JPH04240574A - Method for measuring fundamental wave power and higher harmonic power of strain wave power supply - Google Patents

Method for measuring fundamental wave power and higher harmonic power of strain wave power supply

Info

Publication number
JPH04240574A
JPH04240574A JP8571591A JP8571591A JPH04240574A JP H04240574 A JPH04240574 A JP H04240574A JP 8571591 A JP8571591 A JP 8571591A JP 8571591 A JP8571591 A JP 8571591A JP H04240574 A JPH04240574 A JP H04240574A
Authority
JP
Japan
Prior art keywords
power
fundamental wave
voltage
current
waveforms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8571591A
Other languages
Japanese (ja)
Inventor
Tatsuo Horii
堀井 龍夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8571591A priority Critical patent/JPH04240574A/en
Publication of JPH04240574A publication Critical patent/JPH04240574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To measure fundamental wave power and higher harmonic power by measuring the effective values of voltage and a current by an effective value indication type meter and storing the waveforms of both of them in a waveform memory apparatus and measuring average power by a voltmeter. CONSTITUTION:The effective values of voltage and a current are measured and the waveforms of both are simultaneously stored and average power is measured by a voltmeter. Next, the stored waveforms are subjected to FFT analysis to respectively determine the ratios of respective higher harmonics to a fundamental wave. By taking the sum of the values obtained by squaring the respective ratios from the order corresponding to the fundamental wave to the order of higher harmonics to be considered, the ratio of the effective value of a strain wave to the effective value of the fundamental wave is calculated and the fundamental wave effective values of line voltage and a phase current are determined. From the stored waveforms, the phase difference of the voltage and current of the fundamental wave is calculated. The phase difference of the fundamental waves of phase voltage and line voltage is 30 (150) deg. because both of a power supply and load are in an equilibrium state. By correcting this phase difference, fundamental wave power is calculated. Next, higher harmonic power is calculated by subtracting the calculated fundamental wave power from the average power of a wattmeter.

Description

【発明の詳細な説明】[Detailed description of the invention]

【001】001

【産業上の利用分野】ひずみ波電源を有する機器の場合
、基本波電圧または基本波電流または基本波電力または
高調波電力を測定して機器の性能を正確に評価する必要
がある。
[Industrial Application Field] In the case of equipment having a distorted wave power source, it is necessary to accurately evaluate the performance of the equipment by measuring the fundamental wave voltage, fundamental wave current, fundamental wave power, or harmonic power.

【002】002

【従来の技術】これまでは、ひずみ波電源の場合でも平
均電力を測定して効率等の性能評価を行っている。しか
し、その平均電力は基本波電力と高調波電力の和の電力
である。
2. Description of the Related Art Up to now, even in the case of a distorted wave power source, average power has been measured to evaluate performance such as efficiency. However, the average power is the sum of the fundamental wave power and the harmonic power.

【003】003

【発明が解決しようとする課題】エネルギー変換がおこ
なわれる場合、その変換は基本波成分がおもな成分とな
る場合が多い。この場合には、基本波電力と高調波電力
の比がどの程度かが大きな性能評価を示す基準となる。 このためには、従来の平均電力以外に基本波電力と高調
波電力を測定する課題が発生する。さらに基本波電力と
高調波電力を測定するため、基本波電圧と基本波電流を
測定する課題が発生する。本発明の目的は、基本波電圧
および基本波電流の測定、並びに基本波電力及び高調波
電力の測定法を提供することである。
[Problems to be Solved by the Invention] When energy conversion is performed, the fundamental wave component is often the main component of the conversion. In this case, the ratio of fundamental wave power to harmonic power is a major criterion for evaluating performance. This creates the problem of measuring fundamental wave power and harmonic power in addition to the conventional average power. Furthermore, since the fundamental wave power and harmonic power are measured, there arises the problem of measuring the fundamental wave voltage and fundamental wave current. It is an object of the present invention to provide a method for measuring fundamental voltage and current, as well as fundamental power and harmonic power.

【004】004]

【課題を解決するための手段】上記の目的を解決するた
めに、本発明の測定法は次のような手段を実施する。実
効値指示の電圧計と実効値指示の電流計で電圧実効値と
電流実効値を測定する。電圧波形と電流波形を同時に波
形記憶装置に記憶する。電力計で平均電力を測定する。 上記の手段を実施したのち、電圧および電流の基本波実
効値は次のように決定できる。次の説明は電圧および電
流ともに同一である。記憶した波形を調波分析して各高
調波の基本波に対する比をおのおの決定する。これらの
比を自乗したものを基本波に相当する次数から実効値指
示計器の周波数特性の高域遮断周波数に相当する高調波
次数まで和をとることによって、基本波実効値に対する
ひずみ波の実効値の比を求めることができる。このよう
にして、ひずみ波の実効値および各高調波から求めた基
本波実効値に対するひずみ波の実効値の比から電圧およ
び電流の基本波の実効値を決定する。基本波電力および
高調波電力は次のように決定できる。記憶した波形から
基本波の電圧と電流の位相差を求める。基本波の電圧お
よび電流の位相差は各種結線方法および波形測定の位置
によって変化するので、測定回路に応じて位相角を計算
する。本発明の請求項1の測定法で決定した電圧の基本
波実効値と電流の基本波実効値および位相角とから基本
波電力を求める。次に電力計の平均電力から基本波電力
を引いたものを高調波電力とする。高調波電力の精度は
電力の精度と周波数特性に依存する。
[Means for Solving the Problems] In order to solve the above object, the measuring method of the present invention implements the following means. Measure the effective voltage value and effective current value using a voltmeter that indicates an effective value and an ammeter that indicates an effective value. A voltage waveform and a current waveform are simultaneously stored in a waveform storage device. Measure the average power with a power meter. After implementing the above measures, the fundamental wave effective values of voltage and current can be determined as follows. The following explanation is the same for both voltage and current. The stored waveform is harmonically analyzed to determine the ratio of each harmonic to the fundamental wave. By summing the squares of these ratios from the order corresponding to the fundamental wave to the harmonic order corresponding to the high cutoff frequency of the frequency characteristic of the effective value indicating instrument, the effective value of the distorted wave relative to the effective value of the fundamental wave can be calculated. The ratio of can be found. In this way, the effective value of the fundamental wave of voltage and current is determined from the effective value of the distorted wave and the ratio of the effective value of the distorted wave to the effective value of the fundamental wave determined from each harmonic. Fundamental power and harmonic power can be determined as follows. Find the phase difference between the voltage and current of the fundamental wave from the memorized waveform. Since the phase difference between the voltage and current of the fundamental wave changes depending on various wiring methods and the position of waveform measurement, the phase angle is calculated depending on the measurement circuit. The fundamental wave power is determined from the fundamental wave effective value of the voltage, the fundamental wave effective value of the current, and the phase angle determined by the measurement method according to claim 1 of the present invention. Next, the harmonic power is obtained by subtracting the fundamental wave power from the average power of the wattmeter. The accuracy of harmonic power depends on the power accuracy and frequency characteristics.

【005】005]

【作用】本発明の基本波電力および高調波電力の測定は
単相以外に三相の場合にも適用できる。波形測定位置は
従来の電力測定を行う場合の電圧および電流の測定位置
である。電圧および電流の波形測定は各種結線方法によ
って異なる。単相電力の測定の場合には一対の波形測定
を行なう。三相四線式の測定で負荷が平衡の場合には電
圧および電流の波形測定は一対となるが、不平衡の場合
にはすべての相について波形測定を行う必要がある。三
相三線式の場合で負荷が平衡の場合には電圧および電流
の波形は一対のみとなる。
[Operation] The fundamental wave power and harmonic power measurement of the present invention can be applied not only to a single phase but also to a three phase case. The waveform measurement position is a voltage and current measurement position when performing conventional power measurement. Voltage and current waveform measurements vary depending on the various wiring methods. When measuring single-phase power, a pair of waveform measurements are performed. If the load is balanced in three-phase four-wire measurement, the voltage and current waveforms will be measured as a pair, but if the load is unbalanced, it is necessary to measure the waveforms for all phases. In the case of a three-phase, three-wire system, if the load is balanced, there will be only one pair of voltage and current waveforms.

【006】006

【実施例】ここでは、三相三線式で電源および負荷とも
に平衡の場合について述べることにする。この場合、電
圧および電流波形は一対の測定をすることになる。電圧
波形は任意の二線間の線間電圧波形を測定する。電流波
形は電圧波形を測定する二線のうちいずれかの線の電流
波形を無誘導の標準抵抗等で測定する。これらの波形は
同時に波形記憶装置に記憶する。波形を記憶する装置は
測定する波形を十分正確に記録できる周波数特性とサン
プリング時間そして記憶素子の数を有する必要がある。 実効値指示型の電圧計および電流計は必ずしも広い範囲
の周波数特性を有する必要はないが、正確な測定を行う
ためには広い範囲の周波数特性が必要である。高調波電
力を測定する場合、電力計は広い範囲の周波数特性を有
する必要がある。以上の測定装置を用い次の測定を行う
。実効値指示の電圧計と実効値指示の電流計で電圧実効
値と電流実効値を測定する。電圧波形と電流波形を同時
に波形記憶装置に記憶する。電力計で平均電力を測定す
る。上記の手段を実施したのち、線間電圧および相(線
)電流の基本波実効値は次のように決定できる。記憶し
た波形をFFT分析して各高調波の基本波に対する比を
おのおの決定する。基本波実効値を決定する場合に考慮
する高調波の次数は、実効値指示の電圧計または電流計
の周波数特性の高域遮断周波数に相当する高調波の次数
までである。各高調波の基本波に対する比を自乗したも
のを基本波に相当する次数から考慮すべき高調波の次数
まで和をとることによって、基本波実効値に対するひず
み波の実効値の比を求め、線間電圧および相電流の基本
波実効値を決定する。記憶した波形から基本波の電圧と
電流の位相差を求める。線間電圧の基本波および相電流
の基本波の位相差が求められたので、相電圧と線間電圧
の基本波の位相差は電源、負荷ともに平衡であるので、
30(150)度の違いがある。これを補正し、基本波
電力を求める。次に電力計の平均電力から求めた基本波
電力を引いて高調波電力を求める。
[Embodiment] Here, we will discuss the case of a three-phase, three-wire system in which both the power supply and the load are balanced. In this case, the voltage and current waveforms will be measured as a pair. The voltage waveform measures the line voltage waveform between any two lines. The current waveform of one of the two wires used to measure the voltage waveform is measured using a non-inductive standard resistor or the like. These waveforms are simultaneously stored in the waveform storage device. A device for storing waveforms must have frequency characteristics, sampling time, and number of storage elements to record the measured waveform with sufficient accuracy. Although effective value indicating type voltmeters and ammeters do not necessarily need to have frequency characteristics over a wide range, they are required to have frequency characteristics over a wide range in order to make accurate measurements. When measuring harmonic power, a power meter needs to have frequency characteristics over a wide range. The following measurements are performed using the above measuring device. Measure the effective voltage value and effective current value using a voltmeter that indicates an effective value and an ammeter that indicates an effective value. A voltage waveform and a current waveform are simultaneously stored in a waveform storage device. Measure the average power with a power meter. After carrying out the above means, the fundamental wave effective values of line voltage and phase (line) current can be determined as follows. The stored waveform is subjected to FFT analysis to determine the ratio of each harmonic to the fundamental wave. The harmonic orders considered when determining the fundamental wave effective value are up to the harmonic order corresponding to the high cutoff frequency of the frequency characteristic of the effective value indicating voltmeter or ammeter. The ratio of the effective value of the distorted wave to the effective value of the fundamental wave is obtained by summing the square of the ratio of each harmonic to the fundamental wave from the order corresponding to the fundamental wave to the order of the harmonic to be considered. Determine the fundamental wave effective values of the phase voltage and phase current. Find the phase difference between the voltage and current of the fundamental wave from the memorized waveform. Since the phase difference between the fundamental wave of the line voltage and the fundamental wave of the phase current has been found, the phase difference between the fundamental wave of the phase voltage and the line voltage is balanced for both the power supply and the load, so
There is a difference of 30 (150) degrees. Correct this and find the fundamental wave power. Next, subtract the found fundamental wave power from the average power of the wattmeter to find the harmonic power.

【007】007]

【発明の効果】現在、デジタル技術の発達により周波数
特性のよいデジタルパワーメータが出現しているが、そ
の電力の測定は瞬時電圧と瞬時電流との積である瞬時電
力を時間的に平均した平均電力で測定されている。これ
らのデジタルパワーメータに波形記憶装置を付加し本発
明の提供する方式に従うプログラムを追加することで、
簡単に基本波電力と高調波電力を測定することができる
。また、電圧および電流の基本波実効値の測定も同時に
可能となる。ひずみ波電源の一つであるPWM電源の場
合には、基本波電圧を平均値指示実効値換算型の整流型
電圧計で測定することができるが、その他のひずみ波電
源の場合には基本波電圧を平均値指示実効値換算型の整
流型電圧計で測定することはできない。本発明の方式は
実効値指示計器の測定範囲内において、どのようなひず
み電圧をも原理的に測定可能とする。
[Effect of the invention] Currently, with the development of digital technology, digital power meters with good frequency characteristics have appeared, but their power measurement is the average of instantaneous power, which is the product of instantaneous voltage and instantaneous current, over time. Measured in power. By adding a waveform storage device to these digital power meters and adding a program according to the method provided by the present invention,
Fundamental power and harmonic power can be easily measured. Furthermore, it is also possible to simultaneously measure the fundamental wave effective values of voltage and current. In the case of a PWM power supply, which is one type of distorted wave power supply, the fundamental wave voltage can be measured with a rectifying voltmeter that indicates an average value and converts to an effective value. However, in the case of other distorted wave power supplies, the fundamental wave voltage Voltage cannot be measured with a rectifying voltmeter that indicates an average value and converts to an effective value. The method of the present invention makes it possible in principle to measure any strain voltage within the measurement range of the effective value indicating instrument.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】    電圧および電流の実効値を実効値
指示型計器で測定し、電圧および電流の波形を記憶し波
形を調波分析することで求める、ひずみ電圧およびひず
み電流の基本波実効値の測定法
Claim 1: Measure the effective values of voltage and current with an effective value indicator type instrument, memorize the voltage and current waveforms, and obtain the fundamental wave effective values of strain voltage and current by harmonic analysis of the waveforms. Measurement method
【請求項2】    電圧および電流の実効値を実効値
指示型計器で測定し、電力計で平均電力を測定し、電圧
および電流の波形を記憶し波形を調波分析することで求
める、ひずみ波電源に接続された機器に入力される基本
波電力および高調波電力の測定法
[Claim 2] Distorted waves obtained by measuring the effective values of voltage and current with an effective value indicating meter, measuring the average power with a wattmeter, memorizing the voltage and current waveforms, and performing harmonic analysis of the waveforms. Measuring method of fundamental wave power and harmonic power input to equipment connected to power supply
JP8571591A 1991-01-24 1991-01-24 Method for measuring fundamental wave power and higher harmonic power of strain wave power supply Pending JPH04240574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8571591A JPH04240574A (en) 1991-01-24 1991-01-24 Method for measuring fundamental wave power and higher harmonic power of strain wave power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8571591A JPH04240574A (en) 1991-01-24 1991-01-24 Method for measuring fundamental wave power and higher harmonic power of strain wave power supply

Publications (1)

Publication Number Publication Date
JPH04240574A true JPH04240574A (en) 1992-08-27

Family

ID=13866529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8571591A Pending JPH04240574A (en) 1991-01-24 1991-01-24 Method for measuring fundamental wave power and higher harmonic power of strain wave power supply

Country Status (1)

Country Link
JP (1) JPH04240574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577785U (en) * 1992-03-25 1993-10-22 財団法人鉄道総合技術研究所 Memory coder with waveform analysis function
US8400083B2 (en) 2007-10-23 2013-03-19 Daikin Industries, Ltd. Current detecting device, air conditioning apparatus, correction constant calculating system and correction constant calculating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577785U (en) * 1992-03-25 1993-10-22 財団法人鉄道総合技術研究所 Memory coder with waveform analysis function
US8400083B2 (en) 2007-10-23 2013-03-19 Daikin Industries, Ltd. Current detecting device, air conditioning apparatus, correction constant calculating system and correction constant calculating method

Similar Documents

Publication Publication Date Title
Brandolini et al. A simple method for the calibration of traditional and electronic measurement current and voltage transformers
Cataliotti et al. A novel approach to current transformer characterization in the presence of harmonic distortion
CN111505563B (en) Comprehensive error testing method for electric energy meter
CN108318852B (en) Square wave influence test method for intelligent electric energy meter
CN110865238B (en) Alternating current resistance measurement method and device based on quasi-harmonic model sampling algorithm
JP4564863B2 (en) Power line measuring device
US4937520A (en) Instrument to measure the errors of apparent power meters
Yang et al. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT
Demerdziev et al. Analysis of errors in active power and energy measurements under random harmonic distortion conditions
JPS61126485A (en) Error measuring instrument
Turner et al. An electron tube wattmeter and voltmeter and a phase shifting bridge
JPH04240574A (en) Method for measuring fundamental wave power and higher harmonic power of strain wave power supply
Chen et al. Power-component definitions and measurements for a harmonic-polluted power circuit
JPH11344514A (en) Three-phase wattmeter
Park et al. Standard electrodynamic wattmeter and ac-dc transfer instrument
Goklani et al. Simultaneous three-phase line parameter estimation and instrument transformer calibration using pmu data
Gao et al. A low consumption DSP based power analyzer
ES2215467B1 (en) APPARATUS AND METHOD OF MEASUREMENT OF ELECTRICAL MAGNITUDES IN A THREE PHASE NETWORK.
CN112285637B (en) Experimental method for examining influence of tip top wave on electric energy metering
Gupta et al. A Technique for Power Factor Measurement of Household and Industrial Load using LabVIEW
Wang et al. Study on electrical energy meter for energy measuring under harmonics condition
SU479063A1 (en) Device for the study of the operation of electricity meters
Cataliotti et al. Influence of current transformers on the measurement of harmonic active power
Ortiz et al. Energy Meter Behaviour Under Non-Sinusoidal Conditions.
Arseneau Calibration system for power quality instrumentation