JPH04239271A - Picture data compressor - Google Patents

Picture data compressor

Info

Publication number
JPH04239271A
JPH04239271A JP3002053A JP205391A JPH04239271A JP H04239271 A JPH04239271 A JP H04239271A JP 3002053 A JP3002053 A JP 3002053A JP 205391 A JP205391 A JP 205391A JP H04239271 A JPH04239271 A JP H04239271A
Authority
JP
Japan
Prior art keywords
signal
pseudo
prediction
pixel
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3002053A
Other languages
Japanese (ja)
Inventor
Hitoshi Iizaka
仁志 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Co Ltd filed Critical Tokyo Electric Co Ltd
Priority to JP3002053A priority Critical patent/JPH04239271A/en
Publication of JPH04239271A publication Critical patent/JPH04239271A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/004Predictors, e.g. intraframe, interframe coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

PURPOSE:To improve an encoding efficiency, and to operate the efficient compression of a pseudo halftone reproducing picture, as for a picture data compression which uses the pseudo halftone reproducing picture by a random dither method. CONSTITUTION:This device is equipped with a pseudo halftone processing part 1 which converts a multilevel picture signal into a binary signal by using a pseudo halftone reproducing method, line memory 2 which stores a pseudo halftone binary signal, prediction processing part 4 which defines one of the pseudo halftone binary signals as a noticed picture signal, classifies the noticed picture element by searching both the signal state value of an area adjacent to the noticed picture element and density coefficient value of an area near the noticed picture element, and decides and outputs the prediction signal of the noticed picture element by using a prediction table 5. And also, this device is equipped with an exclusive OR circuit 3 which compares the prediction signal from this prediction processing part with the noticed picture signal from the pseudo halftone processing part, and outputs a prediction error signal '0' indicating that the prediction comes true and a prediction error signal '1' which indicates that the prediction doesn't come true, and an encoding part 7 which encodes the prediction error signal.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ファクシミリ等のデー
タ圧縮に適用され、特に写真等の多値画像を疑似中間調
再現法により2値化した後符号化する画像データ圧縮装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to data compression for facsimiles and the like, and particularly relates to an image data compression apparatus that binarizes a multivalued image such as a photograph using a pseudo halftone reproduction method and then encodes it.

【0002】0002

【従来の技術】写真等の多値画像信号を2値信号に変換
して疑似的に階調再現する手法としては組織的ディザ法
が知られており、その2値化画像のデータ圧縮手法の一
例として処理済みの信号のうち2値化する際の閾値が等
しいか近いものを用いて予測を行い、その予測誤差信号
を符号化するという方式が知られている。一方、最近は
階調再現性に優れている2値化手法として、誤差拡散法
、平均誤差最小法等が注目されている。
[Prior Art] A systematic dithering method is known as a method for converting a multivalued image signal such as a photograph into a binary signal and reproducing the gradation in a pseudo manner. As an example, a method is known in which prediction is performed using processed signals that have equal or similar thresholds for binarization, and the prediction error signal is encoded. On the other hand, recently, the error diffusion method, the minimum average error method, and the like have been attracting attention as binarization methods with excellent gradation reproducibility.

【0003】しかし前述した誤差拡散法、平均誤差最小
法等に代表されるランダムディザ法により2値化された
信号系列には、これまで通常用いられてきた組織的ディ
ザ法により2値化された信号系列のように周期性がなく
、ランダムに白「0」、黒「1」が出現するため、組織
的ディザ法によって2値化された疑似中間調再現画像に
適用される予測方式をそのままランダムディザ法による
疑似中間調再現画像に適用することはできない。
However, a signal sequence that has been binarized by a random dither method such as the error diffusion method or the minimum average error method described above has been binarized by a systematic dither method that has been commonly used. Since there is no periodicity like a signal sequence, and white "0" and black "1" appear randomly, the prediction method applied to the pseudo-halftone reproduction image binarized by the systematic dither method can be used as is. It cannot be applied to pseudo-halftone reproduced images using the dither method.

【0004】0004

【発明が解決しようとする課題】このように従来はラン
ダムディザ法による疑似中間調再現画像を使用する画像
データ圧縮において、充分な符号化効率の向上を図るこ
とができなかった。
As described above, in the past, it has not been possible to sufficiently improve encoding efficiency in image data compression using a pseudo-halftone reproduced image by the random dither method.

【0005】そこで本発明は、ランダムディザ法による
疑似中間調再現画像を使用する画像データ圧縮において
、充分な符号化効率の向上が図れ、疑似中間調再現画像
を効率よく圧縮できる画像データ圧縮装置を提供しよう
とするものである。
[0005] Therefore, the present invention provides an image data compression device that can sufficiently improve encoding efficiency and efficiently compress pseudo-halftone reproduced images in image data compression using pseudo-halftone reproduced images using the random dither method. This is what we are trying to provide.

【0006】なお、本発明者は先にランダムディザ法に
よる疑似中間調再現画像を使用する画像データ圧縮にお
いて、予測方式を採用しつつ充分な符号化効率の向上を
図ることができる画像データ圧縮装置を提供している。 (特願平2−176330号)
[0006] The present inventor has previously proposed an image data compression device that can sufficiently improve encoding efficiency while employing a predictive method in image data compression using a pseudo-halftone reproduction image using a random dither method. is provided. (Patent Application No. 176330/1999)

【0007】[0007]

【課題を解決するための手段】請求項1対応の発明は、
多値画像信号を疑似中間調再現法により2値信号に変換
する疑似中間調処理部と、この疑似中間調処理部からの
疑似中間調2値信号を順次格納するラインメモリと、信
号状態値と濃度係数値とで決まるアドレスに予測信号を
設定した予測テーブルと、疑似中間調処理部からの疑似
中間調2値信号の1つを注目画素信号とし、ラインメモ
リに格納される注目画素に隣接又は近接する既に処理済
みの複数の疑似中間調2値信号を複数領域に分割し、そ
の各領域の一部領域の信号状態値と残り領域の濃度係数
値をそれぞれ求め、この信号状態値と濃度係数値の関係
から注目画素を分類し、予測テーブルを使用して注目画
素の予測信号を決定し出力する予測処理部と、この予測
処理部からの予測信号と注目画素信号を比較して予測的
中、予測非的中を示す予測誤差信号を出力する予測誤差
作成部と、この予測誤差作成部からの予測誤差信号を符
号化する符号化部を設けたものである。
[Means for solving the problem] The invention corresponding to claim 1 is:
A pseudo-halftone processing unit that converts a multilevel image signal into a binary signal using a pseudo-halftone reproduction method, a line memory that sequentially stores the pseudo-halftone binary signal from the pseudo-halftone processing unit, and a signal state value. A prediction table in which a prediction signal is set at an address determined by the density coefficient value and one of the pseudo halftone binary signals from the pseudo halftone processing section are used as the target pixel signal, and the target pixel adjacent to or stored in the line memory is Divide a plurality of adjacent pseudo-halftone binary signals that have already been processed into multiple regions, calculate the signal state value of a part of each region and the density coefficient value of the remaining region, and calculate the signal state value and the density coefficient. A prediction processing unit that classifies the pixel of interest based on numerical relationships, determines and outputs a prediction signal of the pixel of interest using a prediction table, and compares the prediction signal from this prediction processing unit with the signal of the pixel of interest to determine whether the prediction is correct. , a prediction error generation section that outputs a prediction error signal indicating non-accuracy of prediction, and an encoding section that encodes the prediction error signal from this prediction error generation section.

【0008】また請求項2対応の発明は、多値画像信号
を疑似中間調再現法により2値信号に変換する疑似中間
調処理部と、この疑似中間調処理部からの疑似中間調2
値信号を順次格納するラインメモリと、疑似中間調処理
部からの疑似中間調2値信号の1つを注目画素信号とし
、ラインメモリに格納される注目画素に隣接又は近接す
る既に処理済みの複数の疑似中間調2値信号を複数領域
に分割し、その各領域の一部領域の信号状態値と残り領
域の濃度係数値をそれぞれ求め、この信号状態値と濃度
係数値の関係から注目画素を分類し、その分類された状
態の基で注目画素信号が出現確率の高い信号値か否かを
判定する判定部と、この判定部による信号値判定を基に
算術演算を行って符号化処理を行う算術符号化部を設け
たものである。
[0008] The invention corresponding to claim 2 also includes a pseudo halftone processing unit that converts a multivalued image signal into a binary signal by a pseudo halftone reproduction method, and a pseudo halftone processing unit that converts a multilevel image signal into a binary signal by a pseudo halftone reproduction method,
A line memory that sequentially stores value signals and one of the pseudo-halftone binary signals from the pseudo-halftone processing section as a pixel signal of interest, and a plurality of already processed pixels adjacent to or close to the pixel of interest stored in the line memory. Divide the pseudo-halftone binary signal into multiple regions, calculate the signal state value of a part of each region and the density coefficient value of the remaining region, and select the pixel of interest from the relationship between the signal state value and the density coefficient value. A determination unit that performs classification and determines whether the pixel signal of interest has a signal value with a high probability of appearance based on the classified state, and performs an arithmetic operation based on the signal value determination by this determination unit to perform encoding processing. This system is equipped with an arithmetic encoding section that performs the following steps.

【0009】[0009]

【作用】このような構成の本発明においては、疑似中間
調処理部からの疑似中間調2値信号をラインメモリに順
次格納する。そしてこのとき疑似中間調2値信号の1つ
を注目画素信号とし、予測処理部にてラインメモリに格
納される注目画素に隣接又は近接する既に処理済みの複
数の疑似中間調2値信号を複数領域に分割し、その各領
域の一部領域の信号状態値と残り領域の濃度係数値をそ
れぞれ求め、この信号状態値と濃度係数値の関係から注
目画素を分類する。そして注目画素の分類を基に予測テ
ーブルを使用して注目画素の予測信号を決定し出力する
。そして予測誤差作成部にて予測信号と注目画素信号を
比較して予測的中、予測非的中を示す予測誤差信号を出
力する。こうして得られる予測誤差信号を符号化する。
[Operation] In the present invention having such a structure, the pseudo halftone binary signals from the pseudo halftone processing section are sequentially stored in the line memory. At this time, one of the pseudo halftone binary signals is set as a pixel signal of interest, and a plurality of already processed pseudo halftone binary signals adjacent to or close to the pixel of interest stored in the line memory are stored in the prediction processing unit. The pixel of interest is divided into regions, the signal state value of a part of each region and the density coefficient value of the remaining region are determined, and the pixel of interest is classified based on the relationship between the signal state value and the density coefficient value. Then, based on the classification of the pixel of interest, a prediction signal of the pixel of interest is determined and output using a prediction table. Then, the prediction error generation unit compares the prediction signal with the pixel signal of interest and outputs a prediction error signal indicating whether the prediction is accurate or not. The prediction error signal obtained in this way is encoded.

【0010】また本発明においては、信号状態値と濃度
係数値の関係から注目画素を分類し、その分類された状
態の基で注目画素信号が出現確率の高い信号値か否かを
判定する。そしてこの信号値判定を基に算術演算を行っ
て符号化処理を行う。
Further, in the present invention, the pixel of interest is classified based on the relationship between the signal state value and the density coefficient value, and based on the classified state, it is determined whether the pixel of interest signal has a signal value with a high probability of appearance. Then, arithmetic operations are performed based on this signal value determination to perform encoding processing.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1に示すように、多値画像信号を誤差拡
散法、平均誤差最小法等の疑似中間調再現法を使用して
2値信号に変換する疑似中間調処理部1に入力し、疑似
中間調2値信号に変換している。
As shown in FIG. 1, a multilevel image signal is input to a pseudo halftone processing section 1 that converts it into a binary signal using a pseudo halftone reproduction method such as an error diffusion method or a minimum average error method. It is converted into a pseudo-halftone binary signal.

【0013】この疑似中間調処理部1からの疑似中間調
2値信号をラインメモリ2に順次格納するとともに予測
誤差作成部としての排他的論理和回路3の一方の入力端
子に入力している。前記ラインメモリ2に格納された複
数の疑似中間調2値信号は予測処理部4にそれぞれ供給
されている。
The pseudo-halftone binary signals from the pseudo-halftone processing section 1 are sequentially stored in a line memory 2 and are input to one input terminal of an exclusive OR circuit 3 as a prediction error generating section. The plurality of pseudo halftone binary signals stored in the line memory 2 are each supplied to a prediction processing section 4.

【0014】前記予測処理部4は、前記疑似中間調処理
部1からの疑似中間調2値信号の1つを注目画素信号と
し、前記ラインメモリ2に格納される注目画素に隣接又
は近接する既に処理済みの複数の疑似中間調2値信号を
複数の領域に分割し、その各領域の一部領域の信号状態
値と残り領域の濃度係数値をそれぞれ求め、その求めた
信号状態値と濃度係数値の関係から注目画素を分類し、
予測テーブル5を使用して注目画素の予測信号を決定し
出力するようになっている。
The prediction processing unit 4 uses one of the pseudo halftone binary signals from the pseudo halftone processing unit 1 as a pixel signal of interest, and uses an existing pixel adjacent to or close to the pixel of interest stored in the line memory 2. Divide a plurality of processed pseudo-halftone binary signals into a plurality of regions, calculate the signal state value of a part of each region and the density coefficient value of the remaining region, and calculate the signal state value and the density coefficient. Classifies the pixel of interest based on numerical relationships,
The prediction table 5 is used to determine and output a prediction signal for the pixel of interest.

【0015】領域分割は、具体的には図2に示すように
注目画素*に対して隣接した既に処理済みの4個の疑似
中間調2値信号81 ,82 ,83 ,84 で第1
の領域X1 を形成し、また注目画素*に対して近接し
前記第1の領域X1 に対して隣接した既に処理済みの
8個の疑似中間調2値信号91 ,92 ,93 ,9
4 ,95 ,96 ,97 ,98 で第2の領域X
2 を形成している。
Specifically, as shown in FIG. 2, the region division is performed by dividing the pixel of interest * into four adjacent pseudo halftone binary signals 81 , 82 , 83 , 84 that have already been processed.
Eight pseudo-halftone binary signals 91, 92, 93, 9 which have already been processed and which form a region
4 , 95 , 96 , 97 , 98 in the second region
2 is formed.

【0016】前記予測テーブル5は図3に示すように、
第1の領域X1 の信号状態を24 で表した信号状態
値A=0〜15と第2の領域X2 に対応した濃度係数
値B=0〜8とで決まるアドレスに「0」又は「1」の
予測信号が予め設定されている。前記予測処理部4から
出力される予測信号を前記排他的論理和回路3の他方の
入力端子に入力している。
The prediction table 5, as shown in FIG.
"0" or "1" is assigned to the address determined by the signal state value A=0 to 15 representing the signal state of the first region X1 as 24 and the density coefficient value B=0 to 8 corresponding to the second region X2. A predicted signal is set in advance. The prediction signal output from the prediction processing section 4 is input to the other input terminal of the exclusive OR circuit 3.

【0017】前記排他的論理和回路3は、前記予測処理
部4からの予測信号と前記疑似中間調処理部1からの注
目画素信号を比較し、両信号が一致した場合、すなわち
「1」「1」か「0」「0」の場合には予測的中を示す
予測誤差信号「0」を出力し、また入力される両信号が
不一致の場合、すなわち「1」「0」か「0」「1」の
場合には予測非的中を示す予測誤差信号「1」を出力す
るようになっている。前記排他的論理和回路3からの予
測誤差信号を予測誤差信号メモリ6に記憶させるように
なっている。
The exclusive OR circuit 3 compares the prediction signal from the prediction processing section 4 and the target pixel signal from the pseudo halftone processing section 1, and when both signals match, that is, "1" and " If the prediction error signal is "1" or "0" or "0", a prediction error signal "0" indicating a correct prediction is output, and if the two input signals do not match, that is, "1" or "0" or "0" is output. In the case of "1", a prediction error signal "1" indicating a non-accurate prediction is output. The prediction error signal from the exclusive OR circuit 3 is stored in a prediction error signal memory 6.

【0018】前記予測誤差信号メモリ6に記憶された予
測誤差信号は符号化部7に読み込まれて符号化されるよ
うになっている。前記符号化部7は例えばランレングス
符号化方式を採用している。
The prediction error signal stored in the prediction error signal memory 6 is read into an encoding section 7 and encoded. The encoding unit 7 employs, for example, a run-length encoding method.

【0019】このような構成の本実施例においては、入
力される多値画像信号は疑似中間調処理部1において疑
似中間調再現法により疑似中間調2値信号に変換される
。そしてこの疑似中間調処理部1から疑似中間調2値信
号がラインメモリ2に順次格納され、また排他的論理和
回路3の一方の入力端子にも入力される。
In this embodiment having such a configuration, the input multi-valued image signal is converted into a pseudo-halftone binary signal by the pseudo-halftone reproduction method in the pseudo-halftone processing section 1. The pseudo halftone binary signals from the pseudo halftone processing section 1 are sequentially stored in the line memory 2 and also input to one input terminal of the exclusive OR circuit 3.

【0020】予測処理部4は疑似中間調処理部1からの
疑似中間調2値信号の1つを注目画素信号とし、ライン
メモリ2に格納された注目画素*に隣接する第1の領域
X1の信号状態値と近接する第2の領域X2 の濃度係
数値をそれぞれ求め、この信号状態値と濃度係数値の関
係から注目画素*を分類し、その分類された注目画素*
を基に予測テーブル5を使用して注目画素の予測信号を
決定し出力する。
The prediction processing section 4 uses one of the pseudo halftone binary signals from the pseudo halftone processing section 1 as a pixel of interest signal, and uses the signal of the first region X1 adjacent to the pixel of interest * stored in the line memory 2. The signal state value and the density coefficient value of the adjacent second region
Based on the prediction table 5, a prediction signal of the pixel of interest is determined and output.

【0021】すなわち第1の領域X1 の信号状態値と
は、各疑似中間調2値信号81 ,82,83 ,84
 を2進符号系列と見なし、「0,0,0,0」の場合
は0、「0,1,0,1」の場合は5というように変換
された値であり、その結果信号状態値Aの値として0〜
15のいずれかの値を得る。また第2の領域X2 の濃
度係数値とは、各疑似中間調2値信号91 ,92 ,
93 ,94 ,95 ,96 ,97 ,98の重み
係数を「a,b,c,d,e,f,g,h」とした場合
、濃度係数値Bを計算式、B=91 ×a+92 ×b
+93 ×c+94 ×d+95 ×e+96 ×f+
97 ×g+98 ×h、で求めた値であり、重み係数
「a,b,c,d,e,f,g,h」を「1,1,1,
1,1,1,1,1」とすると、濃度係数値Bは0〜8
のいずれかの値を得る。こうして注目画素*を分類する
。そして状態信号値Aと濃度係数値Bにより予測テーブ
ル5から対応する予測信号が決められる。なお、予測テ
ーブル5における予測信号の設定は、トレーニング画像
等を使用して予測信号値を予め求めて行う。
That is, the signal state values of the first region X1 are the pseudo halftone binary signals 81, 82, 83, 84.
is regarded as a binary code sequence, and the converted value is 0 for "0, 0, 0, 0" and 5 for "0, 1, 0, 1", and as a result, the signal state value The value of A is 0~
Obtain one of 15 values. Further, the density coefficient value of the second region X2 means each of the pseudo halftone binary signals 91, 92,
When the weighting coefficients of 93, 94, 95, 96, 97, and 98 are "a, b, c, d, e, f, g, h", the density coefficient value B is calculated using the formula, B=91 × a + 92 × b
+93 ×c+94 ×d+95 ×e+96 ×f+
97 × g + 98 × h, and the weighting coefficients “a, b, c, d, e, f, g, h” are changed to “1, 1, 1,
1, 1, 1, 1, 1'', the concentration coefficient value B is 0 to 8.
Get one of the values. In this way, the pixel of interest * is classified. Then, a corresponding prediction signal is determined from the prediction table 5 based on the state signal value A and the density coefficient value B. Note that the setting of the predicted signal in the prediction table 5 is performed by calculating the predicted signal value in advance using a training image or the like.

【0022】このような予測処理を行うことにより予測
的中率が向上するので、その結果排他的論理和回路3か
ら予測的中を示す予測誤差信号「0」が出力される確率
が高くなる。すなわち予測誤差信号において「0」の連
続する長さが長くなり、ランレングス符号化等の符号化
方式によってこの予測誤差信号の符号化を行った場合に
符号化効率の向上が図れ、従って充分なデータ圧縮がで
きることになる。次に本発明の他の実施例を図面を参照
して説明する。なお、前記実施例と同一の部分には同一
符号を付して詳細な説明は省略する。
By performing such prediction processing, the prediction accuracy rate is improved, and as a result, the probability that the exclusive OR circuit 3 outputs a prediction error signal "0" indicating a prediction accuracy is increased. In other words, the length of consecutive 0's in the prediction error signal becomes longer, and when this prediction error signal is encoded using an encoding method such as run-length encoding, the encoding efficiency can be improved, and therefore, sufficient This allows data compression. Next, other embodiments of the present invention will be described with reference to the drawings. Note that the same parts as in the above embodiment are given the same reference numerals and detailed explanations will be omitted.

【0023】これは図4に示すように、ラインメモリ2
に格納された複数の疑似中間調2値信号を判定部11に
供給し、この判定部11において疑似中間調2値信号の
1つを注目画素信号とし、注目画素*に隣接する第1の
領域X1 の疑似中間調2値信号81 ,82 ,83
 ,84 から信号状態値を求め、また注目画素*に近
接する第2の領域X2 の疑似中間調2値信号91 ,
92 ,93 ,94 ,95 ,96 ,97,98
 から濃度係数値を求め、この信号状態値と濃度係数値
の関係から注目画素*を分類し、その分類された状態の
基で注目画素信号が出現確率の高い信号値、すなわち優
勢シンボルであるか出現確率の低い信号値、すなわち劣
勢シンボルであるかを判定するようにしている。この判
定には画素信号の過去の状態がどうであったかを管理す
る状態管理メモリ12からの状態管理情報が使用される
ようになっている。そして前記判定部11は判定結果を
算術符号化部13に供給している。
As shown in FIG.
A plurality of pseudo halftone binary signals stored in the pixel * are supplied to the determination unit 11, and the determination unit 11 sets one of the pseudo halftone binary signals as a pixel signal of interest and selects a first region adjacent to the pixel of interest *. X1 pseudo halftone binary signals 81, 82, 83
, 84 , and the pseudo halftone binary signal 91 , of the second region X2 close to the pixel of interest *.
92 , 93 , 94 , 95 , 96 , 97, 98
Find the density coefficient value from , classify the pixel of interest* based on the relationship between this signal state value and the density coefficient value, and determine whether the pixel of interest signal is a signal value with a high probability of appearance, that is, a dominant symbol, based on the classified state. It is determined whether the signal value has a low probability of appearance, that is, whether it is an inferior symbol. This determination uses state management information from the state management memory 12 that manages the past state of the pixel signal. The determination section 11 supplies the determination result to the arithmetic encoding section 13.

【0024】前記算術符号化部13は前記判定部11か
らの判定結果、すなわち判定されたシンボルの出現確率
を基に算術演算を行って符号を形成するもので、算術符
号化方式とは発生頻度の低い劣勢シンボルの出現確率が
低ければ低いほど符号化された信号系列が短くなる傾向
を示す符号化方式である。
The arithmetic encoding unit 13 performs arithmetic operations to form a code based on the determination result from the determination unit 11, that is, the determined probability of occurrence of the symbol. This is an encoding method that shows a tendency for the encoded signal sequence to become shorter as the probability of appearance of an inferior symbol with a lower value decreases.

【0025】しかして第1の領域X1 の各疑似中間調
2値信号81 ,82 ,83 ,84 により求めら
れる信号状態値と、第2の領域X2 の各疑似中間調2
値信号91 ,92,93 ,94 ,95 ,96 
,97 ,98 により求められる濃度係数値の関係か
ら注目画素*を分類することによって、分類された各状
態における劣勢シンボルの出現確率が低くなる傾向とな
り、充分なデータ圧縮ができる。このように本実施例に
おいても前記実施例と同様の効果が得られるものである
[0025] Thus, the signal state value obtained from each pseudo halftone binary signal 81, 82, 83, 84 in the first region X1 and each pseudo halftone 2 in the second region
Value signals 91, 92, 93, 94, 95, 96
, 97 , 98 , by classifying the pixel of interest * based on the relationship of density coefficient values determined by , 97 , 98 , the probability of appearance of an inferior symbol in each classified state tends to be lower, and sufficient data compression can be achieved. In this way, the same effects as in the previous embodiment can be obtained in this embodiment as well.

【0026】なお、前記実施例では注目画素に対して隣
接した第1の領域と近接した第2の領域を使用して注目
画素の分類を行ったが必ずしもこれに限定されるもので
はなく、図2に点線で示すように9個の疑似中間調2値
信号101 ,102 ,103,104 ,105 
,106 ,107 ,108 ,109 からなる近
接した第3の領域を設定し、第2の領域を使用せずに第
1の領域の信号状態値と第3の領域の濃度係数値から注
目画素を分類しても、また第1、第2、第3の3つの領
域を使って3次元的に注目画素を分類してもよく、その
ときに信号状態値と濃度係数値の割当ては限定されるも
のではない。 また領域の決め方は前記実施例に限定されるものでない
のは勿論である。
In the above embodiment, the pixel of interest is classified using the first area adjacent to the pixel of interest and the second area adjacent to the pixel of interest, but the classification is not limited to this. 2, nine pseudo-halftone binary signals 101, 102, 103, 104, 105 are shown by dotted lines.
, 106 , 107 , 108 , 109 is set, and the pixel of interest is determined from the signal state value of the first region and the density coefficient value of the third region without using the second region. Alternatively, the pixel of interest may be classified three-dimensionally using the first, second, and third regions, and in this case, the allocation of signal state values and density coefficient values is limited. It's not a thing. Furthermore, it goes without saying that the method of determining the area is not limited to the above embodiment.

【0027】[0027]

【発明の効果】以上詳述したように本発明によれば、ラ
ンダムディザ法による疑似中間調再現画像を使用する画
像データ圧縮において、充分な符号化効率の向上が図れ
、疑似中間調再現画像を効率よく圧縮できる画像データ
圧縮装置を提供できるものである。
As described in detail above, according to the present invention, it is possible to sufficiently improve encoding efficiency in image data compression using a pseudo-halftone reproduction image by the random dither method, and It is possible to provide an image data compression device that can perform efficient compression.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】同実施例における注目画素と各領域との関係を
示す図。
FIG. 2 is a diagram showing the relationship between a pixel of interest and each area in the same example.

【図3】同実施例における予測テーブルの内容を示す図
FIG. 3 is a diagram showing the contents of a prediction table in the same embodiment.

【図4】本発明の他の実施例を示すブロック図。FIG. 4 is a block diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…疑似中間調処理部、2…ラインメモリ、3…排他的
論理和回路(予測誤差作成部)、4…予測処理部、5…
予測テーブル、7…符号化部、11…判定部、13…算
術符号化部。
DESCRIPTION OF SYMBOLS 1... Pseudo halftone processing section, 2... Line memory, 3... Exclusive OR circuit (prediction error creation section), 4... Prediction processing section, 5...
Prediction table, 7... Encoding section, 11... Judgment section, 13... Arithmetic encoding section.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  多値画像信号を疑似中間調再現法によ
り2値信号に変換する疑似中間調処理部と、この疑似中
間調処理部からの疑似中間調2値信号を順次格納するラ
インメモリと、信号状態値と濃度係数値とで決まるアド
レスに予測信号を設定した予測テーブルと、前記疑似中
間調処理部からの疑似中間調2値信号の1つを注目画素
信号とし、前記ラインメモリに格納される注目画素に隣
接又は近接する既に処理済みの複数の疑似中間調2値信
号を複数領域に分割し、その各領域の一部領域の信号状
態値と残り領域の濃度係数値をそれぞれ求め、この信号
状態値と濃度係数値の関係から注目画素を分類し、前記
予測テーブルを使用して前記注目画素の予測信号を決定
し出力する予測処理部と、この予測処理部からの予測信
号と前記注目画素信号を比較して予測的中、予測非的中
を示す予測誤差信号を出力する予測誤差作成部と、この
予測誤差作成部からの予測誤差信号を符号化する符号化
部を設けたことを特徴とする画像データ圧縮装置。
1. A pseudo-halftone processing unit that converts a multilevel image signal into a binary signal using a pseudo-halftone reproduction method, and a line memory that sequentially stores the pseudo-halftone binary signal from the pseudo-halftone processing unit. , a prediction table in which a prediction signal is set at an address determined by a signal state value and a density coefficient value, and one of the pseudo halftone binary signals from the pseudo halftone processing section are set as a pixel signal of interest, and stored in the line memory. A plurality of already processed pseudo-halftone binary signals adjacent to or close to the pixel of interest to be processed are divided into a plurality of regions, and the signal state value of a part of each region and the density coefficient value of the remaining region are respectively determined, a prediction processing section that classifies the pixel of interest based on the relationship between the signal state value and the density coefficient value, determines and outputs a prediction signal of the pixel of interest using the prediction table; A prediction error generation unit that compares the pixel signal of interest and outputs a prediction error signal indicating whether the prediction is correct or incorrect, and an encoding unit that encodes the prediction error signal from this prediction error generation unit are provided. An image data compression device characterized by:
【請求項2】  多値画像信号を疑似中間調再現法によ
り2値信号に変換する疑似中間調処理部と、この疑似中
間調処理部からの疑似中間調2値信号を順次格納するラ
インメモリと、前記疑似中間調処理部からの疑似中間調
2値信号の1つを注目画素信号とし、前記ラインメモリ
に格納される注目画素に隣接又は近接する既に処理済み
の複数の疑似中間調2値信号を複数領域に分割し、その
各領域の一部領域の信号状態値と残り領域の濃度係数値
をそれぞれ求め、この信号状態値と濃度係数値の関係か
ら前記注目画素を分類し、その分類された状態の基で注
目画素信号が出現確率の高い信号値か否かを判定する判
定部と、この判定部による信号値判定を基に算術演算を
行って符号化処理を行う算術符号化部を設けたことを特
徴とする画像データ圧縮装置。
2. A pseudo-halftone processing unit that converts a multilevel image signal into a binary signal using a pseudo-halftone reproduction method, and a line memory that sequentially stores the pseudo-halftone binary signal from the pseudo-halftone processing unit. , one of the pseudo halftone binary signals from the pseudo halftone processing unit is taken as a pixel signal of interest, and a plurality of already processed pseudo halftone binary signals adjacent to or close to the pixel of interest stored in the line memory is divided into a plurality of regions, the signal state value of a part of each region and the density coefficient value of the remaining region are determined, the pixel of interest is classified based on the relationship between the signal state value and the density coefficient value, and the classified pixel is classified. a determination unit that determines whether the pixel signal of interest has a signal value with a high probability of appearance based on the state of An image data compression device comprising:
JP3002053A 1991-01-11 1991-01-11 Picture data compressor Pending JPH04239271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3002053A JPH04239271A (en) 1991-01-11 1991-01-11 Picture data compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3002053A JPH04239271A (en) 1991-01-11 1991-01-11 Picture data compressor

Publications (1)

Publication Number Publication Date
JPH04239271A true JPH04239271A (en) 1992-08-27

Family

ID=11518599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3002053A Pending JPH04239271A (en) 1991-01-11 1991-01-11 Picture data compressor

Country Status (1)

Country Link
JP (1) JPH04239271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241068A (en) * 2006-03-10 2007-09-20 Fuji Xerox Co Ltd Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241068A (en) * 2006-03-10 2007-09-20 Fuji Xerox Co Ltd Image forming apparatus

Similar Documents

Publication Publication Date Title
US4547811A (en) Method and apparatus for gray level signal processing
JP3284932B2 (en) Image processing device
US5282256A (en) Binary image data coding method having the function of correcting errors derived from coding
JPH04239271A (en) Picture data compressor
JP3223046B2 (en) Error diffusion coding apparatus for binary image
JP2812232B2 (en) Halftone image data compression method
JPH06284281A (en) Picture processor
JPS5844861A (en) Processing system for intermediate tone signal
JPH0496575A (en) Picture coding method
JP3263218B2 (en) Image information data compression and playback device
JP3732329B2 (en) Pseudo halftone image encoding apparatus and encoding method
JPH0468771A (en) Picture data compression device
JPH06164905A (en) Picture processing unit
JPS5814674A (en) Image coding system
JP2584826B2 (en) Image data processing device
JPH0411460A (en) Picture data compressor
JPH0275273A (en) Block coding system for multi-value picture
JPH01188166A (en) Encoding method
JPH01186060A (en) Picture processing method
JPH11353475A (en) Image processor and its method
JPH10210300A (en) Pseudo halftone picture encoding device and decoding device
JPH05336348A (en) Pseudo medium gradation picture processing method
JPS5812472A (en) Picture signal processor
JPS63290070A (en) Picture processor
JPS6028186B2 (en) Image prediction restoration method