JPH0423809A - Drying of p-vinyl phenolic polymer - Google Patents
Drying of p-vinyl phenolic polymerInfo
- Publication number
- JPH0423809A JPH0423809A JP12661890A JP12661890A JPH0423809A JP H0423809 A JPH0423809 A JP H0423809A JP 12661890 A JP12661890 A JP 12661890A JP 12661890 A JP12661890 A JP 12661890A JP H0423809 A JPH0423809 A JP H0423809A
- Authority
- JP
- Japan
- Prior art keywords
- vinylphenol
- organic solvent
- polymer
- solution
- heating tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 59
- 238000001035 drying Methods 0.000 title claims description 10
- 229920002554 vinyl polymer Polymers 0.000 title abstract 3
- FUGYGGDSWSUORM-UHFFFAOYSA-N 4-hydroxystyrene Chemical compound OC1=CC=C(C=C)C=C1 FUGYGGDSWSUORM-UHFFFAOYSA-N 0.000 claims abstract description 172
- 238000010438 heat treatment Methods 0.000 claims abstract description 51
- 239000003960 organic solvent Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims description 33
- 238000000926 separation method Methods 0.000 claims description 21
- 239000000843 powder Substances 0.000 abstract description 25
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000178 monomer Substances 0.000 abstract description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000007795 chemical reaction product Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 238000009835 boiling Methods 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000007086 side reaction Methods 0.000 abstract 1
- 230000008016 vaporization Effects 0.000 abstract 1
- 229920001577 copolymer Polymers 0.000 description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 34
- JESXATFQYMPTNL-UHFFFAOYSA-N 2-ethenylphenol Chemical compound OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 24
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 24
- 239000000047 product Substances 0.000 description 23
- 238000002834 transmittance Methods 0.000 description 21
- 230000008033 biological extinction Effects 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 19
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 239000002904 solvent Substances 0.000 description 16
- 238000011282 treatment Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 10
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 9
- 229920001519 homopolymer Polymers 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 6
- 235000009508 confectionery Nutrition 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- -1 iron ions Chemical class 0.000 description 4
- IXQGCWUGDFDQMF-UHFFFAOYSA-N o-Hydroxyethylbenzene Natural products CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- JAMNSIXSLVPNLC-UHFFFAOYSA-N (4-ethenylphenyl) acetate Chemical compound CC(=O)OC1=CC=C(C=C)C=C1 JAMNSIXSLVPNLC-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000006266 etherification reaction Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000010887 waste solvent Substances 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229920000037 Polyproline Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000037062 Polyps Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- UACSZOWTRIJIFU-UHFFFAOYSA-N hydroxymethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCO UACSZOWTRIJIFU-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical group 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、p−ビニルフェノール系重合体の乾燥方法に
関する。さらに詳しくは、p−ビニルフェノール系重合
体の有4I溶媒溶液から、該重合体の着色を増すことな
く、軽質成分、すなわち有機溶媒、さらには必要に応じ
て未反応モノマーや揮発性副反応物等を蒸発させて除去
し、p−ビニルフェノール系重合体の乾燥品を得る方法
に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for drying p-vinylphenol polymers. More specifically, from a solution of a p-vinylphenol-based polymer in a 4I solvent, light components, that is, organic solvents, and, if necessary, unreacted monomers and volatile side-reactants can be extracted without increasing the coloring of the polymer. The present invention relates to a method for obtaining a dried p-vinylphenol polymer by evaporating and removing such substances.
p−ビニルフェノール系重合体は、感光材分野において
有用な物質であり、特にLSI製造のためのマイクロフ
ォトレジストの分野において極めて有用な物質である。P-vinylphenol polymers are useful substances in the field of photosensitive materials, particularly in the field of microphotoresists for LSI manufacturing.
これら感光材の用途においては、紫外から可視光の領域
において着色の少ない、すなわち光透過性の高いp−ビ
ニルフェノール系重合体が求められている。特にマイク
ロフォトレジストの分野において、将来ますます集積度
の高いLSIを製造するために遠紫外域(例えばKrF
エキシマレーザ−24Bns光)において光透過性の高
いp−ビニルフェノール系重合体が切望されている。In the use of these photosensitive materials, there is a demand for p-vinylphenol polymers that exhibit little coloring in the ultraviolet to visible light range, that is, have high light transmittance. Particularly in the field of microphotoresists, in the far ultraviolet region (for example, KrF
A p-vinylphenol polymer having high light transmittance in excimer laser (24Bns light) is desired.
(従来の技術)
従来から、p−ビニルフェノールの単独重合体または共
重合体は、一般に、前者はp−ビニルフェノールの単独
重合反応、後者はp−ビニルフェノールと他のコモノマ
ーとの共重合反応によって得ている。そして、通常、こ
れらの重合反応は有機溶媒中で行われ、重合反応後、得
られた反応溶液、すなわち生成重合体の有機溶媒溶液が
ら該有機溶媒を除去してp−ビニルフェノールの単独ま
たは共重合体の乾燥品を得ている。この反応溶液からp
−ビニルフェノールの単独または共重合体の乾燥品を得
る方法として従来行われている方法は次のような方法で
ある。すなわち、一つの方法は、反応溶液の有機溶媒は
溶解するが重合体は溶解しない別の溶媒、すなわち水あ
るいはへキサン等の中へ反応溶液を投入して、重合体を
沈殿させ、その沈殿物を濾過あるいは遠心分離によって
溶媒と分離した後、常圧あるいは減圧下で加熱して残存
溶媒を除去し、乾燥する方法である。この方法は、p−
ビニルフェノールの単独または共重合体の着色を増すこ
となく光透過性を維持するという観点からは好ましい方
法であって、重合体沈殿物の残存溶媒除去のための加熱
に当たって過度に加熱しないように注意すれば、光透過
性の低下を実質的に避けてp−ビニルフェノールの単独
または共重合体の乾燥品を得ることが可能である。しか
しながら、この方法では、p−ビニルフェノールの単独
または共重合体を沈殿させるために多量の水あるいはヘ
キサン等の沈殿溶媒を必要とするという問題がある。ず
なわら、この沈殿溶媒として、安価な工業用水を用いる
と、マイクロフォトレジスト用樹脂にとって好ましくな
い鉄イオン、塩素イオン等の無機イオンが不純物として
p−ビニルフェノールの単独または共重合体の乾燥品に
含まれてしまうという問題がある。したがって、沈殿溶
媒として高価な純水あるいはヘキサン等を用いる必要が
あり、沈殿溶媒にコストがかかるという問題がある。さ
らには、沈殿溶媒に係わる多量の廃水ないし廃溶媒が発
生し、その処理にも大きな問題がある。また、他の一つ
の方法は、反応溶液を直接ロータリーエバポレーターに
て減圧下に加熱して有機溶媒を留去する方法である。こ
の方法では、実験室的に少量の反応溶液を処理する場合
はともかく、多量の反応溶液を処理する場合には、有機
溶媒の蒸発が進行するにしたがって該溶液の粘度が上昇
し、粘度が非常に高い飴状の厚膜が生じ、該厚膜の内部
からの有機溶媒の蒸発が非常に困難となり、したがって
乾燥に長時間の加熱を要し、その結果p−ビニルフェノ
ールの単独または共重合体の光透過性が低下し、また加
熱時間を短縮しようとして加熱温度を高くすれば、溶液
の粘度が下がり溶媒の蒸発速度を増すことはできるが、
高温での加熱はp−ビニルフェノールの単独または共重
合体の光透過性の低下をより強く促進することとなり、
結局この方法では光透過性の低下を来たすことなくp−
ビニルフェノールの単独または共重合体の乾燥品を得る
ことができない。さらに他の一つの方法は、反応溶液を
薄膜7発機にて減圧下に加熱して有機溶媒を留去する方
法である。(Prior Art) Conventionally, homopolymers or copolymers of p-vinylphenol have generally been produced by a homopolymerization reaction of p-vinylphenol for the former, and a copolymerization reaction of p-vinylphenol and other comonomers for the latter. obtained by. These polymerization reactions are usually carried out in an organic solvent, and after the polymerization reaction, the organic solvent is removed from the resulting reaction solution, that is, a solution of the produced polymer in an organic solvent, and p-vinylphenol is added alone or in combination. A dried product of the polymer is obtained. From this reaction solution p
- The following method has been conventionally used to obtain a dried product of vinylphenol alone or as a copolymer. That is, one method is to precipitate the polymer by pouring the reaction solution into another solvent, such as water or hexane, which dissolves the organic solvent in the reaction solution but does not dissolve the polymer. This is a method in which the solvent is separated by filtration or centrifugation, and then the remaining solvent is removed by heating under normal pressure or reduced pressure, followed by drying. This method p-
This is a preferable method from the viewpoint of maintaining optical transparency without increasing the coloration of vinylphenol alone or copolymer, and care must be taken not to overheat when heating to remove residual solvent from polymer precipitate. By doing so, it is possible to obtain a dried product of p-vinylphenol alone or a copolymer while substantially avoiding a decrease in light transmittance. However, this method has a problem in that a large amount of water or a precipitation solvent such as hexane is required to precipitate the p-vinylphenol homopolymer or copolymer. However, if cheap industrial water is used as the precipitation solvent, inorganic ions such as iron ions and chloride ions, which are undesirable for microphotoresist resins, will be present as impurities, resulting in a dry product of p-vinylphenol alone or copolymer. The problem is that it is included in Therefore, it is necessary to use expensive pure water, hexane, etc. as a precipitation solvent, and there is a problem that the precipitation solvent is expensive. Furthermore, a large amount of waste water or waste solvent related to the precipitation solvent is generated, and its treatment is also a major problem. Another method is to directly heat the reaction solution under reduced pressure in a rotary evaporator to distill off the organic solvent. In this method, the viscosity of the solution increases as the organic solvent evaporates, and the viscosity becomes extremely high when processing a large amount of reaction solution, regardless of whether it is a small amount of reaction solution being processed in the laboratory. A thick candy-like film is formed, which makes it very difficult to evaporate the organic solvent from inside the thick film, and therefore requires long heating times for drying, resulting in the formation of p-vinylphenol mono or copolymers. However, if the heating temperature is increased to shorten the heating time, the viscosity of the solution will decrease and the evaporation rate of the solvent will increase.
Heating at high temperatures will more strongly promote the decrease in light transmittance of p-vinylphenol alone or copolymer.
In the end, this method allows p-
It is not possible to obtain a dry product of vinylphenol alone or as a copolymer. Yet another method is to heat the reaction solution under reduced pressure using a thin film generator to distill off the organic solvent.
この方法でも、上記ロータリーエバポレーターによる場
合と同種の問題があり、光透過性の低下を来たすことな
くP−ビニルフェノールの単独または共重合体の乾燥品
を得ることができない、したがって、反応溶液から、光
透過性の低下を来たすことなくp−ビニルフェノールの
単独または共重合体の乾燥品を、工業的にかつ効率良く
取得し得る方法の開発が望まれている。This method also has the same problem as the rotary evaporator described above, and it is not possible to obtain a dried product of P-vinylphenol alone or as a copolymer without causing a decrease in light transmittance. Therefore, from the reaction solution, It is desired to develop a method for industrially and efficiently obtaining a dried product of p-vinylphenol alone or a copolymer without causing a decrease in light transmittance.
上記は、p−ビニルフェノールの有機溶媒中での単独ま
たは共重合反応によって合成されたp−ビニルフェノー
ルの単独または共重合体に関して述べたが、従来から、
かく合成されたp−ビニルフェノール単独または共重合
体を、その特性、特に光透過性を改善するために、水素
化処理することも、特開平1−103604号公報に掃
案されており、知られたことである。このp−ビニルフ
ェノールの単独または共重合体の水素化処理の方法は、
pビニルフェノールの単独または共重合体を、低級アル
コール、低級ケトン等の有機溶媒に溶解し、第■族金X
触媒の存在下に水素と接触させる方法である。この水素
化処理においても、水素化処理後、触媒を分離した後の
水素化処理溶液から水素化されたp−ビニルフェノール
の単独または共重合体の乾燥品を取得する必要があるが
、従来行われている当該乾燥品の取得方法は、上記重合
反応の反応溶液からの重合体乾燥品取得の場合と同様、
該水素化処理溶液を沈殿溶媒中に投入する方法、あるい
は該水素化処理溶液を直接ロータリーエバポレーターあ
るいは薄膜蒸発機にて減圧下に加熱して有機溶媒を留去
する方法であって、上記重合反応の反応溶液からの重合
体乾燥品取得の場合と同様の問題がある。このp−ビニ
ルフェノールの単独または共重合体の水素化処理の主た
る目的が光透過性の改善にあるだけに、水素化処理溶液
から光透過性の低下を来たすことなく水素化されたp−
ビニルフェノールの単独または共重合体の乾燥品を取得
し得る方法の開発が一層強く望まれている。The above has been described with respect to a p-vinylphenol homopolymer or a copolymer synthesized by a homopolymerization reaction or a copolymerization reaction of p-vinylphenol in an organic solvent.
JP-A-1-103604 discloses hydrogenating the thus synthesized p-vinylphenol alone or copolymer in order to improve its properties, particularly its light transmittance, and this is a well-known method. This is what happened. This method of hydrogenating p-vinylphenol alone or copolymer is as follows:
A single or copolymer of p-vinylphenol is dissolved in an organic solvent such as a lower alcohol or lower ketone,
This method involves contacting hydrogen in the presence of a catalyst. In this hydrogenation process as well, it is necessary to obtain a dried product of hydrogenated p-vinylphenol alone or as a copolymer from the hydrogenation solution after the catalyst has been separated. The method for obtaining the dried product is the same as in the case of obtaining the dried polymer product from the reaction solution of the polymerization reaction described above.
A method in which the hydrogenated solution is introduced into a precipitation solvent, or a method in which the hydrogenated solution is directly heated under reduced pressure in a rotary evaporator or a thin film evaporator to distill off the organic solvent, and the above polymerization reaction is performed. There are similar problems as in the case of obtaining a dry polymer product from a reaction solution. Since the main purpose of hydrogenating p-vinylphenol alone or as a copolymer is to improve light transmittance, hydrogenated p-
There is a strong desire to develop a method for obtaining a dried product of vinylphenol alone or as a copolymer.
(解決しようとする課B)
したがって、本発明の目的は、上記の重合反応の反応溶
液あるいは水素化処理溶液等から、すなわちp−ビニル
フェノールの単独重合体であるか共重合体であるかの別
なく、またそれらに水素化処理等の変性処理が施されて
いるか施されてないかの別なく、要するにp−ビニルフ
ェノール系重合体の有機溶媒溶液から、該p−ビニルフ
ェノール系重合体の光透過性を低下することなく、軽質
成分、すなわち有機溶媒、さらには必要に応じて未反応
モノマーや揮発性副反応物等を除去して該p−ビニルフ
ェノール系重合体の乾燥品を得ることができ、かつ工業
的に効率良〈実施し得る方法を提供することにある。(Question B to be Solved) Therefore, the object of the present invention is to obtain a p-vinylphenol homopolymer or copolymer from the reaction solution of the above polymerization reaction or hydrogenation solution, etc. Regardless of whether or not the p-vinylphenol polymer has been subjected to modification treatment such as hydrogenation treatment, in short, the p-vinylphenol polymer can be prepared from an organic solvent solution of the p-vinylphenol polymer. To obtain a dry product of the p-vinylphenol-based polymer by removing light components, that is, organic solvents, and, if necessary, unreacted monomers and volatile side reactants, without reducing light transmittance. The objective is to provide a method that is industrially efficient and can be implemented.
(課題を解決するための手段)
その出口が減圧に保たれた分離室に接続されている長管
状の加熱管にp−ビニルフェノール系重合体の有機溶媒
溶液を通し、該長管状の加熱管の出口に接続されている
減圧に保たれた分離室にフラッシュさせるようにすると
、該長管状の加熱管において瞬間的に有機溶媒溶液を所
要温度まで加熱でき、有機溶媒等の軽質成分が蒸発し、
該分離室において極めて容易に有WA溶媒等の軽質成分
を蒸気として除去でき、効率良く円滑に、その光透過性
が実質的に低下することな(、p−ビニルフェノール系
重合体の乾燥粉末を取得し得ることを見出して本発明を
完成した。また、本発明者らは、本発明を完成するに当
たり、本発明の目的のために、被処理物を処理帯域に噴
霧して熱風と接触させるいわゆるスプレードライヤーを
用いても所期の目的が達せられないことも知見している
。(Means for solving the problem) An organic solvent solution of a p-vinylphenol polymer is passed through a long heating tube whose outlet is connected to a separation chamber maintained at reduced pressure. By flushing the organic solvent solution to a separation chamber maintained at reduced pressure connected to the outlet of the tube, the organic solvent solution can be instantaneously heated to the required temperature in the long heating tube, and light components such as organic solvents will evaporate. ,
In the separation chamber, light components such as WA solvents can be removed as vapor very easily, and the dry powder of p-vinylphenol polymer can be removed efficiently and smoothly without substantially reducing its light transmittance. In completing the present invention, the present inventors also discovered that, for the purpose of the present invention, a material to be treated is sprayed into a treatment zone and brought into contact with hot air. It has also been found that using a so-called spray dryer does not achieve the intended purpose.
したがって、本発明の要旨は、p−ビニルフェノール系
重合体の有機溶媒溶液を、内径と長さの比が1:100
以上であって、その出口が減圧に保たれた分離室に接続
されている長管状の加熱管に供給して加熱し、該加熱管
の出口から該減圧に保たれた分離室にフラッシュさせて
軽質成分を蒸気として除去することを特徴すとるp−ビ
ニルフェノール系重合体の乾燥方法に存する。Therefore, the gist of the present invention is to prepare an organic solvent solution of a p-vinylphenol polymer with an inner diameter to length ratio of 1:100.
In the above, the heating tube is heated by being supplied to a long tubular heating tube whose outlet is connected to a separation chamber maintained at a reduced pressure, and flushed from the outlet of the heating tube to the separation chamber maintained at a reduced pressure. A method for drying a p-vinylphenol polymer, characterized in that light components are removed as vapor.
本発明を適用するp−ビニルフェノール系重合体として
は、まず、単独重合体であるポリ−p−ビニルフェノー
ル、P−ビニルフェノールと他のコモノマーとの共重合
体、およびこれらの単独重合体あるいは共重合体を、例
えば上記特開平1−103604号公報に提案されてい
るような方法で、水素化して得られた水素化物があげら
れる。そして、共重合体の場合のコモノマーとしては、
スチレン、メチルスチレン等のスチレン系モノヤー、メ
チルアクリレート、エチルアクリレート、メチルメタク
リレート、ヒドロキシメチルメタクリレート、ブチルア
クリレート等のアクリル系モノマー等があげられる。ま
た、本発明は、上記単独重合体あるいは共重合体にハロ
ゲン化、アルキル化、エステル化またはエーテル化等の
変性処理を施して得られたp−ビニルフェノール系重合
体、あるいは上記単独重合体あるいは共重合体の水素化
物にエステル化またはエーテル化等の変性処理を施して
得られたp−ビニルフェノール系重合体にも適用するこ
とが可能であって、本発明を適用するP−ビニルフェノ
ール系重合体には、かかる変性処理を施して得られたも
のも含まれる。The p-vinylphenol-based polymers to which the present invention is applied first include poly-p-vinylphenol which is a homopolymer, copolymers of P-vinylphenol and other comonomers, and homopolymers or Examples include hydrides obtained by hydrogenating a copolymer, for example, by the method proposed in JP-A-1-103604. In the case of a copolymer, the comonomer is
Examples include styrene monomers such as styrene and methylstyrene, and acrylic monomers such as methyl acrylate, ethyl acrylate, methyl methacrylate, hydroxymethyl methacrylate, and butyl acrylate. The present invention also provides a p-vinylphenol polymer obtained by subjecting the above homopolymer or copolymer to a modification treatment such as halogenation, alkylation, esterification, or etherification, or the above homopolymer or copolymer. It can also be applied to p-vinylphenol-based polymers obtained by subjecting a hydrogenated copolymer to a modification treatment such as esterification or etherification, and the present invention is applicable to p-vinylphenol-based polymers. Polymers also include those obtained by performing such modification treatments.
また、本発明を適用するp−ビニルフェノール系重合体
の有機溶媒溶液における有機溶媒は、当該P−ビニルフ
ェノール系重合体を溶解し得る有@溶媒であれば特に制
限する必要はない、この有機溶媒は、例えば、メタノー
ル、エタノール、イソプロパツール、ブタノール等のア
ルコール類、アセトン、メチルエチルケトン、メチルイ
ソブチルケトン等のケトン類、酢酸エチル、酢酸プチル
等のエステル類、テトラヒドロフラン、ジオキサン等の
エーテル類、メトキシエタノール、エトキシエタノール
等のグリコールエーテル類、フェノール、クレゾール、
エチルフェノール等のフェノール類、ヘンゼン、トルエ
ン等の芳香族炭化水素類、ジクロルメタン、クロロホル
ム等の塩素化炭化水素類等から選択される。また、この
有機溶媒は、通常は当該p−ビニルフェノール系重合体
の合成に当たって用いられた有機溶媒である。すなわち
、本発明を適用するp−ビニルフェノール系重合体の有
機溶媒溶液は、通常は当該p−ビニルフェノール系重合
体の合成における反応溶液である。Further, the organic solvent in the organic solvent solution of the p-vinylphenol polymer to which the present invention is applied does not need to be particularly limited as long as it is a solvent that can dissolve the p-vinylphenol polymer. Examples of solvents include alcohols such as methanol, ethanol, isopropanol, butanol, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as ethyl acetate and butyl acetate, ethers such as tetrahydrofuran and dioxane, and methoxy. Glycol ethers such as ethanol and ethoxyethanol, phenol, cresol,
It is selected from phenols such as ethylphenol, aromatic hydrocarbons such as Hensen and toluene, and chlorinated hydrocarbons such as dichloromethane and chloroform. Further, this organic solvent is usually the organic solvent used in the synthesis of the p-vinylphenol polymer. That is, the organic solvent solution of the p-vinylphenol polymer to which the present invention is applied is usually a reaction solution in the synthesis of the p-vinylphenol polymer.
また、本発明を適用するp−ビニルフェノール系重合体
の有機溶媒溶液におけるp−ビニルフェノール系重合体
の濃度は、特に制限を加える必要はないが、あまり高濃
度で溶液の粘度が高いと長管状加熱管への供給が困難と
なるので、通常50重量%程度までが好ましい。In addition, there is no need to particularly limit the concentration of the p-vinylphenol polymer in the organic solvent solution of the p-vinylphenol polymer to which the present invention is applied, but if the concentration is too high and the viscosity of the solution is high, it will take a long time. Since it becomes difficult to supply the material to the tubular heating tube, it is usually preferred that the amount be up to about 50% by weight.
本発明の実施に当たっては、p−ビニルフェノール系重
合体の有機溶媒溶液を通す長管状加熱管の形状が重要で
ある。本発明においては、内径と長さの比がt:1oo
以上、好ましくは1:500以上の長管状加熱管が用い
られる。加熱管がその内径と長さの比が1:100以上
であることによって、供給された当該有機溶媒溶液が瞬
間的に所要温度まで加熱され、有機溶媒等の軽質成分が
蒸発し、軽質成分の蒸気と重合体粉体の混合物が減圧に
保たれた分離室にフラッシュされる。また、軽質成分の
蒸発に伴って析出した重合体粉体を含む混合物の管内流
速は、軽質成分が蒸気となることによる体積1脹によっ
て、非常な高速となり、加熱管内壁に重合体が付着する
ことを防止するセルフクリーニング効果が現れ、加熱管
が閉塞することなく円滑に連続操業することができる0
本発明の実施に当たって用いることのできる、上記のよ
うな内径と長さの比が1=lOO以上の長管状加熱管を
有し、その出口が減圧に保持し得る分離室に接続されて
いる構造の乾燥機として、例えばホソカワミクロン社製
のCRUX SYSTEMが利用できる。In implementing the present invention, the shape of the long heating tube through which the organic solvent solution of the p-vinylphenol polymer passes is important. In the present invention, the ratio of inner diameter to length is t:1oo
As mentioned above, preferably a long tubular heating tube with a ratio of 1:500 or more is used. Since the heating tube has an inner diameter to length ratio of 1:100 or more, the supplied organic solvent solution is instantaneously heated to the required temperature, light components such as organic solvents are evaporated, and light components are A mixture of steam and polymer powder is flashed into a separation chamber maintained at reduced pressure. In addition, the flow velocity in the tube of the mixture containing the polymer powder precipitated as the light components evaporate becomes extremely high due to the volume expansion caused by the light components becoming vapor, and the polymer adheres to the inner wall of the heating tube. It has a self-cleaning effect that prevents heating pipes from clogging, allowing smooth continuous operation.
A structure that can be used in carrying out the present invention and has a long tubular heating tube with an inner diameter to length ratio of 1=lOO or more as described above, and the outlet thereof is connected to a separation chamber that can be maintained at reduced pressure. As the dryer, for example, CRUX SYSTEM manufactured by Hosokawa Micron Corporation can be used.
また、本発明を実施するに当たり、加熱管における加熱
温度は、通常、p−ビニルフェノール系重合体の有lI
R溶媒溶液の有機溶媒の原発が瞬間的に起こり、かつ析
出した重合体粉体中の残存溶媒量が少なくなるようにそ
の下限が設定され、過剰の高温によって重合体の光透過
性が低下しないように注意して上限が設定される。有機
溶媒と共に未反応モノマーや揮発性副反応物等をも除去
したい場合は、これらの揮発性をも考慮して加熱温度の
上下限が設定される。加熱温度の好ましい範囲は、P−
ビニルフェノール系重合体の種類、有機溶媒をはじめと
する除去したい軽質成分の種類、溶液中の重合体の濃度
、溶液の加熱管への供給速度、分離室の減圧度等によっ
て変り、−概にはいえないが、通常は用いられている有
機溶媒の大気圧下の沸点よりも数十度高い温度から約1
00℃高い温度が適用される。また、加熱管への溶液の
供給速度の好ましい範囲も、加熱温度および上記のよう
な種々の要因(溶液の加熱管への供給速度を除()によ
って変り、−概にはいえないが、通常は401. /
hr−cm” (cm” =加熱管の単位断面積)以下
の流速で溶液が加熱管に供給される。Further, in carrying out the present invention, the heating temperature in the heating tube is usually set to
The lower limit is set so that the organic solvent of the R solvent solution occurs instantaneously and the amount of residual solvent in the precipitated polymer powder is small, so that the light transmittance of the polymer does not decrease due to excessive high temperature. The upper limit is set with care. If it is desired to remove unreacted monomers, volatile side reactants, etc. along with the organic solvent, the upper and lower limits of the heating temperature are set in consideration of their volatility. The preferred range of heating temperature is P-
It varies depending on the type of vinylphenol polymer, the type of light components to be removed including organic solvents, the concentration of the polymer in the solution, the rate of supply of the solution to the heating tube, the degree of vacuum in the separation chamber, etc. No, but from a temperature several tens of degrees higher than the boiling point under atmospheric pressure of the organic solvent normally used,
00°C higher temperature is applied. The preferred range of the solution supply rate to the heating tube also varies depending on the heating temperature and the various factors mentioned above (excluding the solution supply rate to the heating tube); is 401. /
The solution is supplied to the heating tube at a flow rate of less than hr-cm''(cm'' = unit cross-sectional area of the heating tube).
上記のように長管状加熱管に供給され、そこで加熱され
たp−ビニルフェノール系重合体の有機溶媒溶液は、有
機溶媒等の軽質成分の蒸気と重合体粉体の混合物となっ
て減圧に保たれた分離室にフラッシュされる0分離室に
おいて、フィルターサイクロン等の固気分離機構によっ
て、軽質成分の蒸気と重合体粉体とが分離され、重合体
粉体が捕集される。捕集された重合体粉体は、減圧に保
たれ、所定温度に保持された分離室に一定時間滞留させ
、重合体粉体中の残存有機溶媒等の軽質成分をさらに除
くことも可能である。As described above, the organic solvent solution of p-vinylphenol polymer that is supplied to the long tubular heating tube and heated there becomes a mixture of vapor of light components such as organic solvent and polymer powder, and is kept under reduced pressure. In the zero separation chamber flushed into the separated separation chamber, light component vapor and polymer powder are separated by a solid-gas separation mechanism such as a filter cyclone, and the polymer powder is collected. It is also possible to further remove light components such as residual organic solvents in the polymer powder by allowing the collected polymer powder to remain in a separation chamber maintained at reduced pressure and a predetermined temperature for a certain period of time. .
(発明の効果)
本発明によれば、p−ビニルフェノール(D 単独重合
反応または他のコモノマーとの共重合反応の反応溶液、
あるいはP−ビニルフェノールの単独重合体または他の
コモノマーとの共重合体の水素化処理をはじめとする種
々の変性処理の処理溶液等、p−ビニルフェノール系重
合体の有機溶媒溶液から、p−ビニルフェノール系重合
体の光透過性が実質的に低下することなく、p−ビニル
フェノール系重合体の乾燥品を工業的規模にて円滑に効
率良く得ることができる0本発明においては、沈殿溶剤
を用いる場合のように乾燥品を得るために大量の廃水あ
るいは廃溶媒を生ずることはない。(Effects of the Invention) According to the present invention, p-vinylphenol (D) is a reaction solution for homopolymerization reaction or copolymerization reaction with other comonomers,
Alternatively, from organic solvent solutions of p-vinylphenol polymers, such as treatment solutions for various modification treatments including hydrogenation of p-vinylphenol homopolymers or copolymers with other comonomers, p- A dried p-vinylphenol polymer can be obtained smoothly and efficiently on an industrial scale without substantially reducing the light transmittance of the vinylphenol polymer.In the present invention, the precipitation solvent A large amount of waste water or waste solvent is not generated to obtain a dry product as is the case when using a dry product.
また、本発明によって得られるp−ビニルフェノール系
重合体の乾燥品は、マイクロフォトレジスト、オフセッ
ト印刷用SP版等の感光材料などに好適に用いることが
できる。Further, the dried p-vinylphenol polymer obtained by the present invention can be suitably used for photosensitive materials such as microphotoresists and SP plates for offset printing.
(実施例)
実施例1
p−エチルフェノールをスチームとともに500°Cで
脱水素触媒に通して、p−ビニルフェノール25重量%
、p−エチルフェノール70重量%、副生物5重量%か
らなる粗製p−ビニルフェノールを得た。この粗製p−
ビニルフェノールにシェラ酸を添加して80℃に加熱し
、P−ビニルフェノールを重合させ、得られた反応生成
物から250°C110+u+Hgの条件でp−エチル
フェノールはかの軽質分を留去してポリ−p−ビニルフ
ェノールを得た。(Example) Example 1 P-ethylphenol was passed through a dehydrogenation catalyst at 500°C with steam to produce 25% by weight of p-vinylphenol.
, p-ethylphenol 70% by weight and by-product 5% by weight crude p-vinylphenol was obtained. This crude p-
Shellacic acid was added to vinylphenol and heated to 80°C to polymerize p-vinylphenol, and the light components of p-ethylphenol were distilled off from the resulting reaction product at 250°C and 110+u+Hg. Poly-p-vinylphenol was obtained.
このポリーP−ビニルフェノール5kgをイソプロパツ
ール10kgに熔解し、ニッケル触媒(日産ガードラー
社製、 G−49B)150gを加え、50!の反応器
に入れ、水素圧を50kg/c■8として、かきまぜな
がら昇温し、200°Cで1時間保持した。ついで冷却
後、反応液を炉遇して触媒を除いた。5 kg of this poly-P-vinylphenol was dissolved in 10 kg of isopropanol, 150 g of a nickel catalyst (manufactured by Nissan Girdler, G-49B) was added, and 50 kg of poly-P-vinylphenol was dissolved. The mixture was placed in a reactor, the hydrogen pressure was set to 50 kg/c8, the temperature was raised while stirring, and the temperature was maintained at 200°C for 1 hour. After cooling, the reaction solution was heated in a furnace to remove the catalyst.
この様にして得た水素化処理によって光透過性ヲ改善し
たポリ−p−ビニルフェノールのイソプロパツール溶液
を内径8調(断面積約0.5cwJ、長さ8■(内径と
長さの比が1 : 1000)の加熱管を有するホソカ
ワミクロン社製CRUX SYSTEM 8B型に10
4!/hrの速度で供給した。加熱管は140℃に保ち
、加熱管の出口は20weHgの減圧下110°Cに保
った分離室に接続されており、加熱管出口より噴霧した
ポリ−p−ビニルフェノール粉体は分離室に堆1し、イ
ソプロパツール蒸気はバグフィルタ−を通して冷却管に
導かれ液化回収された。系を常圧にもどしてポリ−p−
ビニルフェノール粉体を取り出した。この粉体中のイソ
プロパツール残存量は0.7重量%、250rv吸光係
数は980cm” / g、450nm吸光係数は1.
5cm”/ gであった。The isopropanol solution of poly-p-vinylphenol whose light transmittance was improved by the hydrogenation treatment obtained in this way was heated to an inner diameter of 8 mm (cross-sectional area of about 0.5 cwJ, length of 8 cm (ratio of inner diameter to length)). CRUX SYSTEM 8B type manufactured by Hosokawa Micron, which has a heating tube of 1:1000)
4! /hr. The heating tube is maintained at 140°C, and the outlet of the heating tube is connected to a separation chamber maintained at 110°C under a reduced pressure of 20weHg, and the poly-p-vinylphenol powder sprayed from the heating tube outlet is deposited in the separation chamber. 1. The isopropanol vapor was led to a cooling pipe through a bag filter and was liquefied and recovered. The system is returned to normal pressure and poly-p-
Vinylphenol powder was taken out. The residual amount of isopropanol in this powder is 0.7% by weight, the 250 rv extinction coefficient is 980 cm"/g, and the 450 nm extinction coefficient is 1.
It was 5 cm”/g.
比較例1
実施例1にしたがって調製した水素化処理ポリp−ビニ
ルフェノールのイソプロパツール溶液15kgを150
kgの純水の中へかきまぜながら徐々に加えた。生成し
た沈殿をか遇したのち、50℃で10時間風乾し、さら
に5閤HHの減圧下60℃で10時間加熱し、ポリーP
−ビニルフェノールの乾燥体を得た。乾燥体の残存イソ
プロパツールは1.0重量%、水は0.5重量%、25
0nm吸光係数は990C@”/ g、450n−吸光
係数は1.4cm”/ gであった。Comparative Example 1 15 kg of an isopropanol solution of hydrogenated polyp-vinylphenol prepared according to Example 1 was
It was gradually added to 1 kg of pure water while stirring. After covering the generated precipitate, it was air-dried at 50°C for 10 hours, and further heated at 60°C for 10 hours under reduced pressure of 5 HH to give polyP.
- A dried product of vinylphenol was obtained. Residual isopropanol in the dry body is 1.0% by weight, water is 0.5% by weight, 25
The 0 nm extinction coefficient was 990 C@''/g, and the 450 n-extinction coefficient was 1.4 cm''/g.
本比較例の方法では得られた乾燥体の光透過性は優れて
いたが多量の廃水の発生と長時間の処理を必要とした。In the method of this comparative example, the light transmittance of the dried product obtained was excellent, but a large amount of waste water was generated and a long treatment time was required.
比較例2
実施例1にしたがって調製した水素化処理ポリ−p−ビ
ニルフェノールのイソプロパツール溶液15kgを10
02のフラスコを持つロータリーエバポレーターに入れ
、100m1gの減圧下で50°Cに加熱し、イソプロ
パツールを留去させた0次第に減圧度と温度を上昇させ
、最後は5m11g、120°Cに3時間保持した。冷
却後、フラスコに付着した発泡状と固い飴状の入り混っ
た形態のポリ−p−ビニルフェノールをかき出して性状
を測定したところ、残存イソプロパツールは10.2重
量%、250nm吸光係数は1220cm”/ g、4
50n−吸光係数は3.2cIl”/ gであった。Comparative Example 2 15 kg of an isopropanol solution of hydrogenated poly-p-vinylphenol prepared according to Example 1 was
Place it in a rotary evaporator with a 0.2 flask and heat it to 50 °C under reduced pressure of 100 ml 1 g to distill off isopropanol. Gradually increase the degree of vacuum and temperature, and finally 5 ml 1 g and 120 ° C for 3 hours. held. After cooling, the poly-p-vinylphenol in the form of a mixture of foam and hard candy adhering to the flask was scraped out and its properties were measured.The remaining isopropanol was 10.2% by weight, and the extinction coefficient at 250 nm was 1220cm”/g, 4
The 50n-extinction coefficient was 3.2 cIl"/g.
本比較例の方法では乾燥は不充分であり、また過度の加
熱によって、光透過性が低下した。In the method of this comparative example, drying was insufficient and the light transmittance decreased due to excessive heating.
比較例3
実施例1にしたがって調製した水素化処理ポリ−p−ビ
ニルフェノールのイソプロパツールmW15kgを半径
1mのチャンバーを持つスプレードライヤーに104!
/hrの速度で供給した。熱風の入口温度は190℃と
した。ポリ−p−ビニルフェノールは大部分が粉末状と
なってチャンバーの底に堆積したが、一部は飴状になっ
てチャンバーの側壁に付着した。飴状物をかきとり、粉
体と合せて、性状を測定したところ、イソプロパツール
の残存量は15.3重量%、250ns+吸光係数はl
o15cmz/ g、450nm吸光係数は1.5cm
2/gであった。Comparative Example 3 15 kg of isopropanol of hydrogenated poly-p-vinylphenol prepared according to Example 1 was placed in a spray dryer having a chamber with a radius of 1 m.
/hr. The inlet temperature of the hot air was 190°C. Most of the poly-p-vinylphenol was in powder form and deposited on the bottom of the chamber, but some of it was in the form of candy and adhered to the side walls of the chamber. When the candy was scraped off, combined with the powder, and its properties were measured, the remaining amount of isopropanol was 15.3% by weight, and the extinction coefficient was 250ns + 1.
o15cmz/g, 450nm extinction coefficient is 1.5cm
It was 2/g.
本比較例の方法では、光透過性の低下は少いが、乾燥は
不充分であった。In the method of this comparative example, the decrease in light transmittance was small, but the drying was insufficient.
実施例2
J、Org、Chem、、23544(195B)に記
載された方法にしたがって、フェノールを出発物質とし
てp−アセトキシスチレンを経由してp−ビニルフェノ
ールを合成した。Example 2 p-vinylphenol was synthesized using phenol as a starting material via p-acetoxystyrene according to the method described in J. Org. Chem., 23544 (195B).
このp−ビニルフェノール2.4kgt−10kgのエ
タノールに熔解し、重合開始剤としてアブビスイソブチ
ロニトリル20gを加えてチッ素雰囲気下で70゛Cに
て5時間加熱して、ポリ−p−ビニルフェノールのエタ
ノール溶液を得た。この溶液を内径8閣、長さ8m(内
径と長さの比が1:1000)の加熱管を有するホソカ
ワミクロン社製CRUX SYSTEM8B型に101
/hrの速度で供給した。加熱管は140°Cに保ち、
加熱管の出口は20閣Hgの減圧下110℃に保った分
離室に接続されており、加熱管出口より噴霧したポリ−
p−ビニルフェノール粉体は分離室に堆積し、エタノー
ル1気はハゲフィルターを通して冷却管に導かれ液化回
収された。系を常圧にもどしてポリ−p−ビニルフェノ
ール粉体を取り出した。2.4 kg of this p-vinylphenol was dissolved in 10 kg of ethanol, 20 g of abbisisobutyronitrile was added as a polymerization initiator, and the mixture was heated at 70°C for 5 hours in a nitrogen atmosphere to produce poly-p-vinylphenol. An ethanol solution of vinylphenol was obtained. This solution was transferred to a CRUX SYSTEM 8B model manufactured by Hosokawa Micron, which has a heating tube with an inner diameter of 8 mm and a length of 8 m (ratio of inner diameter to length: 1:1000).
/hr. The heating tube was kept at 140°C.
The outlet of the heating tube is connected to a separation chamber maintained at 110°C under a reduced pressure of 20 Hg.
The p-vinylphenol powder was deposited in a separation chamber, and 1 atmosphere of ethanol was led to a cooling pipe through a bald filter and liquefied and recovered. The system was returned to normal pressure and poly-p-vinylphenol powder was taken out.
この粉体中のエタノール残存量は0.6重量%、250
rv吸光係数は1210cm”7g、450n−吸光係
数は2.0cm”7gであった。The residual amount of ethanol in this powder is 0.6% by weight, 250
The rv extinction coefficient was 1210 cm"7 g, and the 450 n-extinction coefficient was 2.0 cm"7 g.
比較例4
実施例2にしたがって調製したポリ−p−ビニフレフェ
ノールのエタノール残存量液12.4kgを150kg
の純水の中へかきまぜながら徐々に加えた。生成した沈
殿を濾過したのち、50°Cで10時間風乾し、さらに
5■l1gの減圧下60°Cで10時間加熱し、ポリp
−ビニルフェノールの乾燥体を得た。乾燥体の残存エタ
ノールは0.7重量%、水は0.4重量%、250nm
吸光係数は1250cm”/ g、450n働吸光係数
は2.1cm”7gであった。Comparative Example 4 12.4 kg of the remaining ethanol solution of poly-p-viniflephenol prepared according to Example 2 was weighed to 150 kg.
was gradually added to the pure water while stirring. After filtering the generated precipitate, it was air-dried at 50°C for 10 hours, and then heated at 60°C for 10 hours under a reduced pressure of 5 μl 1 g to form a polypropylene resin.
- A dried product of vinylphenol was obtained. Residual ethanol in dry product is 0.7% by weight, water is 0.4% by weight, 250 nm.
The extinction coefficient was 1250 cm''/g, and the 450n working extinction coefficient was 2.1 cm''/g.
本比較例の方法では乾燥体の光透過性は優れていたが、
多量の廃水の発生と長時間の処理を必要とした。In the method of this comparative example, the light transmittance of the dried product was excellent, but
A large amount of wastewater was generated and a long treatment period was required.
比較例5
実施例2にしたがって調製したポリ−p−ビニルフェノ
ールのエタノール溶液12.4kgを暴発面積0.5m
”の遠心摺動式薄膜蒸発機に10f/hrの速度で供給
した。加熱温度は220°C1圧力は20wHgとした
。溶融状態で流出したポリ−p−ビニルフェノールを放
冷固化させたのち、性状を測定したところ、エタノール
残存量は0.1重量%、250n+w吸光係数は205
0cm”/ g、450n−吸光係数は12.5cm”
/ gであった。Comparative Example 5 12.4 kg of an ethanol solution of poly-p-vinylphenol prepared according to Example 2 was poured into an explosive area of 0.5 m.
The poly-p-vinylphenol that flowed out in a molten state was allowed to cool and solidify. When the properties were measured, the residual amount of ethanol was 0.1% by weight, and the 250n+w extinction coefficient was 205.
0cm"/g, 450n - extinction coefficient is 12.5cm"
/g.
本比較例の方法で得られた乾燥体は薄膜蒸発機内で熔融
状態を保たせるため高温で加熱した結果、光透過性は大
巾に低下した。The dried product obtained by the method of this comparative example was heated at a high temperature in order to maintain a molten state in a thin film evaporator, and as a result, the light transmittance was significantly reduced.
実施例3
J、Org、Ches、、、lfi 544(1958
)に記載された方法にしたがって、フェノールを出発物
質としてp−アセトキシスチレンを経由してp−ビニル
フェノールを合成した。Example 3 J, Org, Ches, lfi 544 (1958
) p-vinylphenol was synthesized using phenol as a starting material via p-acetoxystyrene.
このp−ビニルフェノール1.2kgとメタクリル酸メ
チル1.0kgを10kgのジオキサンに溶解し、重合
開始剤としてアブビスイソブチロニトリル20gを加え
てチン素雰囲気ドで70°Cにて5時間加熱して、p−
ビニルフェノール/メタクリル酸メチルコポリマーのジ
オキサン溶液を得た。この溶液を内径8閤、長さ8m(
内径と長さの比が1 : 1000)の加熱管を有する
ホソカワミクロン社製CRUXSYSTE)I 8B型
に104!/hrの速度で供給した。加熱管は160°
Cに保ち、加熱管の出口は20miHgの減圧下110
°Cに保った分離室に接続されており、加熱管出口より
噴霧したp−ビニルフェノール/メタクリル酸メチルコ
ポリマー粉体は分離室に堆積し、ジオキサン蒸気はバグ
フィルタ−を通して冷却管に導かれ液化回収された。系
を常圧にもどしてp−ビニルフェノール/メタクリル酸
メチルコポリマー粉体を取り出した。この粉体中のジオ
キサン残存量は0.9重量%、250n−吸光係数は1
950cm”7g、450n蒙吸光係数は4.5cm”
/ gであった。1.2 kg of this p-vinylphenol and 1.0 kg of methyl methacrylate were dissolved in 10 kg of dioxane, 20 g of abbisisobutyronitrile was added as a polymerization initiator, and the mixture was heated at 70°C in a nitrogen atmosphere for 5 hours. Then, p-
A dioxane solution of vinylphenol/methyl methacrylate copolymer was obtained. Pour this solution into a tube with an inner diameter of 8 meters and a length of 8 meters (
Hosokawa Micron CRUXSYSTE) I 8B type 104, which has a heating tube with an inner diameter to length ratio of 1:1000). /hr. The heating tube is 160°
The outlet of the heating tube was kept at 110 °C under a reduced pressure of 20 miHg.
The p-vinylphenol/methyl methacrylate copolymer powder sprayed from the heating tube outlet is deposited in the separation chamber, and the dioxane vapor is led to the cooling tube through a bag filter and liquefied. Recovered. The system was returned to normal pressure and the p-vinylphenol/methyl methacrylate copolymer powder was taken out. The remaining amount of dioxane in this powder is 0.9% by weight, and the 250n-extinction coefficient is 1.
950cm"7g, 450n light absorption coefficient is 4.5cm"
/g.
比較例6
実施例3にしたがって調製したp−ビニルフェノール/
メタクリル酸メチルコポリマーのジオキサン溶液12.
2kgを150kgの純水の中へかきまぜながら徐々に
加えた。生成した沈殿を炉遇したのち、50’Cで10
時間風乾し、さらに5md1gの減圧下60°Cで10
時間加熱し、p−ビニルフェノール/メタクリル酸メチ
ルコポリマーの乾燥体を得た。乾燥体の残存ジオキサン
は1.3重■%、水は0,3重量%、250nm吸光係
数は2000c+wz/ g、450rv吸光係数は4
.7c■”7gであった。Comparative Example 6 p-vinylphenol prepared according to Example 3/
Dioxane solution of methyl methacrylate copolymer12.
2 kg was gradually added to 150 kg of pure water while stirring. After treating the generated precipitate in a furnace, it was heated at 50'C for 10
Air dry for an additional 10 hours at 60°C under a vacuum of 5md1g.
The mixture was heated for a period of time to obtain a dried p-vinylphenol/methyl methacrylate copolymer. The residual dioxane in the dried product is 1.3% by weight, the water is 0.3% by weight, the 250nm extinction coefficient is 2000c+wz/g, and the 450rv extinction coefficient is 4.
.. 7c■”7g.
比較例7
実施例3にしたがって調製したp−ビニルフェノール/
メタクリル酸メチルコポリマーのジオキサン溶液12.
、2 kgを蒸発面積0.5Cの遠心摺動式薄Wi!蒸
発機に101!/hrの速度で供給した。加熱温度は2
10°C2圧力は15■Bgとした。溶融状態で流出し
たp−ビニルフェノール/メタクリル酸メチルコポリマ
ーを放冷固化さセたのち、性状を測定したところ、ジオ
キサン残存量は0.2重量%、250nm吸光係数は2
550cm”7g、450n+*吸光係数は10.5c
m”7gであった。Comparative Example 7 p-vinylphenol prepared according to Example 3/
Dioxane solution of methyl methacrylate copolymer12.
, 2 kg with a centrifugal sliding type thin Wi with an evaporation area of 0.5C! 101 on the evaporator! /hr. Heating temperature is 2
The 10°C2 pressure was 15 Bg. After the p-vinylphenol/methyl methacrylate copolymer that had flowed out in a molten state was left to cool and solidify, its properties were measured, and the remaining amount of dioxane was 0.2% by weight, and the extinction coefficient at 250 nm was 2.
550cm”7g, 450n+*Extinction coefficient is 10.5c
It was 7g.
本比較例の方法で得られた乾燥体は1b内で溶融状態を
保たせるため高温で加熱した結果、光透過性は大11に
低下した。The dried product obtained by the method of this comparative example was heated at a high temperature in order to maintain the molten state in 1b, and as a result, the light transmittance decreased to 11.
実施例4
p−エチルフェノールをスチームとともに500℃で脱
水素触媒に通して、p−ビニルフェノール25重■%、
p−エチルフェノール7(111%、副生物5重曹%か
らなる粗製p−ビニルフェノールを得た。この粗製p−
ビニルフェノールにp−ビニルフェノールとスチレンの
モル比が7;3となるようにスチレンを加え、さらにア
ゾビスイソブチロニトリルを加えてloo’cに加熱し
、p−ビニルフェノールとスチレンを共重合させ、得ら
れた反応生成物から250℃、10繭Hgの条件でp−
エチルフェノールはかの軽質分を留去してp−ビニルフ
ェノール/スチレンコポリマーを得た。このコポリマー
5kgをエタノール10kgに溶解し、アルミナを担体
とするパラジウム触媒(エンゲルハルト社製パラジウム
担持15重置%)100gを加え50fiの反応器に入
れ、水素圧を70kg/c■すしてかきまぜながら昇温
し、180℃で4時間保持した。つぃで冷却後、反応液
を枦遇して触媒を除いた。Example 4 p-ethylphenol was passed through a dehydrogenation catalyst at 500°C with steam to give 25% by weight of p-vinylphenol,
Crude p-vinylphenol consisting of p-ethylphenol 7 (111%) and by-product 5% sodium bicarbonate was obtained.
Add styrene to vinylphenol so that the molar ratio of p-vinylphenol and styrene is 7:3, and then add azobisisobutyronitrile and heat to loo'c to copolymerize p-vinylphenol and styrene. p-cocoon from the obtained reaction product under conditions of 250°C and 10 cocoon
Light components of ethylphenol were distilled off to obtain p-vinylphenol/styrene copolymer. 5 kg of this copolymer was dissolved in 10 kg of ethanol, 100 g of a palladium catalyst with alumina as a carrier (15% palladium supported by Engelhard) was added, and the mixture was placed in a 50 fi reactor, and while stirring at a hydrogen pressure of 70 kg/c. The temperature was raised and held at 180°C for 4 hours. After cooling in a tube, the reaction solution was stirred to remove the catalyst.
この様にして得た水素化処理によって光透過性を改善し
たp−ビニルフェノール/スチレンコポリマーのエタノ
ール溶液を内径8m、長さ8 mと
(内径−長さの比が1;1000)の加熱管を有するホ
ソカワミクロン社製CRUX SYSTEM BB型に
10i/hrの速度で供給した。加熱管は140″Cに
保ち、加熱管の出口は20−Hgの減圧下110℃に保
った分離室に接続されており、加熱管出口より噴霧した
ポリ−p−ビニルフェノール粉体は分離室に堆積し、エ
タノール葬気はバグフィルタ−を通して冷却管に導かれ
液化回収された。系を常圧にもどしてpビニルフェノー
ル/スチレンコポリマー1(1取り出した。この粉体中
のエタノール残存量は0.5重量%、250nw吸光係
数は960cm” / g、450nm吸光係数は1.
6cm”7gであった。The thus obtained ethanol solution of p-vinylphenol/styrene copolymer with improved light transmittance through hydrogenation treatment was heated in a heating tube with an inner diameter of 8 m and a length of 8 m (inner diameter-length ratio of 1; 1000). It was supplied to CRUX SYSTEM BB type manufactured by Hosokawa Micron Corporation having a speed of 10 i/hr. The heating tube is maintained at 140"C, and the outlet of the heating tube is connected to a separation chamber maintained at 110℃ under a reduced pressure of 20-Hg. The poly-p-vinylphenol powder sprayed from the heating tube outlet is transferred to the separation chamber. The ethanol gas was introduced into a cooling pipe through a bag filter and liquefied and recovered.The system was returned to normal pressure and p-vinylphenol/styrene copolymer 1 (1) was taken out.The remaining amount of ethanol in this powder was 0.5% by weight, 250nw extinction coefficient is 960cm”/g, 450nm extinction coefficient is 1.
6cm" and 7g.
比較例日
実施例4にしたがって調製した水素化処理pビニルフェ
ノール/スチレンコポリマーのエタノール溶液15kg
を150kgの純水の中へかきまぜながら徐々に加えた
。性成した沈殿を枦遇したのち、50’Cで10時間風
乾し、さらに5閤Hgの減圧下60″Cで10時間加熱
し、p−ビニルフェノール/スチレンコポリマーの乾燥
体を得た。乾燥体の残存エタノールは0.8重量%、水
は0.6重量%、250n−吸光係数は980c+g”
7g、450nm吸光係数は1.8cm”/ gであっ
た。Comparative Example Day 15 kg of an ethanolic solution of hydrogenated p-vinylphenol/styrene copolymer prepared according to Example 4.
was gradually added to 150 kg of pure water while stirring. After the formed precipitate was collected, it was air-dried at 50'C for 10 hours, and further heated at 60'C for 10 hours under a reduced pressure of 5 kg of Hg to obtain a dried p-vinylphenol/styrene copolymer.Drying Residual ethanol in the body is 0.8% by weight, water is 0.6% by weight, 250n-extinction coefficient is 980c+g"
7g, the 450nm extinction coefficient was 1.8cm''/g.
比較例9
実施例4にしたがって調製した水素化処理pビニルフェ
ノール/スチレンコポリマーのエタノール溶液15kg
を半径1mのチャンバーを持つスプレードライヤーに1
04!/hrの速度で供給した。熱風の入口温度は18
0°Cとした。p−ビニルフェノール/スチレンコポリ
マーは大部分が粉末状となってチャンバーの底に堆積し
たが、1部は飴状になってチャンバーの側壁に付着した
。飴状物のかきとり、粉体と合わせて性状を測定したと
ころ、エタノールの残存量は13.2重量%、250n
−吸光係数は1050cm”/ g、450n+*吸光
係数は1.8cm”/ gであった。Comparative Example 9 15 kg of an ethanolic solution of hydrogenated p-vinylphenol/styrene copolymer prepared according to Example 4
into a spray dryer with a chamber with a radius of 1 m.
04! /hr. The inlet temperature of hot air is 18
The temperature was set to 0°C. Most of the p-vinylphenol/styrene copolymer was in powder form and deposited on the bottom of the chamber, but a portion was in the form of candy and adhered to the side walls of the chamber. When we scraped off the candy and measured its properties together with the powder, the remaining amount of ethanol was 13.2% by weight, 250n.
- Extinction coefficient was 1050 cm"/g, 450n+* Extinction coefficient was 1.8 cm"/g.
本比較例の方法では光透過性の低下は少いが、乾燥は不
充分であった。In the method of this comparative example, the decrease in light transmittance was small, but the drying was insufficient.
Claims (1)
、内径と長さの比が1:100以上であって、その出口
が減圧に保たれた分離室に接続されている長管状の加熱
管に供給して加熱し、該加熱管の出口から該減圧に保た
れた分離室にフラッシュさせて軽質成分を蒸気として除
去することを特徴とするp−ビニルフェノール系重合体
の乾燥方法。(1) An organic solvent solution of p-vinylphenol polymer is heated using a long tube-shaped tube with an inner diameter to length ratio of 1:100 or more and whose outlet is connected to a separation chamber maintained at reduced pressure. A method for drying a p-vinylphenol polymer, which comprises supplying it to a tube, heating it, and flashing it from the outlet of the heating tube to the separation chamber maintained at reduced pressure to remove light components as vapor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12661890A JP2796603B2 (en) | 1990-05-18 | 1990-05-18 | Method for drying p-vinylphenol polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12661890A JP2796603B2 (en) | 1990-05-18 | 1990-05-18 | Method for drying p-vinylphenol polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0423809A true JPH0423809A (en) | 1992-01-28 |
JP2796603B2 JP2796603B2 (en) | 1998-09-10 |
Family
ID=14939662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12661890A Expired - Lifetime JP2796603B2 (en) | 1990-05-18 | 1990-05-18 | Method for drying p-vinylphenol polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2796603B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07233222A (en) * | 1993-12-28 | 1995-09-05 | Japan Synthetic Rubber Co Ltd | Production of vinylphenol copolymer |
-
1990
- 1990-05-18 JP JP12661890A patent/JP2796603B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07233222A (en) * | 1993-12-28 | 1995-09-05 | Japan Synthetic Rubber Co Ltd | Production of vinylphenol copolymer |
Also Published As
Publication number | Publication date |
---|---|
JP2796603B2 (en) | 1998-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4683288A (en) | Polymer and its production | |
US4550214A (en) | Blocked vinyl biphenyl compounds | |
CA2151151A1 (en) | Photodefineable polymers containing perfluorocyclobutane groups | |
JP2002517766A (en) | Method for polymerizing contact lenses having UV absorption properties | |
US2716102A (en) | Vinylcinnamalacetophenone polymers | |
JPH0423809A (en) | Drying of p-vinyl phenolic polymer | |
US7153394B2 (en) | System to isolate dianhydrides | |
JP2002229220A (en) | Method for refining resin for chemically amplifying resist and chemically amplifying resist resin | |
JPH04255703A (en) | Acrylate ester of 1,1,1-trishydroxyphenylethane | |
JPH0248584A (en) | Trialkylsilyloxy-1, 1-diphenyl ethylene and polymer produced therefrom | |
JPH0130850B2 (en) | ||
JPH05125037A (en) | Production of high-purity 2-acrylamido-2-methylpropanesulfonic acid | |
US3163647A (en) | Vinyl s-triazines, method of preparing the same and polymers derived therefrom | |
JP3667074B2 (en) | Narrowly dispersible poly {1- (1-alkoxyethoxy) -4- (1-methylethenyl) benzene} and process for producing the same | |
JP2002512282A (en) | Method for removing volatile components from polymer solutions | |
JP2002510406A (en) | Improved dissolution-inhibiting resist for microlithography | |
TW310330B (en) | ||
US4412050A (en) | Linear polymers from blocked vinyl biphenyl compounds | |
JP3729599B2 (en) | Narrowly dispersible poly (p-hydroxy-α-methylstyrene) and process for producing the same | |
KR20010040758A (en) | PROCESS FOR PRODUCING LIGHTLY COLORED p-VINYLPHENOL POLYMER | |
KR810000960B1 (en) | Continuous process for preparing a spinning solution of acrylic polymers | |
Grosso et al. | Functional polymers. XLII. 4-Vinyl (or 4-isopropenyl)-2, 6-di-t-butylphenol: synthesis and copolymerization | |
JPS63130604A (en) | Production of copolymer of p-vinylphenol with styrene monomer | |
JPS6044323B2 (en) | Method for removing volatile substances from polymerization liquid composition | |
CA1188444A (en) | Aromatic hydrocarbons resins containing vinylketone groups and their use for the anionic preparation of polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090703 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090703 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100703 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |