becomes like the broken line. As a result, the peak of the distribution occurs at a location shifted from directly above the buried pipe 10. In order to eliminate the influence of the magnetic field generated on the lead wires 14 and 15, the lead wires 14 and 1
If you try to move 5 to a far away place, the work efficiency will be poor.

【0007】又、レーダロケータによる方法では、埋設
位置を検出したい埋設管の近くに埋設されている他の配
管との区別ができない。そこで、電磁誘導型ロケータと
レーダロケータを併用することも考えられるが、レーダ
ロケータは重くて大きいために、可搬性、作業性の面で
問題があった。
Furthermore, in the method using a radar locator, it is not possible to distinguish the buried pipe whose buried position is to be detected from other pipes buried near the buried pipe. Therefore, it may be possible to use an electromagnetic induction locator and a radar locator together, but the radar locator is heavy and large, which poses problems in terms of portability and workability.

【0008】本発明は、かかる実情に鑑みて為されたも
のであって、その目的は、上記のような電磁誘導型ロケ
ータによる埋設物位置探査方法の欠点を作業性等の悪化
を伴わずに解消して、正確に埋設管の位置を検出できる
ようにすることにある。
The present invention has been made in view of the above circumstances, and its purpose is to overcome the drawbacks of the buried object location detection method using an electromagnetic induction locator as described above without deteriorating workability. The purpose is to solve this problem and make it possible to accurately detect the position of a buried pipe.

【0009】[0009]

【課題を解決するための手段】本発明の埋設物位置探査
方法の特徴は、埋設位置を検出したい金属製の長尺埋設
物に交流電流を流して交番磁界を発生させ、前記長尺埋
設物の埋設相当位置で受信コイルを移動させたときに両
者の距離に応じて変化する誘導電流を検出し、且つ、共
振点付近に励振させた共振コイルを前記埋設相当位置で
移動させたときの共振点の変化を検出し、両検出情報か
ら前記長尺埋設物の埋設位置を判別する点にある。
[Means for Solving the Problems] A feature of the buried object position detection method of the present invention is that an alternating current is passed through a long buried metal object whose buried position is to be detected to generate an alternating magnetic field. Detects the induced current that changes depending on the distance between the two when the receiving coil is moved at the buried position, and detects resonance when the resonant coil excited near the resonance point is moved at the buried position. The point is that a change in the point is detected and the buried position of the long buried object is determined from both detection information.

【0010】又、上記埋設物位置探査方法に使用する埋
設物位置探査装置の特徴は、その検出部に前記受信コイ
ルと前記共振コイルが一体に設けられている点にある。
[0010] A feature of the buried object position detecting device used in the above buried object position detecting method is that the receiving coil and the resonant coil are integrally provided in the detecting section.

【0011】[0011]

【作用】本発明の埋設物位置探査方法によれば、従来例
でのべた電磁誘導型ロケータと同様に受信コイルに発生
する誘導電流に基づく検出データに共振コイルによる検
出データを加味して埋設物の位置を判別することになる
[Operation] According to the buried object location detection method of the present invention, similarly to the conventional electromagnetic induction type locator described above, the detection data based on the induced current generated in the receiving coil is added to the detection data by the resonant coil. The position of the .

【0012】共振点付近に励振された共振コイルが金属
製の埋設物に近づくと、そのインダクタンス及び浮遊容
量が変化し、その結果共振点がずれる。そこで、電磁誘
導型ロケータによる場合と同様に、共振コイルを埋設相
当位置で移動させたときの共振点の変化を、例えば共振
コイルの共振電圧と共振電流の比(共振インピーダンス
)の変化として検出すれば、長尺埋設物までの距離の変
化がわかる。共振インピーダンスの場合は、埋設物の真
上(床面埋設の場合)で最も小さくなる。但し、埋設位
置を検出したい埋設管の近傍に他の埋設管がある場合は
、共振インピーダンスの変化は、複数の極小点を有する
分布となる。
When the resonant coil excited near the resonance point approaches a buried metal object, its inductance and stray capacitance change, and as a result, the resonance point shifts. Therefore, as in the case of using an electromagnetic induction locator, the change in the resonance point when the resonant coil is moved at a position equivalent to the buried position is detected as a change in the ratio of the resonant voltage to the resonant current (resonant impedance) of the resonant coil. For example, changes in the distance to long buried objects can be seen. In the case of resonant impedance, it is lowest directly above the buried object (in the case of buried objects on the floor). However, if there are other buried pipes in the vicinity of the buried pipe whose buried position is to be detected, the change in resonance impedance becomes a distribution having a plurality of minimum points.

【0013】そこで、受信コイルに発生する誘導電流に
基づく検出データと、共振コイルによる共振点の変化に
基づく検出データとを重ね合わせることにより、埋設物
の埋設位置を判別する。
[0013] Therefore, the buried position of the buried object is determined by superimposing detection data based on the induced current generated in the receiving coil and detection data based on the change in the resonance point by the resonance coil.

【0014】又、埋設物位置探査装置の検出部に受信コ
イルと共振コイルが一体に設けられているので、一つの
検出部の移動操作によって上記二つの検出データを得る
Furthermore, since the receiving coil and the resonant coil are integrally provided in the detecting section of the buried object position detecting device, the above two detection data can be obtained by moving one detecting section.

【0015】[0015]

【発明の効果】本発明の埋設物位置探査方法によれば、
電磁誘導型ロケータによる埋設物位置探査方法の欠点を
共振コイルによる検出方法によって解消し、正確に埋設
管の位置を検出できるようになった。共振コイルを励振
させるための発振回路、共振点の変化を検出するための
回路は周知の簡単な回路で構成できるので、電磁誘導型
ロケータの検出器に組み込むことも可能である。従って
、可搬性、作業性の悪化を伴わずに上記効果を得ること
ができる。
[Effects of the Invention] According to the buried object position detection method of the present invention,
The drawbacks of the buried object location detection method using an electromagnetic induction locator have been overcome by the detection method using a resonant coil, making it possible to accurately detect the location of buried pipes. Since the oscillation circuit for exciting the resonant coil and the circuit for detecting changes in the resonance point can be constructed with well-known simple circuits, they can also be incorporated into a detector of an electromagnetic induction locator. Therefore, the above effects can be obtained without deteriorating portability and workability.

【0016】又、埋設物位置探査装置として受信コイル
と共振コイルが一つの検出部に一体に設けられているこ
とから、別々の検出部を用意する必要が無く、一つの検
出部を上記二通りの検出に兼用することができるので、
作業性がさらによくなった。
[0016] Furthermore, since the receiving coil and the resonant coil are integrally provided in one detection part as a buried object position detection device, there is no need to prepare separate detection parts, and one detection part can be used in the above two ways. It can also be used to detect
Workability has further improved.

【0017】[0017]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。先ず、本発明の埋設物位置探査方法に用いる埋
設物位置探査装置は図2に示す検出部としてのセンサプ
ローブ1、受信器2、そして発信器とからなる。発信器
は、埋設位置を検出したい埋設管3に100KHzの交
流電流を流すためのもので、図4に示した従来例におけ
る発信器11と同じものであって、図2では省略してい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, the buried object position detecting device used in the buried object position detecting method of the present invention includes a sensor probe 1 as a detection section shown in FIG. 2, a receiver 2, and a transmitter. The transmitter is for passing an alternating current of 100 KHz through the buried pipe 3 whose buried position is to be detected, and is the same as the transmitter 11 in the conventional example shown in FIG. 4, and is omitted in FIG. 2.

【0018】センサプローブ1には、埋設管3に流れる
交流電流によって発生する交番磁界の強さを誘導電流の
大きさとして検出する(以下誘導法と略記する)ための
受信コイル1aと、共振点の変化から埋設管3の位置を
検出する(以下共振法と略記する)ための共振コイル1
bが内蔵されている。尚、受信コイル1aにはその検出
精度を上げるために図示の如く差動コイルを用いている
。両コイル1a,1bの引き出し線は、受信器2に接続
されている。
The sensor probe 1 includes a receiving coil 1a for detecting the strength of the alternating magnetic field generated by the alternating current flowing through the buried pipe 3 as the magnitude of the induced current (hereinafter abbreviated as the induction method), and a resonance point. Resonant coil 1 for detecting the position of buried pipe 3 from changes in (hereinafter abbreviated as resonance method)
b is built-in. As shown in the figure, a differential coil is used as the receiving coil 1a in order to improve the detection accuracy. The lead wires of both coils 1a and 1b are connected to a receiver 2.

【0019】受信器2は、従来例の電磁誘導型ロケータ
の受信器(図4中の13)に、共振法による検出回路を
付加した機能を有する。そして、図3のブロック図に示
すように、誘導法による検出と共振法による検出とを択
一的に切換えるモードスイッチ25によって受信コイル
1aからの信号の処理と、共振コイル1bからの信号の
処理が切り換えられる。
The receiver 2 has the function of a conventional electromagnetic induction locator receiver (13 in FIG. 4) with a detection circuit based on a resonance method added thereto. As shown in the block diagram of FIG. 3, a mode switch 25 that selectively switches between detection using the induction method and detection using the resonance method processes the signal from the receiving coil 1a and the signal from the resonance coil 1b. can be switched.

【0020】受信コイル1aに発生した誘導電流による
差動電圧はアンプ20aで反転増幅され、バンドパスフ
ィルタ20bを通った後、検波器20cで検波され積分
器20dで積分されて受信コイル1a付近の磁界の強さ
に応じた直流電圧となってモードスイッチ25の一方の
接点25aに与えられる。
The differential voltage due to the induced current generated in the receiving coil 1a is inverted and amplified by the amplifier 20a, passes through a band-pass filter 20b, is detected by the detector 20c, and is integrated by the integrator 20d. A DC voltage corresponding to the strength of the magnetic field is applied to one contact 25a of the mode switch 25.

【0021】共振コイル1bは、発振器21aによって
共振点(20MHz付近)に励振されている。その共振
電圧V1は、上記差動電圧と同様に、アンプ22a,バ
ンドパスフィルタ22b,検波器22c,積分器22d
を通って割算器24に入力される。又、共振電流検出用
抵抗21bに発生する電圧V2も、同様にアンプ23a
,バンドパスフィルタ23b,検波器23c,積分器2
3dを通って割算器24に入力される。割算器24は両
入力電圧を割り算し、共振インピーダンスの逆数に比例
する直流電圧を発生してモードスイッチ25の他方の接
点25bに与える。
The resonant coil 1b is excited to a resonance point (around 20 MHz) by an oscillator 21a. The resonant voltage V1 is generated by the amplifier 22a, the bandpass filter 22b, the detector 22c, and the integrator 22d, similar to the differential voltage described above.
The signal is input to the divider 24 through . Similarly, the voltage V2 generated across the resonance current detection resistor 21b is also applied to the amplifier 23a.
, bandpass filter 23b, detector 23c, integrator 2
3d and is input to the divider 24. The divider 24 divides both input voltages, generates a DC voltage proportional to the reciprocal of the resonance impedance, and applies it to the other contact 25b of the mode switch 25.

【0022】モードスイッチ25によって選択された何
れかの電圧信号はA/D変換器26でディジタル値に変
換され、マイクロコンピュータ27に入力される。マイ
クロコンピュータ27は入力値に基づいて、レベル表示
器28aによるバーグラフ表示と、2桁の7セグメント
表示器28bによる数値表示を行う。又、ブザー28c
による間欠音の周期を、電圧信号が高いほど短くなるよ
うに変化させる。
One of the voltage signals selected by the mode switch 25 is converted into a digital value by the A/D converter 26 and inputted to the microcomputer 27. Based on the input value, the microcomputer 27 displays a bar graph on a level display 28a and a numerical value on a two-digit 7-segment display 28b. Also, buzzer 28c
The period of the intermittent sound is changed so that the higher the voltage signal, the shorter the period of the intermittent sound.

【0023】次に、上記の如き埋設物位置探査装置を用
いて壁に埋設された埋設管の埋設位置を検出する方法に
ついて説明する。図2に示すように、埋設管3がコンク
リート製の壁4の内部に埋設され、その近くに鉄骨5が
平行に埋設されている。尚、埋設管3及び鉄骨5は鉛直
方向に埋設されており、図は平面視である。
Next, a method for detecting the buried position of a buried pipe buried in a wall using the buried object position detecting device as described above will be explained. As shown in FIG. 2, a buried pipe 3 is buried inside a concrete wall 4, and a steel frame 5 is buried in parallel near it. Note that the buried pipe 3 and the steel frame 5 are buried in the vertical direction, and the figure is a plan view.

【0024】先ず、共振法により位置検出をおこなう。 受信器2のモードスイッチ25を接点25b側に切換え
、センサプローブ1を壁4に沿って埋設管3の埋設位置
と思われる付近で水平方向に動かす。そして、ブザー2
8cによる間欠音の周期が最も短くなるとき、又はレベ
ル表示器28a及び7セグメント表示器28bによる表
示値が最大になるときのセンサプローブ1の位置を壁面
にマークしておく。尚、埋設管3の近くに他の金属製埋
設物が無い場合は、この位置は一箇所となり、その真後
ろに埋設管3が埋設されていると判断することができる
First, position detection is performed using the resonance method. The mode switch 25 of the receiver 2 is switched to the contact 25b side, and the sensor probe 1 is moved horizontally along the wall 4 in the vicinity of the buried position of the buried pipe 3. And buzzer 2
The position of the sensor probe 1 when the period of the intermittent sound 8c becomes the shortest or when the value displayed on the level indicator 28a and the 7-segment indicator 28b becomes the maximum is marked on the wall. Note that if there is no other buried metal object near the buried pipe 3, this position is one, and it can be determined that the buried pipe 3 is buried directly behind it.

【0025】この例の場合は、埋設管3の近くに鉄骨5
が埋設されているので、図1の曲線8に示すように上記
ブザー音の変化又は表示値の変化は埋設管3の真正面及
び鉄骨5の真正面で極大値をとる分布となる。従って、
これだけでは何れの位置に埋設管3が埋設されているか
は判別できないので、極大値をとる2箇所にとりあえず
マークしておく。
In this example, there is a steel frame 5 near the buried pipe 3.
is buried, the change in the buzzer sound or the change in the displayed value has a distribution that takes maximum values directly in front of the buried pipe 3 and directly in front of the steel frame 5, as shown by the curve 8 in FIG. Therefore,
Since it is not possible to determine in which position the buried pipe 3 is buried by this alone, two positions where the maximum value is obtained are marked for the time being.

【0026】次に、誘導法による埋設位置の検出を行う
。従来例で述べたように、埋設管3の露出部に発振器出
力を接続して100KHzの交流電流を流し、埋設管3
の周囲に交番磁界を発生させる。受信器2のモードスイ
ッチ25を接点25a側に切換え、センサプローブ1を
共振法と同様に壁4に沿って水平方向に動かす。
Next, the buried position is detected by the guidance method. As described in the conventional example, the oscillator output is connected to the exposed part of the buried pipe 3 and an alternating current of 100 KHz is applied to the buried pipe 3.
generates an alternating magnetic field around the The mode switch 25 of the receiver 2 is switched to the contact 25a side, and the sensor probe 1 is moved horizontally along the wall 4 in the same way as in the resonance method.

【0027】壁4の表面での磁界の強さの分布は、図1
に示す曲線7aのようになり、埋設管3の真正面で最も
大きくなるはずである。ところが、近くに発振器から埋
設管3の露出部までのリード線6があると、それによる
磁界7bの影響を受けるため実際にはこれらを重ね合わ
した分布、即ち曲線7に示すように、ピークが少しずれ
、山の形がやや変形した分布になる。いずれにしても、
この変形した山の後方に埋設管3が埋設されていること
がわかる。
The distribution of the magnetic field strength on the surface of the wall 4 is shown in FIG.
It should look like a curve 7a shown in FIG. However, if there is a lead wire 6 from the oscillator to the exposed part of the buried pipe 3 nearby, it will be affected by the magnetic field 7b, so the peak will actually be slightly lower as shown in the superimposed distribution of these, that is, curve 7. This results in a distribution with a slightly deformed mountain shape. In any case,
It can be seen that the buried pipe 3 is buried behind this deformed mountain.

【0028】したがって、この誘導法による検出結果を
重ね合わせると、前述の共振法による2箇所のマークの
うち埋設管3が埋設されている位置がいずれかを判別す
ることができる。
Therefore, by superimposing the detection results obtained by this guidance method, it is possible to determine which of the two marks obtained by the above-mentioned resonance method is where the buried pipe 3 is buried.

【0029】尚、埋設管3の近くに2本以上の金属製埋
設物がある場合は、共振法による表示値の極大値が3箇
所以上にできることになるが、この場合も上記と同様に
誘導法による検出結果を重ね合わせることにより、いず
れの極大値に対応する位置が埋設管3の埋設位置かを判
別することができる。
[0029] If there are two or more buried metal objects near the buried pipe 3, the maximum value of the displayed value based on the resonance method will be at three or more locations, but in this case, the induction method is similar to the above. By superimposing the detection results obtained by the method, it is possible to determine which position corresponding to the maximum value is the buried position of the buried pipe 3.

【0030】共振法により埋設管位置を検出するに際し
、共振点の変化を検出する方法としては、前述のように
、共振電圧と共振電流との比(共振インピーダンス)で
判断する方法に限るものではない。例えば、両者(V1
及びV2)を位相弁別回路に入力して得られる両者の位
相差の変化から共振点の変化を検出してもよい。又、共
振点が大きく変化するような場合は、図3の発振器21
aによる発振周波数を可変とし、共振電圧V1が最大に
なる共振周波数を測定できる回路構成として、その共振
周波数の変化即ち共振点の変化を直接検出してもよい。 又、受信器2の回路構成は検出信号をディジタル信号処
理して表示出力又はブザー出力するものに限らず、アナ
ログ信号のままで針式のメータに表示させたり、ブザー
又はスピーカから音量に変換して出力してもよい。 その他の装置の構成についても周知の技術を用いて種々
変更可能である。
When detecting the position of a buried pipe using the resonance method, the method for detecting changes in the resonance point is not limited to the method of determining based on the ratio of resonance voltage to resonance current (resonance impedance), as described above. do not have. For example, both (V1
and V2) may be input to the phase discrimination circuit to detect a change in the resonance point from a change in the phase difference between the two. In addition, if the resonance point changes significantly, the oscillator 21 in FIG.
A change in the resonant frequency, that is, a change in the resonance point, may be directly detected by using a circuit configuration in which the oscillation frequency caused by a is made variable and the resonant frequency at which the resonant voltage V1 becomes the maximum can be measured. Moreover, the circuit configuration of the receiver 2 is not limited to the one that processes the detection signal into a digital signal and outputs it for display or output to a buzzer. It can also display it on a needle-type meter as an analog signal, or convert it to volume from a buzzer or speaker. You can also output it. Other configurations of the device can also be modified in various ways using well-known techniques.

【0031】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
[0031] Note that although reference numerals are written in the claims for convenience of comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る埋設物位置探査方法の説
明図
FIG. 1 is an explanatory diagram of a buried object position detection method according to an embodiment of the present invention.

【図2】同埋設物位置探査方法に用いる装置の一部及び
その操作を示す概略図
[Figure 2] Schematic diagram showing part of the device used in the buried object location detection method and its operation

【図3】同埋設物位置探査装置の受信器の回路ブロック
[Figure 3] Circuit block diagram of the receiver of the buried object location detection device

【図4】従来の電磁誘導型ロケータによる埋設物位置探
査方法の概略図
[Figure 4] Schematic diagram of a buried object location detection method using a conventional electromagnetic induction locator

【図5】従来のレーダロケータによる埋設物位置探査方
法の概略図
[Figure 5] Schematic diagram of a buried object location detection method using a conventional radar locator

【図6】従来の電磁誘導型ロケータによる埋設物位置探
査方法の説明図
[Figure 6] An explanatory diagram of a buried object location detection method using a conventional electromagnetic induction locator

【符号の説明】[Explanation of symbols]

1    検出部 1a  受信コイル 1b  共振コイル 3    長尺埋設物 1 Detection part 1a Receiving coil 1b Resonance coil 3. Long buried objects

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  埋設位置を検出したい金属製の長尺埋
設物(3)に交流電流を流して交番磁界を発生させ、前
記長尺埋設物(3)の埋設相当位置で受信コイル(1a
)を移動させたときに両者の距離に応じて変化する誘導
電流を検出し、且つ、共振点付近に励振させた共振コイ
ル(1b)を前記埋設相当位置で移動させたときの共振
点の変化を検出し、両検出情報から前記長尺埋設物(3
)の埋設位置を判別する埋設物位置探査方法。
1. An alternating current is passed through a metal long buried object (3) whose buried position is to be detected to generate an alternating magnetic field, and a receiving coil (1a
) is moved, an induced current that changes depending on the distance between the two is detected, and the resonance point changes when the resonant coil (1b) excited near the resonance point is moved at the buried position. is detected, and the long buried object (3
) is a buried object location detection method that determines the buried location of objects.
【請求項2】  請求項1記載の埋設物位置探査方法に
使用する埋設物位置探査装置であって、その検出部(1
)には前記受信コイル(1a)と前記共振コイル(1b
)が一体に設けられている埋設物位置探査装置。
2. A buried object position detecting device used in the buried object position detecting method according to claim 1, comprising: a detecting section (1);
) includes the receiving coil (1a) and the resonant coil (1b).
) is an integrated buried object location detection device.
JP3007669A 1991-01-25 1991-01-25 Buried object position search method and device Pending JPH04240585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3007669A JPH04240585A (en) 1991-01-25 1991-01-25 Buried object position search method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3007669A JPH04240585A (en) 1991-01-25 1991-01-25 Buried object position search method and device

Publications (1)

Publication Number Publication Date
JPH04240585A true JPH04240585A (en) 1992-08-27

Family

ID=11672210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3007669A Pending JPH04240585A (en) 1991-01-25 1991-01-25 Buried object position search method and device

Country Status (1)

Country Link
JP (1) JPH04240585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021193351A (en) * 2020-06-08 2021-12-23 三菱電機株式会社 Metal obstacle exploration method, sealing material drilling method, sealing material partial removal method, metal obstacle exploration device and drilling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021193351A (en) * 2020-06-08 2021-12-23 三菱電機株式会社 Metal obstacle exploration method, sealing material drilling method, sealing material partial removal method, metal obstacle exploration device and drilling device

Similar Documents

Publication Publication Date Title
JP4542691B2 (en) Inductive sensor device and method for detecting metal objects
US20090021248A1 (en) Inductive proximity detector with switched windings
EP0113736B1 (en) A method and apparatus for determining the trace and depth of underground metallic conductors
JPH0854375A (en) Electromagnetic induction-type inspecting apparatus
US3986104A (en) Dual frequency metal detector system
US6822429B2 (en) Inductive sensor arrangement comprising three sense coils cooperating with said three field coils to form three field/sense coil pairs and method for detecting of ferrous metal objects
US5446379A (en) Method and system for searching and sensing reinforcing steel in concrete by employing an oscillator driver sensor coil
US3931571A (en) Eddy current metal surface flaw detector
US7977938B2 (en) Device and method of detecting ferrite and non-ferrite objects
CN212433431U (en) Wall detector
JPH04240585A (en) Buried object position search method and device
WO2001046682A3 (en) Method and device for the in situ detection of the degree of conversion of a non-magnetic phase in a ferromagnetic phase of a metallic work piece
JPH0850180A (en) Electromagnetic induction type buried matter detecting device
JP2865599B2 (en) Exploration methods for buried objects
JP2001041703A (en) Range finder and thickness meter
JPH04296663A (en) Current measuring device
JP3035724B2 (en) Metal detection method
JP5034573B2 (en) Coin identification method and identification apparatus
JPH0833452B2 (en) Embedded cable position measuring instrument
JPH0727868A (en) Device for detecting position of buried metallic object
RU2181460C1 (en) Foreign matter-in-pipe line detector
EP3580587B1 (en) Detection method for a scanning detector
JPS586912B2 (en) Depth measurement method for underground metal tracks
SU911416A1 (en) Metal detector
JP2829158B2 (en) Deviation position detection method