JPH04237960A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH04237960A
JPH04237960A JP3004216A JP421691A JPH04237960A JP H04237960 A JPH04237960 A JP H04237960A JP 3004216 A JP3004216 A JP 3004216A JP 421691 A JP421691 A JP 421691A JP H04237960 A JPH04237960 A JP H04237960A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte membrane
film
laf3
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3004216A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshioka
靖浩 吉岡
Kazuo Fushimi
伏見 和夫
Kazuhiko Kawakami
和彦 河上
Kaoru Kitakizaki
薫 北寄崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3004216A priority Critical patent/JPH04237960A/en
Publication of JPH04237960A publication Critical patent/JPH04237960A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve the electric characteristic such as the electromotive force by improving the gas-tightness of a solid electrolyte film. CONSTITUTION:A solid electrolyte film is further formed by the thermal deposition method on a solid electrolyte film formed by the plasma display method. The gas-tightness is improved while the resistance and surface area of the solid electrolyte film formed by the plasma display method are rarely changed, thus a solid electrolyte fuel cell with an excellent electric characteristic such as the electromotive force is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固体電解質型燃料電池
に関し、特にその固体電解質膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to solid electrolyte fuel cells, and more particularly to solid electrolyte membranes thereof.

【0002】0002

【従来の技術】従来、固体電解質型燃料電池は、多孔質
SUS基板等の多孔質基板上に、プラズマスプレー法等
により酸素極(又は水素極)等の電極を形成してその上
に同方法により膜厚約100μmの固体電解質膜を形成
し、更にその上に同方法により水素極(又は酸素極)等
の電極を形成して製造されており、上記酸素極としては
、多孔質SUS基板上にプラズマスプレー法にてLaS
rCoNi膜を形成したもの等が用いられる。
[Prior Art] Conventionally, in solid oxide fuel cells, electrodes such as oxygen electrodes (or hydrogen electrodes) are formed on a porous substrate such as a porous SUS substrate by a plasma spray method, etc. It is manufactured by forming a solid electrolyte membrane with a thickness of approximately 100 μm using the same method, and then forming an electrode such as a hydrogen electrode (or oxygen electrode) on the solid electrolyte membrane using the same method. LaS was applied using plasma spray method to
A material having an rCoNi film formed thereon is used.

【0003】上記固体電解質膜は、その表面積が大きい
ほど起電力等の電気特性が向上するため、固体電解質膜
は表面積を大きくするためにその表面形状にある程度の
起伏(粗さ)があることが望ましい。上記プラズマスプ
レー法を用いた場合、形成される固体電解質膜の表面形
状は起伏に富んだものとなるため、固体電解質膜の表面
積は大きくなっている。
[0003] The electrical properties of the solid electrolyte membrane, such as electromotive force, improve as the surface area increases. Therefore, in order to increase the surface area, the solid electrolyte membrane may have some degree of undulation (roughness) in its surface shape. desirable. When the plasma spray method described above is used, the surface shape of the solid electrolyte membrane formed is rich in undulations, so the surface area of the solid electrolyte membrane is large.

【0004】0004

【発明が解決しようとする課題】上記固体電解質膜はガ
ス透過率の低いガスタイトなものである必要があるが、
上記プラズマスプレー法により形成された固体電解質膜
はその表面形状が起伏に富んで表面積が大きい反面、ガ
スタイト性が十分とは言いがたい。例えば固体電解質に
粒径が10〜80μmのLaF3パウダーを用いて上記
プラズマスプレー法により膜厚約100μmのLaF3
膜を形成し、上記装置によりガスタイト性のテスト(リ
ークテスト)を行った結果は、1torr前後となって
いる。
[Problem to be solved by the invention] The solid electrolyte membrane described above needs to be gas-tight with low gas permeability.
Although the solid electrolyte membrane formed by the plasma spray method has a rugged surface and a large surface area, it cannot be said to have sufficient gas tightness. For example, using LaF3 powder with a particle size of 10 to 80 μm as a solid electrolyte, the above plasma spray method is used to form a layer of LaF3 with a thickness of about 100 μm.
After forming the film, a gas tightness test (leak test) was performed using the above-mentioned apparatus, and the result was approximately 1 torr.

【0005】図5にガスタイト性のテストに用いる試験
装置を示す。この装置は真空層21と、この真空層21
の内部を真空にするロータリーポンプ22及び、ディフ
ュージョンポンプ23及びダイヤフラム式真空計29と
からなり、これら二つのポンプはそれぞれバルブ26a
、26cを介して真空槽に接続され、サンプルはサンプ
ル取付部27にバルブ26dを介して取り付けられる。
FIG. 5 shows a test apparatus used for testing gas tightness. This device includes a vacuum layer 21 and a
It consists of a rotary pump 22, a diffusion pump 23, and a diaphragm vacuum gauge 29, each of which has a valve 26a.
, 26c to a vacuum chamber, and the sample is attached to the sample attachment part 27 via a valve 26d.

【0006】上記のリークテストは、この装置に固体電
解質膜のサンプルを設置した後にロータリーポンプ22
及びディフュージョンポンプ23により真空層21内を
10−6(torr)以下とし、ロータリーポンプのみ
を作動させた状態にてバルブ26dを開き、真空層21
内の圧力が一定となった時点での圧力をダイヤフラム式
真空計29により測定してこの値をリーク量とした。
[0006] The above leak test was carried out by installing the sample of the solid electrolyte membrane in this device and then using the rotary pump 22.
Then, the inside of the vacuum layer 21 is set to 10-6 (torr) or less by the diffusion pump 23, and the valve 26d is opened while only the rotary pump is operated.
The pressure at the time when the internal pressure became constant was measured with a diaphragm vacuum gauge 29, and this value was taken as the leakage amount.

【0007】上記リーク量は固体電解質膜の膜厚を増す
ことによって小さくすることは可能であるが、この場合
膜の抵抗が大きくなるという問題が生じる。
Although it is possible to reduce the amount of leakage by increasing the thickness of the solid electrolyte membrane, in this case a problem arises in that the resistance of the membrane increases.

【0008】また、プラズマスプレーに用いられるパウ
ダーの粒径を小さくすることにより、形成される固体電
解質膜の膜厚を薄くすることも可能ではあるが、現在使
用しているプラズマスプレー装置でこれより小さい粒径
のパウダーを用いることは極めて困難である。
It is also possible to reduce the thickness of the formed solid electrolyte membrane by reducing the particle size of the powder used for plasma spraying, but the plasma spray equipment currently in use is not able to achieve this. It is extremely difficult to use powders with small particle sizes.

【0009】更に、プラズマスプレー法により形成され
た第1の固体電解質膜上に、他の形成方法を用いて第2
の固体電解質を形成することによりリーク量を抑えるこ
とは可能ではあるが、固体電解質膜全体が厚くなって膜
自体の抵抗が増すうえ、得られる固体電解質膜の表面形
状は第2の固体電解質膜による平坦なものとなって表面
積が小さくなり、電気特性が低下するという問題があっ
た。
Furthermore, on the first solid electrolyte membrane formed by the plasma spray method, a second solid electrolyte membrane is formed using another formation method.
Although it is possible to suppress the amount of leakage by forming a solid electrolyte of There was a problem in that the surface area became small and the electrical characteristics deteriorated.

【0010】本発明は上記背景に基づいてなされたもの
であり、ガスタイト性に優れた固体電解質膜の製造方法
を提供することにある。
The present invention has been made based on the above background, and it is an object of the present invention to provide a method for manufacturing a solid electrolyte membrane having excellent gas tightness.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明は多孔質基板に形成された第1電極上に固体
電解質層をプラズマスプレー法により形成し、この固体
電解質層の上に第2電極を積層した固体電解質型燃料電
池において、前記プラズマスプレー法により形成した固
体電解質膜上に加熱蒸着法により更に固体電解質を形成
したことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention forms a solid electrolyte layer on a first electrode formed on a porous substrate by a plasma spray method. A solid electrolyte fuel cell in which a second electrode is laminated is characterized in that a solid electrolyte is further formed by a heated vapor deposition method on the solid electrolyte membrane formed by the plasma spray method.

【0012】0012

【作用】上記のように、プラズマスプレー法により形成
される固体電解質膜は表面が粗いままなのでガスリーク
量が比較的大きいが、この固体電解質膜上に更に加熱蒸
着法を用いて成膜を行うと、前記プラズマスプレー法に
よる固体電解質膜の粗い部分が覆われ、これによりガス
タイト性が向上し、ガスリーク量が小さくなっている。
[Effect] As mentioned above, the solid electrolyte membrane formed by the plasma spray method has a relatively rough surface, so the amount of gas leakage is relatively large. However, if a film is further formed on this solid electrolyte membrane using the heating evaporation method, , the rough portions of the solid electrolyte membrane formed by the plasma spray method are covered, thereby improving gas tightness and reducing the amount of gas leakage.

【0013】[0013]

【実施例】図2は本実施例に係る加熱蒸着実験装置の説
明図である。この装置において1は真空槽で、その内部
にはサンプルホルダー2が設けられて、これによりサン
プル3が支持される構成となっており、またこのサンプ
ル3の下面にはLaF3プラズマスプレー膜4が形成さ
れている。
[Example] FIG. 2 is an explanatory diagram of a heating vapor deposition experimental apparatus according to this example. In this device, reference numeral 1 denotes a vacuum chamber, and a sample holder 2 is provided inside the vacuum chamber, and a sample 3 is supported by this, and a LaF3 plasma spray film 4 is formed on the lower surface of the sample 3. has been done.

【0014】更に、上記サンプル3の下方には電極柱5
により支持されてその上面にLaF3ソース7を備えた
タングステンボード6が設けられている。
Further, below the sample 3, an electrode column 5 is provided.
A tungsten board 6 is supported by a tungsten board 6 and has a LaF3 source 7 on its upper surface.

【0015】本実施例に係る固体電解質膜を製造するに
は、まず図1(a)に示すように、チューブ12に多孔
質SUS基板13を溶接し、次に同図(b)に示すよう
に多孔質SUS基板13上にプラズマスプレー法により
LaF3膜14を形成してサンプルを製造し、更にこの
上に図1の装置を用いて加熱蒸着法を行って図2(c)
に示すようなLaF3膜15を形成する。
To manufacture the solid electrolyte membrane according to this embodiment, first, as shown in FIG. 1(a), a porous SUS substrate 13 is welded to a tube 12, and then as shown in FIG. A sample was manufactured by forming a LaF3 film 14 on a porous SUS substrate 13 by a plasma spray method, and then a heated evaporation method was performed on this using the apparatus shown in FIG. 1 to form a sample as shown in FIG. 2(c).
A LaF3 film 15 as shown in FIG.

【0016】尚、本実施例においては、LaF3膜自体
のリーク量を測定するために、多孔質SUS基板上に直
接LaF3膜を形成してサンプルを製造し、このサンプ
ル上に加熱蒸着を行ったが、このSUS基板上に直接形
成したLaF3膜は、多孔質SUS基板上に酸素極また
は水素極等の電極を介して形成したLaF3膜と表面形
態等の性質がほぼ同等であるため、本実施例により得ら
れる結果は、固体電解質型燃料電池にそのまま適用でき
る。また、上記サンプルとしてLaF3膜の膜厚が10
0μmでリーク量が0.835torrのサンプルa、
及び膜厚が87μmでリーク量が1.024torrで
あるサンプルbの二種を用いており、ターゲットとして
タングステンボード上に設置したLaF3グレイン(オ
プトロン製)を使用した。また、加熱蒸着条件は0.3
×10−4〜0.8×10−5torr、基板温度は真
空槽内と同温とし、更にLaF3膜の蒸着レートを1.
2μm/hourとして加熱蒸着を8時間行った。
In this example, in order to measure the amount of leakage from the LaF3 film itself, a sample was prepared by forming the LaF3 film directly on a porous SUS substrate, and heating vapor deposition was performed on this sample. However, since the LaF3 film formed directly on this SUS substrate has almost the same surface morphology and other properties as the LaF3 film formed on the porous SUS substrate via an electrode such as an oxygen electrode or a hydrogen electrode, this The results obtained in the examples can be directly applied to solid oxide fuel cells. In addition, as the above sample, the thickness of the LaF3 film is 10
Sample a with a leakage amount of 0.835 torr at 0 μm,
and sample b, each having a film thickness of 87 μm and a leakage amount of 1.024 torr, and a LaF3 grain (manufactured by Optron) placed on a tungsten board was used as a target. In addition, the heating vapor deposition conditions were 0.3
×10-4 to 0.8×10-5 torr, the substrate temperature was the same as the inside of the vacuum chamber, and the deposition rate of the LaF3 film was set to 1.
Heated vapor deposition was performed for 8 hours at a rate of 2 μm/hour.

【0017】上記条件下で、サンプルaの加熱蒸着を各
2時間、4時間、6時間、8時間行った時点でリークテ
ストを行ったところ、それぞれ0.830、0.830
、0.805、0.760(torr)という値が得ら
れ、またサンプルbについても同様にリークテストを行
い、それぞれ1.023、0.990、0.950、0
.840(torr)という結果が得られた。
Under the above conditions, a leak test was conducted after heating vapor deposition of sample a for 2 hours, 4 hours, 6 hours, and 8 hours, and results were 0.830 and 0.830, respectively.
, 0.805, and 0.760 (torr) were obtained, and a leak test was also performed on sample b in the same way, and the values were 1.023, 0.990, 0.950, and 0, respectively.
.. A result of 840 (torr) was obtained.

【0018】図3は上記リークテストの結果を、横軸に
加熱蒸着時間(hour)、縦軸に真空到達度(tor
r)をとって示したものである。このグラフにより、サ
ンプルa、サンプルb共に加熱蒸着を行うことで真空到
達度が向上していることがわかり、特にサンプルaにお
いては真空到達度が20%程度向上している。
FIG. 3 shows the results of the above leak test, with the horizontal axis representing the heating vapor deposition time (hour) and the vertical axis representing the degree of vacuum attainment (tor).
r). This graph shows that the degree of vacuum attainment is improved by performing thermal evaporation for both samples a and sample b, and particularly in sample a, the degree of vacuum attainment is improved by about 20%.

【0019】尚、図4は石英ガラス上に80Aの出力に
て抵抗加熱蒸着を2時間行って形成したLaF3膜のX
線回折結果を示すグラフである。このグラフにおいて横
軸は回折角、縦軸は強度をとったもので、p,q,rの
各点は、それぞれLaF3(110)、LaF3(11
1)、及びLaF3(113)のピーク値を示している
。この図により、形成されたLaF3膜が結晶性を示し
ていることがわかる。
Note that FIG. 4 shows the X
It is a graph showing a line diffraction result. In this graph, the horizontal axis is the diffraction angle and the vertical axis is the intensity, and the points p, q, and r are LaF3 (110) and LaF3 (11
1) and the peak values of LaF3 (113) are shown. This figure shows that the formed LaF3 film exhibits crystallinity.

【0020】また、本実施例においては固体電解質とし
てLaF3を用いているが、通常固体電解質型燃料電池
に用いられるLaOF、La1−xMxF3−x、La
1−xMxOF1−x(MはSr、Ba、Ca等の金属
)等を用いても同様な効果が得られる。
Although LaF3 is used as the solid electrolyte in this example, LaOF, La1-xMxF3-x, LaOF, La1-xMxF3-x, La
Similar effects can be obtained by using 1-xMxOF1-x (M is a metal such as Sr, Ba, Ca, etc.).

【0021】[0021]

【発明の効果】本発明においては、プラズマスプレー法
を用いて形成した表面の粗い固体電解質膜上を加熱蒸着
法にて形成した固体電解質膜で覆う構成としたことによ
り、プラズマスプレー膜の粗さはほぼそのままでかつ膜
厚もほぼ同等でありながら、固体電解質のガスタイト性
が向上する。
Effects of the Invention In the present invention, by covering a solid electrolyte film formed using a plasma spray method with a rough surface with a solid electrolyte film formed using a heated vapor deposition method, the roughness of the plasma spray film can be reduced. The gas tightness of the solid electrolyte is improved while the film thickness remains almost the same and the film thickness remains almost the same.

【0022】また、上記加熱蒸着法により形成した固体
電解質膜は非常に薄いため、膜自体の抵抗値を小さく抑
えることができる。
Furthermore, since the solid electrolyte membrane formed by the above-mentioned thermal evaporation method is very thin, the resistance value of the membrane itself can be kept low.

【0023】更に、本発明においては、プラズマスプレ
ー法により形成した固体電解質膜上に加熱蒸着法により
非常に薄い固体電解質膜を形成しているため、その表面
形状は起伏に富んだものとなっており、プラズマスプレ
ー法にて形成した固体電解質膜同様に、その起電力等の
電気特性に優れたものとなっている。
Furthermore, in the present invention, since a very thin solid electrolyte membrane is formed by a heated evaporation method on a solid electrolyte membrane formed by a plasma spray method, its surface shape is rich in undulations. Like the solid electrolyte membrane formed by plasma spraying, it has excellent electrical properties such as electromotive force.

【0024】従って、この固体電解質膜を用いることに
より、起電力等の電気的特性に優れた固体電解質型燃料
電池が得られる。
[0024] Therefore, by using this solid electrolyte membrane, a solid electrolyte fuel cell having excellent electrical characteristics such as electromotive force can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本実施例に係る固体電解質膜の断面図。FIG. 1 is a cross-sectional view of a solid electrolyte membrane according to this example.

【図2】本発明に係る加熱蒸着装置の説明図。FIG. 2 is an explanatory diagram of a heating vapor deposition apparatus according to the present invention.

【図3】本実施例に係る固体電解質膜のガスリーク量を
表すグラフ。
FIG. 3 is a graph showing the amount of gas leakage of the solid electrolyte membrane according to the present example.

【図4】本実施例に係る固体電解質膜のX線回折グラフ
FIG. 4 is an X-ray diffraction graph of the solid electrolyte membrane according to this example.

【図5】ガスリーク量の測定装置の説明図。FIG. 5 is an explanatory diagram of a gas leak amount measuring device.

【符号の説明】[Explanation of symbols]

13  多孔性SUSディスク 14  LaF3プラズマスプレー膜 15  LaF3加熱蒸着膜 13 Porous SUS disk 14 LaF3 plasma spray film 15 LaF3 heated evaporation film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多孔質基板に形成された第1電極上に固体
電解質層を形成し、この固体電解質層の上に第2電極を
積層した固体電解質型燃料電池において、前記固体電解
質層を、プラズマスプレー法により形成した第1の固体
電解質膜と、この膜上に加熱蒸着法により形成した第2
の固体電解質膜とにより構成したことを特徴とする固体
電解質型燃料電池。
Claims: 1. A solid electrolyte fuel cell in which a solid electrolyte layer is formed on a first electrode formed on a porous substrate, and a second electrode is laminated on the solid electrolyte layer, the solid electrolyte layer comprising: A first solid electrolyte film formed by a plasma spray method, and a second solid electrolyte film formed on this film by a heated evaporation method.
A solid electrolyte fuel cell comprising: a solid electrolyte membrane; and a solid electrolyte membrane.
JP3004216A 1991-01-18 1991-01-18 Solid electrolyte fuel cell Pending JPH04237960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004216A JPH04237960A (en) 1991-01-18 1991-01-18 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004216A JPH04237960A (en) 1991-01-18 1991-01-18 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH04237960A true JPH04237960A (en) 1992-08-26

Family

ID=11578424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004216A Pending JPH04237960A (en) 1991-01-18 1991-01-18 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH04237960A (en)

Similar Documents

Publication Publication Date Title
Takayanagi et al. Deposition of monolayer and bulk lead on Ag (111) studied in vacuum and in an electrochemical cell
KR100545928B1 (en) Capacitive vacuum measuring cell
US20030118802A1 (en) Membrane for capacitive vacuum measuring cell
Bae et al. Influence of background oxygen pressure on film properties of pulsed laser deposited Y: BaZrO3
JP5184375B2 (en) Hydrogen sensor and manufacturing method thereof
Sochugov et al. The effect of pulsed electron beam pretreatment of magnetron sputtered ZrO2: Y2O3 films on the performance of IT-SOFC
JP2000249672A (en) Manufacture of thin-film gas sensor using double ion beam sputtering
JPH04237960A (en) Solid electrolyte fuel cell
Meng et al. Preparation of YSZ electrolyte coatings for SOFC by electron beam physical vapor deposition combined with a sol infiltration treatment
JPH04237959A (en) Solid electrolyte fuel cell
JPS6410109B2 (en)
Fondard et al. Effect of total pressure on La2NiO4 coatings deposited by reactive magnetron sputtering using plasma emission monitoring
KR101015088B1 (en) DEOXIDIZE PdO THIN FILMS USED FOR HIGH SENSITIVE SENSORS AND MANUFACTURING METHOD THEREOF
CN2136465Y (en) Capacitive membrane pressure transducer with sputtering electrode
JPH0415413B2 (en)
JPH04324251A (en) Manufacture of interconnector for solid electrolyte fuel cell
JP2753654B2 (en) Moisture sensitive element
JP2743215B2 (en) Working electrode for electrochemical hydrogen fluoride detector
Fondard et al. Evaluation of a Metal Supported Ni-YSZ/YSZ/La2NiO4 IT-SOFC Elaborated by Physical Surface Deposition Processes
Barron et al. Dielectric response of tantalum oxide subject to induced ion bombardment during oblique sputter deposition
JP3170909B2 (en) Manufacturing method of gas detection element
Pittaway 22. GAUGES 22 871. Interlot density variation of a siloxane manometer fluid.(USA) The mean value of density for six samples of a siloxane manometer fluid is 1.06311 g/cm3 with an estimated standard deviation of
Baker Investigation of Sputtered Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ Electrodes With Impedance Spectroscopy
Wanzenberg et al. Reactive sputtering deposition and electrochemical characterisation of thin solid electrolyte membranes for solid oxide fuel cells
SU1728769A1 (en) Method of controlling porosity of metal-based coats