JPH04237319A - Three-dimensional input device - Google Patents

Three-dimensional input device

Info

Publication number
JPH04237319A
JPH04237319A JP3019208A JP1920891A JPH04237319A JP H04237319 A JPH04237319 A JP H04237319A JP 3019208 A JP3019208 A JP 3019208A JP 1920891 A JP1920891 A JP 1920891A JP H04237319 A JPH04237319 A JP H04237319A
Authority
JP
Japan
Prior art keywords
acceleration
dimensional
angle
accelerometer
dimensional input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3019208A
Other languages
Japanese (ja)
Inventor
Atsushi Katayama
淳 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3019208A priority Critical patent/JPH04237319A/en
Publication of JPH04237319A publication Critical patent/JPH04237319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain three-dimensional input without requiring the formation of a magnetic field and being influenced by the inclination of a device in operating. CONSTITUTION:This three-dimensional input device is constituted of an accelerator 1 for measuring three-dimensional acceleration, an angle gauge 2 for measuring an angle formed by the accelerator 1 and the horizontal face of a ground surface and a computing element 3 for integrating moving acceleration obtained by the accelerator 1 and corrected by the angle theta measured by the angle gauge 2 to find out a moving speed upsilon and integrating the moving speed upsilon to find out a moving distance 1. Thus, the three-dimensional input can be obtained without forming a magnetic field.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、3次元入力装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional input device.

【0002】0002

【従来の技術】計算機支援設計システム等に使用される
従来の3次元入力装置は、(A)人工的に形成した磁場
内で、センサコイルで磁場の変化を測定して3次元座標
を得るもの、(B)加速度計を用いて測定した加速度を
重積分し3次元座標を得るもの(特開平1−96720
号公報参照)、(C)圧力計を用いて測定した加速度を
重積分し3次元座標を得、同じ圧力計で重力加速度も測
定し装置の傾きをも同時に得るもの(特開昭64−28
720号公報参照)が存在する。
[Prior Art] Conventional three-dimensional input devices used in computer-aided design systems, etc. are (A) devices that obtain three-dimensional coordinates by measuring changes in the magnetic field with a sensor coil within an artificially formed magnetic field; , (B) Obtaining three-dimensional coordinates by multiple integration of acceleration measured using an accelerometer (Japanese Patent Application Laid-Open No. 1-96720
(Refer to Japanese Patent Publication No. 64-28), (C) Obtain three-dimensional coordinates by multiply integrating the acceleration measured using a pressure gauge, and also measure the gravitational acceleration with the same pressure gauge to obtain the tilt of the device at the same time (Japanese Patent Application Laid-Open No. 64-28
No. 720) exists.

【0003】0003

【発明が解決しようとする課題】上記従来技術の(A)
では、磁場内に金属があると磁場が乱れるため精度が低
くなる。磁場を強くすれば金属の影響を受けにくくなる
が、磁場内の電子機器や心臓ペ−スメ−カ−を使用した
人体等に悪影響を与える恐れがでる。
[Problem to be solved by the invention] (A) of the above prior art
However, if there is metal in the magnetic field, the magnetic field will be disturbed and the accuracy will be reduced. If the magnetic field is made stronger, it will be less susceptible to the effects of metals, but there is a risk that it will have an adverse effect on electronic equipment or human bodies using cardiac pacemakers, etc. within the magnetic field.

【0004】従来技術(B)では、重力加速度方向を検
出できないため、装置が地表に対して傾くと重力加速度
打ち消しが正しく行われず誤動作する。誤動作の理由を
図9と図10を用いて説明する。図9,図10とも簡単
のためY軸を省略している。図9は装置が傾いていない
ときの動作を表している。図9(a)では、下記の式(
1)に示す加速度計1は移動加速度Umと重力加速度U
gとの和である合成加速度Urを検出する。
[0004] In the prior art (B), since the direction of gravitational acceleration cannot be detected, when the device is tilted with respect to the ground surface, gravitational acceleration cannot be canceled out correctly, resulting in malfunction. The reason for the malfunction will be explained using FIGS. 9 and 10. In both FIGS. 9 and 10, the Y axis is omitted for simplicity. FIG. 9 shows the operation when the device is not tilted. In FIG. 9(a), the following equation (
The accelerometer 1 shown in 1) has a moving acceleration Um and a gravitational acceleration U
The resultant acceleration Ur, which is the sum of the acceleration and g, is detected.

【0005】     合成加速度Ur=移動加速度Um+重力加速度
Ug……………式(1)図9(b)では合成加速度Ur
から移動加速度Umだけを分離するため、重力加速度U
gを減じている。
[0005]Resultant acceleration Ur=moving acceleration Um+gravitational acceleration Ug...Formula (1) In FIG. 9(b), the resultant acceleration Ur
In order to separate only the moving acceleration Um from the gravitational acceleration U
g is reduced.

【0006】     移動加速度Um=合成加速度Ur−重力加速度
Ug……………式(2)式(2)は、式(1)を移項す
ることにより得られる。 図9の場合は、装置が傾いていないので、角度計の有無
に関わらず正常動作する。
Movement acceleration Um=combined acceleration Ur-gravitational acceleration Ug...Equation (2) Equation (2) can be obtained by transposing Equation (1). In the case of FIG. 9, since the device is not tilted, it operates normally regardless of the presence or absence of the angle meter.

【0007】図10は加速度計1が傾いた時の誤動作を
表している。図10(a)では、前記式(1)で表した
と同様に、加速度計1は移動加速度Umと重力加速度U
gとの和である合成加速度Urを検出する。
FIG. 10 shows a malfunction when the accelerometer 1 is tilted. In FIG. 10(a), similarly to the expression (1) above, the accelerometer 1 has a moving acceleration Um and a gravitational acceleration Um.
The resultant acceleration Ur, which is the sum of the acceleration and g, is detected.

【0008】図10(b)では、合成加速度Urから移
動加速度Umだけを分離するため、重力加速度Ugを減
じている。このとき、角度計を備えていないため、方向
を装置の下方向に固定した偽の重力加速度U′gを用い
ている。偽の重力加速度U′gを用いて演算した結果、
偽の移動加速度U′mが得られる。
In FIG. 10(b), the gravitational acceleration Ug is subtracted in order to separate only the movement acceleration Um from the composite acceleration Ur. At this time, since no angle meter is provided, a false gravitational acceleration U'g whose direction is fixed in the downward direction of the device is used. As a result of calculation using fake gravitational acceleration U'g,
A false movement acceleration U'm is obtained.

【0009】     偽の移動加速度U′m=合成加速度U′r−偽
の重力加速度U′g                
                         
           …………式(3)この偽の移動
加速度U′mは積分されるので、装置の傾きが元に戻っ
ても影響は残り、それ以降誤動作を続けることになる。 よって、従来技術(B)に基づく装置が正しく働くため
には装置が傾くことを防ぐ治具を併用するか、あるいは
装置が傾かないような操作を人に強いる必要がある。治
具は装置の移動を制限するので、操作の操作性を害する
。装置が傾かないような操作を強いるのは、操作者の負
担となる。
False moving acceleration U′m=Resultant acceleration U′r−False gravitational acceleration U′g

Equation (3) Since this false movement acceleration U'm is integrated, even if the tilt of the device returns to its original state, the influence remains, and malfunctions will continue from then on. Therefore, in order for the device based on the prior art (B) to work properly, it is necessary to use a jig to prevent the device from tilting, or to force a person to perform operations to prevent the device from tilting. Since the jig restricts the movement of the device, it impairs the operability of the operation. Forcing the operator to perform operations to prevent the device from tilting is a burden on the operator.

【0010】従来技術(C)では、加速度を圧力計で測
定することにより、装置の加速度と重力加速度とを決定
するとあるが、それは実現できない。なぜなら、装置の
移動による加速度と重力加速度が区別できないことが相
対性理論により知られているからである。よって、装置
の加速度だけしか決定できず、従来技術(B)と同じ問
題点を持つ。
[0010] In prior art (C), the acceleration of the device and the gravitational acceleration are determined by measuring the acceleration with a pressure gauge, but this cannot be realized. This is because it is known from the theory of relativity that acceleration due to movement of a device and gravitational acceleration cannot be distinguished. Therefore, only the acceleration of the device can be determined, which has the same problem as the prior art (B).

【0011】この発明の目的は、磁場を生成する必要な
く、操作中の装置の傾きに影響を受けることなく、3次
元入力が可能な3次元入力装置を得ることを目的とする
An object of the present invention is to provide a three-dimensional input device that allows three-dimensional input without the need to generate a magnetic field and without being affected by the tilt of the device during operation.

【0012】0012

【課題を解決するための手段】本発明にかかる3次元入
力装置は、3次元の加速度を測定する加速度計と、この
加速度計と地表の水平面とのなす角度を測定する角度計
と、加速度計で得られた3次元の加速度と角度計で測定
した角度から移動速度と移動量を計算する演算器とから
なるものである。
[Means for Solving the Problems] A three-dimensional input device according to the present invention includes an accelerometer that measures three-dimensional acceleration, an angle meter that measures the angle between this accelerometer and a horizontal plane of the earth's surface, and an accelerometer It consists of an arithmetic unit that calculates the moving speed and amount of movement from the three-dimensional acceleration obtained from the above and the angle measured by the angle meter.

【0013】[0013]

【作用】本発明においては、加速度計の傾きによる誤動
作を角度計により補正して、正しい加速度を求め、この
加速度を積分して移動速度を得、重積分して移動距離を
求める。
[Operation] In the present invention, a malfunction caused by the tilt of the accelerometer is corrected by an angle meter to obtain the correct acceleration, this acceleration is integrated to obtain the moving speed, and multiple integration is performed to obtain the moving distance.

【0014】[0014]

【実施例】以下、本発明の実施例を図1〜図8を参照し
て説明する。図1は本発明の一実施例の構成を示すブロ
ック図である。加速度計1は3次元の加速度を測定する
機能を持つ。角度計2は3軸のジャイロスコ−プから構
成され、角度計2に固定された直交3軸(X′,Y′,
Z′)回りの角度計2の回転角θ=(θx,θy,θz
)を測定する機能を持つ。演算器3は加速度計1と角度
計2の出力から装置の位置pと速度υと角度θを計算し
、これを3次元入力として外部に出力する。
[Embodiments] Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8. FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. The accelerometer 1 has a function of measuring three-dimensional acceleration. The angle meter 2 is composed of a three-axis gyroscope, and the three orthogonal axes (X', Y',
Rotation angle θ of the angle meter 2 around Z' = (θx, θy, θz
) has the function of measuring. The calculator 3 calculates the position p, velocity υ, and angle θ of the device from the outputs of the accelerometer 1 and the angle meter 2, and outputs these to the outside as three-dimensional inputs.

【0015】次に、本発明の動作を図2を用いて説明す
る。まず、図10(a)と同じく、加速度計1で装置に
働く重力加速度Ugと移動加速度Umから前記式(1)
を用いて合成加速度Urを測定し、角度計2(図示せず
)で装置の角度θを測定する。
Next, the operation of the present invention will be explained using FIG. First, as in FIG. 10(a), from the gravitational acceleration Ug acting on the device with the accelerometer 1 and the moving acceleration Um, the above formula (1) is used.
The resultant acceleration Ur is measured using an angle meter 2 (not shown), and the angle θ of the device is measured using an angle meter 2 (not shown).

【0016】次に、図2(a)のように、角度計2の示
す角度θを用いて重力がz軸逆向きに働くように座標変
換する。次いで、図2(b)では、合成加速度Urから
重力加速度Ugを減じることにより、移動加速度Umを
求める。ここで、求めた移動加速度Umを積分すること
により移動速度υを、更に積分することにより移動距離
lを求めている。
Next, as shown in FIG. 2(a), the coordinates are transformed using the angle θ indicated by the angle meter 2 so that gravity acts in the opposite direction of the z-axis. Next, in FIG. 2(b), the moving acceleration Um is obtained by subtracting the gravitational acceleration Ug from the resultant acceleration Ur. Here, the moving speed υ is obtained by integrating the obtained moving acceleration Um, and the moving distance l is obtained by further integrating the obtained moving acceleration Um.

【0017】 ∫移動加速度Um=移動速度υ……………………式(4
) ∫移動速度υ=移動距離l…………………………式(5
) 式(1)の合成加速度測定は加速度計1が行い、重力方
向を求めるための角度測定は角度計2が行い、式(2)
,(4),(5)の演算は演算器3が行う。式(2)で
用いる重力加速度Ugの大きさは、本発明の装置使用前
に装置を静止状態におき、加速度計1で測定しておく。
∫Movement acceleration Um=Movement speed υ……………………Formula (4
) ∫ Traveling speed υ = Traveling distance l…………………………Formula (5
) Accelerometer 1 measures the combined acceleration in equation (1), angle meter 2 measures the angle to determine the direction of gravity, and equation (2)
, (4), and (5) are performed by the computing unit 3. The magnitude of the gravitational acceleration Ug used in equation (2) is measured by the accelerometer 1 with the device in a stationary state before using the device of the present invention.

【0018】図3は本発明の一実施例を示す斜視図であ
る。加速度計1と角度計2と演算器3とをケ−ス10に
収め、演算器3からの信号を出力するケ−ブル11を付
加したものである。ケ−ス10を3次元(X,Y,Z方
向)に動かすと、ケ−ス10の位置pと速度υと角度θ
がケ−ブル11を通して出力される。
FIG. 3 is a perspective view showing an embodiment of the present invention. An accelerometer 1, an angle meter 2, and an arithmetic unit 3 are housed in a case 10, and a cable 11 for outputting a signal from the arithmetic unit 3 is added. When the case 10 is moved in three dimensions (X, Y, and Z directions), the position p, velocity υ, and angle θ of the case 10 change.
is output through cable 11.

【0019】図4は本発明を3次元マウスに応用した実
施例を示す斜視図である。加速度計1と角度計2と演算
器3とをケ−ス10に収め、演算器3からの信号を出力
するケ−ブル11を付加したものである。さらに、ボタ
ン12をケ−ス10に取り付け、既存のマウスボタンと
同じ機能、すなわち位置指定確定と命令実行の契機を示
す機能を持たせる。この3次元マウスでは、従来のマウ
スが持つ2次元平面での位置指定機能に加え、3次元空
間での位置指定機能および角度指定機能を持つ。
FIG. 4 is a perspective view showing an embodiment in which the present invention is applied to a three-dimensional mouse. An accelerometer 1, an angle meter 2, and an arithmetic unit 3 are housed in a case 10, and a cable 11 for outputting a signal from the arithmetic unit 3 is added. Further, a button 12 is attached to the case 10 and has the same function as an existing mouse button, that is, a function to confirm position designation and indicate an opportunity to execute a command. This three-dimensional mouse has the function of specifying a position in a three-dimensional space and the function of specifying an angle in addition to the function of specifying a position on a two-dimensional plane that a conventional mouse has.

【0020】図5は、図4の3次元マウスを小型軽量化
した実施例を示す斜視図である。演算器3をケ−ス10
より取り出し、ケ−ブル11の先に配置したことにより
、ケ−ス10を小型軽量化したものである。
FIG. 5 is a perspective view showing an embodiment in which the three-dimensional mouse of FIG. 4 is made smaller and lighter. Case 10 for computing unit 3
The case 10 is made smaller and lighter by taking it out and placing it at the end of the cable 11.

【0021】図6は、図5の3次元マウスをワイヤレス
化した実施例を示す斜視図である。図5でのケ−ブル1
1を無線通信装置20(図示は省略)で置き換えたもの
である。操作する時に、ケ−ブル11の制約を受けるこ
とがない。
FIG. 6 is a perspective view showing an embodiment in which the three-dimensional mouse of FIG. 5 is made wireless. Cable 1 in Figure 5
1 is replaced with a wireless communication device 20 (not shown). There is no restriction due to the cable 11 during operation.

【0022】図7は、図6のワイヤレス3次元マウスの
ケ−ス10を棒状にして、かつ指示位置計算機30を付
加して3次元指示棒に応用した実施例である。指示位置
計算機30には周辺の物体の座標をあらかじめ登録して
おく。これら物体の座標と指示棒の位置角度から求めた
棒の延長線とが交われば、棒が物体を指していることが
分かる。もし、棒の延長線と交わる物体が複数あれば、
棒に最も近い物体を指していると判断する。本実施例の
特徴は、棒自体の位置角度を知ることができるだけでは
なく、棒が指し示した物体の位置をも知ることができる
点である。
FIG. 7 shows an embodiment in which the case 10 of the wireless three-dimensional mouse shown in FIG. 6 is made into a rod shape, and a pointing position calculator 30 is added to apply it to a three-dimensional pointing stick. The coordinates of surrounding objects are registered in advance in the indicated position calculator 30. If these coordinates of the object intersect with the extension line of the rod determined from the position angle of the pointing rod, it can be determined that the rod is pointing to the object. If there are multiple objects that intersect with the extension line of the rod,
It is determined that it is pointing to the object closest to the stick. The feature of this embodiment is that it is possible to know not only the position angle of the rod itself, but also the position of the object pointed to by the rod.

【0023】図8は、図7の指示棒を指につけることに
より、指さし位置指定装置に応用した実施例である。ケ
−ス10は取り付け具41により指40に装着される。 本実施例によれば、図7の3次元指示棒と同様の動作原
理で、指さした物体の位置を決定することができる。
FIG. 8 shows an embodiment in which the pointer stick shown in FIG. 7 is applied to a pointing position specifying device by attaching it to a finger. The case 10 is attached to the finger 40 by a fitting 41. According to this embodiment, the position of the pointed object can be determined using the same operating principle as the three-dimensional pointing stick shown in FIG.

【0024】[0024]

【発明の効果】本発明は以上詳細に述べたように、3次
元の加速度を測定する加速度計と、この加速度計と地表
の水平面とのなす角度を測定する角度計と、3次元の加
速度と角度計で測定した角度から3次元の移動速度と移
動量を計算する演算器とを備えたので、磁場を生成する
必要なく、かつ操作中の装置の傾きに影響を受けること
なく、3次元入力が可能となる。
Effects of the Invention As described in detail above, the present invention provides an accelerometer that measures three-dimensional acceleration, an angle meter that measures the angle between this accelerometer and the horizontal plane of the earth's surface, and an angle meter that measures three-dimensional acceleration. Equipped with a calculator that calculates the three-dimensional movement speed and amount of movement from the angle measured by the angle meter, three-dimensional input is possible without the need to generate a magnetic field and without being affected by the tilt of the device during operation. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】図1の実施例の動作を説明するための図である
FIG. 2 is a diagram for explaining the operation of the embodiment of FIG. 1;

【図3】本発明の一実施例を示す斜視図である。FIG. 3 is a perspective view showing an embodiment of the present invention.

【図4】本発明を3次元マウスに応用した実施例を示す
斜視図である。
FIG. 4 is a perspective view showing an embodiment in which the present invention is applied to a three-dimensional mouse.

【図5】図4の3次元マウスを小型軽量化した実施例を
示す斜視図である。
5 is a perspective view showing an example in which the three-dimensional mouse of FIG. 4 is made smaller and lighter; FIG.

【図6】本発明をワイヤレス3次元マウスに応用した実
施例を示す斜視図である。
FIG. 6 is a perspective view showing an embodiment in which the present invention is applied to a wireless three-dimensional mouse.

【図7】本発明を3次元指示棒に応用した実施例を示す
斜視図である。
FIG. 7 is a perspective view showing an embodiment in which the present invention is applied to a three-dimensional pointing stick.

【図8】本発明を指さし位置指定装置に応用した実施例
を示す斜視図である。
FIG. 8 is a perspective view showing an embodiment in which the present invention is applied to a pointing position specifying device.

【図9】装置が傾いていない時の重力加速度打ち消し原
理を示した図である。
FIG. 9 is a diagram showing the principle of gravitational acceleration cancellation when the device is not tilted.

【図10】装置が傾いたときの誤った重力加速度打ち消
し原理を示した図である。
FIG. 10 is a diagram showing the principle of canceling erroneous gravitational acceleration when the device is tilted.

【符号の説明】[Explanation of symbols]

1    加速度計 2    角度計 3    演算器 10  ケ−ス 11  ケ−ブル 12  ボタン 20  無線通信装置 30  指示位置計算機 40  指 41  取り付け具 1 Accelerometer 2 Angle meter 3 Arithmetic unit 10 Case 11 Cable 12 button 20 Wireless communication device 30 Indicated position calculator 40 fingers 41 Mounting tool

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  3次元の加速度を測定する加速度計と
、この加速度計と地表の水平面とのなす角度を測定する
角度計と、前記3次元の加速度と前記角度計で測定した
角度から3次元の移動速度と移動量を計算する演算器と
を備えたことを特徴とする3次元入力装置。
Claim 1: an accelerometer that measures three-dimensional acceleration; an angle meter that measures the angle between the accelerometer and a horizontal plane on the earth's surface; A three-dimensional input device comprising: a calculator for calculating the moving speed and amount of movement of the object.
JP3019208A 1991-01-21 1991-01-21 Three-dimensional input device Pending JPH04237319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3019208A JPH04237319A (en) 1991-01-21 1991-01-21 Three-dimensional input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019208A JPH04237319A (en) 1991-01-21 1991-01-21 Three-dimensional input device

Publications (1)

Publication Number Publication Date
JPH04237319A true JPH04237319A (en) 1992-08-25

Family

ID=11992951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019208A Pending JPH04237319A (en) 1991-01-21 1991-01-21 Three-dimensional input device

Country Status (1)

Country Link
JP (1) JPH04237319A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311972A (en) * 2005-05-09 2006-11-16 Sony Corp Processing apparatus, processing method and processing program
JP2010067142A (en) * 2008-09-12 2010-03-25 British Virgin Islands CyWee Group Ltd Inertia sensing device
JP2010134668A (en) * 2008-12-04 2010-06-17 Seiko Epson Corp Data processing apparatus and data processing system
JP2011118945A (en) * 2006-12-12 2011-06-16 Ind Technol Res Inst Method for operating inertial input apparatus with six-axial detection ability
US7988558B2 (en) 2006-04-27 2011-08-02 Nintendo Co., Ltd. Game apparatus and storage medium storing game program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311972A (en) * 2005-05-09 2006-11-16 Sony Corp Processing apparatus, processing method and processing program
US7720571B2 (en) 2005-05-09 2010-05-18 Sony Corporation Process execution apparatus, process execution method and process execution program
US7988558B2 (en) 2006-04-27 2011-08-02 Nintendo Co., Ltd. Game apparatus and storage medium storing game program
US8287377B2 (en) 2006-04-27 2012-10-16 Nintendo Co., Ltd. Movement direction calculator and method for calculating movement direction
US8672760B2 (en) 2006-04-27 2014-03-18 Nintendo Co., Ltd. Game apparatus and storage medium storing game program
JP2011118945A (en) * 2006-12-12 2011-06-16 Ind Technol Res Inst Method for operating inertial input apparatus with six-axial detection ability
JP2010067142A (en) * 2008-09-12 2010-03-25 British Virgin Islands CyWee Group Ltd Inertia sensing device
JP2010134668A (en) * 2008-12-04 2010-06-17 Seiko Epson Corp Data processing apparatus and data processing system

Similar Documents

Publication Publication Date Title
JP3842316B2 (en) Position detecting device and tilt sensor
JP5218016B2 (en) Input device and data processing system
US20060185432A1 (en) Five degree of freedom intertial measurement device
KR20060117810A (en) Method and apparatus for measuring speed of land vehicle
JP3763435B2 (en) Attitude angle detector
US6634207B1 (en) Accelerometer compensation in an inertial navigation system
JPH04237319A (en) Three-dimensional input device
JP3960574B2 (en) Attitude angle detector
JP3992206B2 (en) Attitude angle detector
JP5457890B2 (en) Orientation detection device
TW201024684A (en) System and method for measuring tilt using lowest degrees of freedom of accelerometer
JPH06221852A (en) Electronic stereo clino-compass
US8411030B2 (en) Pointing and control device and method for a computer system
CA1251563A (en) Doppler-inertial data loop for navigation system
JP4023889B2 (en) Attitude angle detector
KR20210156780A (en) Navigation instrument with tilt compensation and associated method
JP2004326242A (en) Input device and input method for attitude angle and position information
JP3960575B2 (en) Attitude angle detector
KR101948017B1 (en) 3d coordinate acquisition method
Chen et al. A robust optical/inertial data fusion system for motion tracking of the robot manipulator
JP2000180462A (en) Posture angle detecting device
JP2003139536A (en) Declinometer and azimuth measuring method
JP3884742B2 (en) Compass
JPH07294240A (en) Position sensor
RU2689840C1 (en) Vehicle positioning device