JPH04237030A - Optical scanning device - Google Patents
Optical scanning deviceInfo
- Publication number
- JPH04237030A JPH04237030A JP511891A JP511891A JPH04237030A JP H04237030 A JPH04237030 A JP H04237030A JP 511891 A JP511891 A JP 511891A JP 511891 A JP511891 A JP 511891A JP H04237030 A JPH04237030 A JP H04237030A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- light
- refractive index
- optical scanning
- curved waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 37
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 230000007423 decrease Effects 0.000 claims abstract description 16
- 230000005693 optoelectronics Effects 0.000 claims abstract 2
- 230000005684 electric field Effects 0.000 claims description 34
- 229910003327 LiNbO3 Inorganic materials 0.000 abstract description 7
- 230000005855 radiation Effects 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 108091008695 photoreceptors Proteins 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 229910012463 LiTaO3 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、光プリンタ等の感光体
ドラムに光を照射し走査露光したり、バーコードリーダ
等において光走査を行う光走査素子、さらに詳細には光
導波路を用いて光走査を行う光走査素子に関する。[Industrial Application Field] The present invention relates to an optical scanning element that irradiates light onto a photoreceptor drum in an optical printer and performs scanning exposure, or performs optical scanning in a barcode reader, etc., and more specifically, an optical waveguide. The present invention relates to an optical scanning element that performs optical scanning.
【0002】0002
【従来の技術】従来、レーザプリンタ等の感光体ドラム
に露光する露光装置は、例えば、図13に示すように、
半導体レーザ101、コリメータレンズ102、ポリゴ
ンミラー104、fθレンズ106、反射ミラー108
とから構成されている。半導体レーザ101から発せら
れたレーザ光は、コリメータレンズ102で平行光とな
り、回転しているポリゴンミラー104へ照射される。
ポリゴンミラー104で反射したレーザ光は等角速度で
偏向されるため、fθレンズ106によりレーザ光が等
速で移動するように変換され、全反射ミラー108で反
射された後、あらかじめ帯電された感光体ドラム110
上を走査、露光する。感光体ドラム110の露光された
部分は、光導電性により電荷が消失するため、感光体ド
ラム110と同じ極性に帯電されたトナーが反発されず
に付着する。このトナーを紙に転写後、加熱等により定
着することで印刷が完了する。2. Description of the Related Art Conventionally, an exposure device for exposing a photoreceptor drum such as a laser printer has, for example, a structure shown in FIG.
Semiconductor laser 101, collimator lens 102, polygon mirror 104, fθ lens 106, reflection mirror 108
It is composed of. Laser light emitted from the semiconductor laser 101 is turned into parallel light by the collimator lens 102, and is irradiated onto the rotating polygon mirror 104. Since the laser beam reflected by the polygon mirror 104 is deflected at a constant angular velocity, the laser beam is converted to move at a constant velocity by the fθ lens 106, and after being reflected by the total reflection mirror 108, it passes through the pre-charged photoreceptor. drum 110
Scan and expose the top. Since the exposed portion of the photoreceptor drum 110 loses charge due to photoconductivity, toner charged to the same polarity as the photoreceptor drum 110 is not repelled but adheres thereto. After transferring this toner to paper, printing is completed by fixing it by heating or the like.
【0003】0003
【発明が解決しようとする課題】しかしながら、レーザ
プリンタではポリゴンミラーとレンズによる走査光学系
が複雑であり、光軸調整が難しく、また、高い加工精度
を要求されるため生産性が低い、さらにポリゴンミラー
の回転機構が必要なことから小型化が困難であるという
問題点がある。[Problems to be Solved by the Invention] However, in laser printers, the scanning optical system using polygon mirrors and lenses is complicated, making it difficult to adjust the optical axis, and requiring high processing precision, resulting in low productivity. There is a problem in that miniaturization is difficult because a mirror rotation mechanism is required.
【0004】本発明は、上述した問題点を解決するため
になされたものであり、電気光学効果を有し、光の伝搬
方向に対して等価屈折率が徐々に減少あるいは変化する
曲がり導波路を用いることにより、回転機構等の可動部
が不用であり、構成が簡単で生産性が高い、小型の光走
査素子を提供することにある。The present invention has been made to solve the above-mentioned problems, and uses a curved waveguide which has an electro-optic effect and whose equivalent refractive index gradually decreases or changes with respect to the propagation direction of light. By using the present invention, it is an object to provide a compact optical scanning element that does not require a movable part such as a rotation mechanism, has a simple structure, and has high productivity.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に、本発明の光走査素子では基板と、その基板上あるい
は基板表面に形成され、電気光学効果を有し、光の伝搬
方向に対して等価屈折率が徐々に減少あるいは変化する
曲がり導波路と、この曲がり導波路に電界を印加する電
極とから成る。光の伝搬方向に対して等価屈折率を徐々
に減少させるため、曲がり導波路の導波路幅を徐々に減
少させてもよい。また、曲がり導波路の周囲に電界を印
加する電極を有してもよい。さらに、基板の端面のうち
で光が外部へ放射される部分を凸状等の非平面としても
よい。[Means for Solving the Problems] In order to achieve this object, the optical scanning element of the present invention includes a substrate, and is formed on the substrate or on the surface of the substrate, has an electro-optic effect, and has an electro-optic effect in the direction of propagation of light. It consists of a curved waveguide whose equivalent refractive index gradually decreases or changes, and an electrode that applies an electric field to the curved waveguide. In order to gradually decrease the equivalent refractive index in the light propagation direction, the waveguide width of the curved waveguide may be gradually decreased. Further, it may include an electrode that applies an electric field around the curved waveguide. Furthermore, the portion of the end surface of the substrate from which light is emitted to the outside may be made convex or other non-planar.
【0006】[0006]
【作用】上記の構成を有する本発明の光走査素子におい
て、半導体レーザ等の光源から発せられ曲がり導波路に
導かれた光は曲がり導波路中を伝搬するが、電極により
曲がり導波路に電界を印加し、電気光学効果により、曲
がり導波路の屈折率を小さくすることにより光は導波路
中に閉じ込められなくなり導波路の外へ放射される。曲
がり導波路の等価屈折率は、光の伝搬方向に徐々に減少
しており、等価屈折率の小さな部分では、小さな電界を
印加することにより導波路の屈折率が少し低下しただけ
で光を閉じ込められなくなり、光が放射される。一方、
等価屈折率が大きな部分では大きな電界を印加し、導波
路の屈折率低下を大きくしなければ光は放射されない。
従って、印加電界の大きさによって光が放射される位置
を制御することができる。さらに、曲がり導波路におい
て、光の放射位置が異なれば、放射される方向も異なる
ため印加電界で光の放射方向が制御でき、光走査を行う
ことができる。なお、曲がり導波路の屈折率を電界で変
化させる代わりに、曲がり導波路の周囲の屈折率を変化
させても同様に光走査を行うことができる。また、光が
外部へ放射される基板の端面を例えば、凸状等の非平面
状に加工することにより、放射光を集束させる等の機能
を付加することができる。[Operation] In the optical scanning element of the present invention having the above configuration, light emitted from a light source such as a semiconductor laser and guided into the curved waveguide propagates in the curved waveguide, but an electric field is applied to the curved waveguide by the electrode. By applying this voltage, the refractive index of the curved waveguide is reduced due to the electro-optic effect, so that the light is no longer confined within the waveguide and is radiated out of the waveguide. The equivalent refractive index of a curved waveguide gradually decreases in the direction of light propagation, and in parts where the equivalent refractive index is small, applying a small electric field can confine light with a slight decrease in the refractive index of the waveguide. light is emitted. on the other hand,
Light will not be emitted unless a large electric field is applied to a portion with a large equivalent refractive index and the refractive index of the waveguide is greatly reduced. Therefore, the position from which light is emitted can be controlled by the magnitude of the applied electric field. Furthermore, in a curved waveguide, if the light is emitted at a different position, the emitted direction is also different, so the emitted direction of the light can be controlled by an applied electric field, and optical scanning can be performed. Note that instead of changing the refractive index of the curved waveguide using an electric field, optical scanning can be similarly performed by changing the refractive index around the curved waveguide. Further, by processing the end face of the substrate from which light is emitted to the outside into a non-planar shape such as a convex shape, a function such as focusing the emitted light can be added.
【0007】[0007]
【実施例】以下、本発明を具体化した一実施例を図面を
参照して説明する。本発明を好適に適用した光走査素子
10は、例えば図1に示すように、電気光学効果を有す
るLiNbO3等の基板12にTi等を拡散させて作製
したTi拡散導波路14と、その両側に形成されたAl
等から成る複数の電極16とから構成されている。Ti
拡散導波路14は直線光導波路18と曲がり導波路20
とから成る。曲がり導波路20は光の伝搬方向に対して
徐々に屈折率が小さくなるように作製されている。また
、直線光導波路18の一端には光源である半導体レーザ
22が取り付けられている。さらに、曲がり導波路20
の端には光吸収材23が設けられている。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the present invention will be described below with reference to the drawings. An optical scanning element 10 to which the present invention is suitably applied includes, for example, as shown in FIG. Al formed
It is composed of a plurality of electrodes 16 consisting of, etc. Ti
The diffusion waveguide 14 includes a straight optical waveguide 18 and a curved waveguide 20.
It consists of The curved waveguide 20 is fabricated so that its refractive index gradually decreases in the light propagation direction. Further, a semiconductor laser 22 serving as a light source is attached to one end of the straight optical waveguide 18. Furthermore, the curved waveguide 20
A light absorbing material 23 is provided at the end.
【0008】このような光走査素子10の製造法は図2
を用いて説明する。すなわち、図2(a)のように、L
iNbO3等の基板12上に回転塗布法等によりフォト
レジスト24を塗布する。その上に所定の導波路形状の
パターンを有するマスク26を密着させ紫外線を照射し
、露光する。露光後、現像するとフォトレジスト24は
同図(b)のように紫外線が照射された部分が残る。こ
の上に、スパッタ法、真空蒸着法等のよく知られた薄膜
形成手段によりTi薄膜28を形成する。このとき、T
i薄膜28は光の伝搬方向に対し徐々に膜厚が小さくな
るように作製される。このような膜厚分布は、例えば、
導波路となる部分が全て遮蔽される位置にマスクをおき
、このマスクを徐々に除去しながら導波路となる部分に
Tiを堆積させることにより作製できる。すなわち、マ
スクが早く除去された部分はTiが厚く、マスクが遅く
除去された部分はTiが薄くなるため、所定の膜厚分布
が得られる。その後、溶剤によりフォトレジスト24を
除去することにより、同図(c)のように所定の導波路
形状にTi薄膜28を加工できる。この基板12を10
00゜C程度に加熱し、数時間熱拡散を行うとTi薄膜
28がLiNbO3中に拡散し、同図(d)のようにT
i拡散導波路14が形成される。このとき、Ti膜厚が
厚い部分は屈折率が高く、Tiが薄い部分は屈折率が小
さくなる。さらに、同図(e)のように、電極16とな
るAl薄膜30をスパッタ法、真空蒸着法等のよく知ら
れた薄膜形成手段により形成し、その上に回転塗布法等
によりフォトレジスト24を塗布する。その上に所定の
電極形状のパターンを有するマスク32を密着させ紫外
線を照射し、露光する。露光後、現像するとフォトレジ
スト24は同図(f)のように紫外線が照射された部分
のみが残る。ここで、酸、アルカリ等のエッチング液や
プラズマエッチング等を用いて、フォトレジスト24が
付着していない部分のAl薄膜30をエッチングした後
、残ったフォトレジスト24を溶剤等で除去することに
より同図(g)のように電極16を形成することができ
る。A method of manufacturing such an optical scanning element 10 is shown in FIG.
Explain using. That is, as shown in FIG. 2(a), L
A photoresist 24 is applied onto a substrate 12 made of iNbO3 or the like by a spin coating method or the like. A mask 26 having a pattern of a predetermined waveguide shape is tightly attached thereon, and ultraviolet rays are irradiated for exposure. After exposure, when the photoresist 24 is developed, a portion irradiated with ultraviolet rays remains as shown in FIG. 2(b). A Ti thin film 28 is formed thereon by well-known thin film forming means such as sputtering and vacuum evaporation. At this time, T
The i-thin film 28 is manufactured so that its thickness gradually decreases in the direction of propagation of light. Such a film thickness distribution is, for example,
It can be manufactured by placing a mask at a position where the entire portion that will become the waveguide is shielded, and gradually removing this mask while depositing Ti on the portion that will become the waveguide. In other words, Ti is thick in the portion where the mask is removed early, and Ti is thin in the portion where the mask is removed late, so that a predetermined film thickness distribution is obtained. Thereafter, by removing the photoresist 24 with a solvent, the Ti thin film 28 can be processed into a predetermined waveguide shape as shown in FIG. 3(c). This board 12 is 10
When heated to about 00°C and thermally diffused for several hours, the Ti thin film 28 is diffused into LiNbO3, and the Ti thin film 28 is diffused into LiNbO3 as shown in FIG.
An i-diffusion waveguide 14 is formed. At this time, a portion where the Ti film is thick has a high refractive index, and a portion where the Ti film is thin has a low refractive index. Furthermore, as shown in FIG. 3(e), an Al thin film 30 that will become the electrode 16 is formed by a well-known thin film forming method such as sputtering or vacuum evaporation, and a photoresist 24 is applied thereon by a spin coating method or the like. Apply. A mask 32 having a pattern of a predetermined electrode shape is tightly attached thereon, and ultraviolet rays are irradiated for exposure. After exposure and development, only the portions of the photoresist 24 irradiated with ultraviolet rays remain as shown in FIG. 2(f). Here, after etching the portions of the Al thin film 30 to which the photoresist 24 is not attached using an etching solution such as acid or alkali or plasma etching, the remaining photoresist 24 is removed using a solvent or the like. The electrode 16 can be formed as shown in Figure (g).
【0009】本発明の光走査素子10の動作は、図3お
よび図4を用いて説明する。The operation of the optical scanning element 10 of the present invention will be explained using FIGS. 3 and 4.
【0010】基板12に用いるLiNbO3は、光学軸
が基板面に平行なYカット板であり、図3のように電極
16に電圧を印加すると基板面にほぼ平行な電界36が
導波路14に印加される。ここで、印加電圧をE、Li
NbO3の常光および異常光に対する屈折率をnoおよ
びne、電気光学定数をγ33とすると、電界の振動方
向が基板面に平行な導波モードであるTEモードに対す
る導波路14の屈折率ngは、LiNbO3の光学軸(
C軸)が光の伝搬方向と垂直な場合
ng=ne−(ne3γ33/2)E
(1)で与えられ、電界Eに比例して導波路14す
なわち曲がり導波路20の屈折率ngが減少する。ただ
し、導波路の曲がりにより、LiNbO3の光学軸(C
軸)が光の伝搬方向に垂直な方向からずれると、ngの
変化は小さくなるが、電界Eを大きくすることにより補
うことができる。The LiNbO3 used for the substrate 12 is a Y-cut plate whose optical axis is parallel to the substrate surface, and when a voltage is applied to the electrode 16 as shown in FIG. 3, an electric field 36 approximately parallel to the substrate surface is applied to the waveguide 14. be done. Here, the applied voltage is E, Li
Assuming that the refractive indexes of NbO3 for ordinary light and extraordinary light are no and ne, and the electro-optic constant is γ33, the refractive index ng of the waveguide 14 for the TE mode, which is a waveguide mode in which the vibration direction of the electric field is parallel to the substrate surface, is LiNbO3. optical axis (
C axis) is perpendicular to the propagation direction of light, then ng=ne-(ne3γ33/2)E
(1), and the refractive index ng of the waveguide 14, that is, the curved waveguide 20, decreases in proportion to the electric field E. However, due to the bending of the waveguide, the optical axis (C
If the axis) deviates from the direction perpendicular to the light propagation direction, the change in ng becomes smaller, but this can be compensated for by increasing the electric field E.
【0011】図4(a)において、光源である半導体レ
ーザ22から発せられたレーザ光は直線導波路18へ導
かれ、さらに曲がり導波路20中を伝搬する。ここで、
電極16に電圧を印加し、曲がり導波路20の屈折率を
減少させると、光38は曲がり導波路20中に閉じ込め
られなくなり、曲がり導波路20の外へ放射される。こ
のとき、曲がり導波路20は光の伝搬方向に対し、屈折
率が徐々に小さくなるように形成されており、屈折率が
小さいほど導波路中への光の閉じ込めは弱くなる。従っ
て、屈折率の小さな部分40においては低い電圧を電極
16に印加し、曲がり導波路20の屈折率が少し減少し
ただけで光42は導波路中に閉じ込められなくなり、曲
がり導波路20外へ放射される。一方、曲がり導波路2
0の屈折率の大きな部分44は光の閉じ込めが比較的強
いため、光46を曲がり導波路20の外へ放射させるた
めには高い電圧を電極16に印加し、曲がり導波路20
の屈折率の減少を大きくする必要がある。このように、
曲がり導波路20は光の伝搬方向に対し、屈折率が小さ
くなるように形成されているため、電極16に印加する
電圧の大きさにより、曲がり導波路20における光の放
射位置を制御することができる。図4のように、光が放
射される位置により、光の放射方向も異なるため、電極
16に印加する電圧を変化させ、光の放射位置を変化さ
せることにより光を走査することができる。放射された
光38、42、46はレンズ48により感光体ドラム5
0上に集光され露光される。例えば、図4(b)のよう
に変化する波形の電圧を電極16に印加することにより
、同図(a)において下から上に走査することができる
。なお、曲がり導波路20の外部へ放射されなかった光
は曲がり導波路20の一端に設けられたAl等の金属ク
ラッドを用いた光吸収材23で減衰する。In FIG. 4A, laser light emitted from a semiconductor laser 22 serving as a light source is guided to a straight waveguide 18 and further propagates through a curved waveguide 20. In FIG. here,
When a voltage is applied to electrode 16 to decrease the refractive index of curved waveguide 20 , light 38 is no longer confined within curved waveguide 20 and is emitted out of curved waveguide 20 . At this time, the curved waveguide 20 is formed so that its refractive index gradually decreases in the light propagation direction, and the smaller the refractive index, the weaker the confinement of light within the waveguide. Therefore, if a low voltage is applied to the electrode 16 in the portion 40 where the refractive index is small and the refractive index of the curved waveguide 20 is slightly decreased, the light 42 will no longer be confined within the waveguide and will be emitted outside the curved waveguide 20. be done. On the other hand, curved waveguide 2
Since light confinement is relatively strong in the portion 44 with a large refractive index of 0, a high voltage is applied to the electrode 16 in order to radiate the light 46 out of the curved waveguide 20.
It is necessary to increase the decrease in the refractive index. in this way,
Since the curved waveguide 20 is formed to have a small refractive index with respect to the light propagation direction, the light emission position in the curved waveguide 20 can be controlled by the magnitude of the voltage applied to the electrode 16. can. As shown in FIG. 4, since the direction of light emission differs depending on the position where the light is emitted, the light can be scanned by changing the voltage applied to the electrode 16 and changing the light emission position. The emitted lights 38, 42, 46 are transmitted to the photosensitive drum 5 by a lens 48.
The light is focused on 0 and exposed. For example, by applying a voltage having a waveform that changes as shown in FIG. 4(b) to the electrode 16, it is possible to scan from the bottom to the top in FIG. 4(a). Note that the light that is not emitted to the outside of the curved waveguide 20 is attenuated by a light absorbing material 23 that is provided at one end of the curved waveguide 20 and is made of a metal cladding such as Al.
【0012】以上、本発明の一実施例を図1から図4に
基づいて詳細に説明したが、その他本発明の趣旨を逸脱
しない範囲で種々の変形が可能である。すなわち、基板
および曲がり導波路、さらに電極の材料、形状について
は特に限定されない。例えば、曲がり導波路20の屈折
率の大きさや屈折率が変化する割合については特に限定
されない。また、曲がり導波路20の曲率についても特
に限定されず、さらに、曲率は一定である必要はない。
また、基板12と電極16の間にSiO2等からなるバ
ッファ層を設けてもよい。これにより放射光が電極16
により減衰するのを防ぐことができる。また、電極16
の間隔は一定である必要はない。また、電極16に印加
する電圧の波形については特に限定されない。Although one embodiment of the present invention has been described above in detail with reference to FIGS. 1 to 4, various other modifications can be made without departing from the spirit of the present invention. That is, the materials and shapes of the substrate, curved waveguide, and electrodes are not particularly limited. For example, there are no particular limitations on the magnitude of the refractive index of the curved waveguide 20 or the rate at which the refractive index changes. Further, the curvature of the curved waveguide 20 is not particularly limited, and furthermore, the curvature does not need to be constant. Further, a buffer layer made of SiO2 or the like may be provided between the substrate 12 and the electrode 16. As a result, the emitted light is transmitted to the electrode 16.
This can prevent attenuation. In addition, the electrode 16
The intervals between the two do not need to be constant. Further, the waveform of the voltage applied to the electrode 16 is not particularly limited.
【0013】また、曲がり導波路の屈折率自体を変化さ
せる必要はなく、光が導波路全体の屈折率として感じる
等価屈折率が光の伝搬方向に対して変化していればよい
。例えば、図5に示すように、曲がり導波路52の屈折
率は一定とし、導波路の幅を光の伝搬方向に対して徐々
に狭くしてもよい。導波路の幅が狭いほど導波路の等価
屈折率が小さくなり、光の閉じ込めが弱くなる。従って
、図1に示した光走査素子と全く同様にして、光走査を
行うことができる。なお、曲がり導波路52はTi拡散
で作製する必要はない。すなわち、基板および曲がり導
波路の一方あるいは両方に電気光学効果を有する材料が
用いられていればよく、基板にLiTaO3、曲がり導
波路にLiNbO3を用いてもよい。さらに、基板にガ
ラス、サファイア等を用い、曲がり導波路にPLZT、
ZnO等の薄膜を用いてもよい。このときの導波路形状
は、図6(a)に示すように、基板60の上に作製され
た薄膜62の一部を削りリッジ64を形成したリッジ型
導波路、さらに、同図(b)のようにリッジの形状を非
対称としたリッジ型導波路としてもよい。すなわち、リ
ッジ形状を非対称とし外側66を内側68よりも厚くす
ることにより導波路の外部への放射効率が向上する。ま
た、同図(c)のように基板60の上に3次元導波路6
2を設けてもよい。
いずれの場合も、リッジ64あるいは導波路62の幅が
光の伝搬方向に対し、徐々に狭くなるように形成すれば
よい。Further, it is not necessary to change the refractive index itself of the curved waveguide, but it is sufficient that the equivalent refractive index that the light perceives as the refractive index of the entire waveguide changes with respect to the propagation direction of the light. For example, as shown in FIG. 5, the refractive index of the curved waveguide 52 may be constant, and the width of the waveguide may be gradually narrowed in the light propagation direction. The narrower the width of the waveguide, the smaller the equivalent refractive index of the waveguide, and the weaker the light confinement. Therefore, optical scanning can be performed in exactly the same manner as the optical scanning element shown in FIG. Note that the curved waveguide 52 does not need to be manufactured by Ti diffusion. That is, it is only necessary that one or both of the substrate and the curved waveguide be made of a material having an electro-optic effect, and LiTaO3 may be used for the substrate and LiNbO3 may be used for the curved waveguide. Furthermore, the substrate is made of glass, sapphire, etc., and the curved waveguide is made of PLZT,
A thin film such as ZnO may also be used. The waveguide shape at this time is a ridge-type waveguide in which a ridge 64 is formed by cutting a part of the thin film 62 formed on the substrate 60, as shown in FIG. A ridge-type waveguide with an asymmetrical ridge shape may also be used. That is, by making the ridge shape asymmetric and making the outer side 66 thicker than the inner side 68, the radiation efficiency to the outside of the waveguide is improved. Moreover, as shown in FIG. 6(c), a three-dimensional waveguide 6 is provided on the substrate 60
2 may be provided. In either case, the width of the ridge 64 or the waveguide 62 may be formed so as to gradually become narrower in the light propagation direction.
【0014】また、図7のように曲がり導波路20に電
界を印加する代わりに、曲がり導波路20の上にSiO
2等のバッファ層70を設け、その上に電極72を作製
し、曲がり導波路20の外側74に電界76を印加して
もよい。このとき、電界の方向は図3に示した方向と逆
であり、(1)式より、曲がり導波路20の外側74の
屈折率は増加する。このため、曲がり導波路20におけ
る光の閉じ込めが弱まり、光が導波路の外へ放射される
。Furthermore, instead of applying an electric field to the curved waveguide 20 as shown in FIG.
A buffer layer 70 such as No. 2 may be provided, an electrode 72 may be formed thereon, and an electric field 76 may be applied to the outside 74 of the curved waveguide 20. At this time, the direction of the electric field is opposite to the direction shown in FIG. 3, and according to equation (1), the refractive index on the outside 74 of the curved waveguide 20 increases. Therefore, the light confinement in the curved waveguide 20 is weakened, and the light is radiated out of the waveguide.
【0015】また、基板や導波路に用いる結晶の結晶軸
の方向についても限定されず、例えばYカットLiNb
O3の代わりにZカットLiNbO3を用いてもよい。
この場合、図8のようにTi拡散導波路14の上にSi
O2等のバッファ層70を設け、Ti拡散導波路14の
上部とその両側に電極74を形成する。このときの電界
76は、基板面に垂直な方向に発生する。この電界によ
り、磁界の振動方向が基板面に平行なTMモードに対す
る導波路の屈折率ngはやはり、(1)式で表わされる
ため先に説明したように電極74によって電界を印加す
ることにより光走査を行うことができる。ここで、導波
路の屈折率ngの変化は導波路の曲がりによる光の伝搬
方向の変化に依存しないため、電極74に印加する電圧
の制御が簡単になる。Furthermore, the direction of the crystal axis of the crystal used for the substrate or waveguide is not limited, and for example, Y-cut LiNb
Z-cut LiNbO3 may be used instead of O3. In this case, as shown in FIG.
A buffer layer 70 such as O2 is provided, and electrodes 74 are formed on the top of the Ti diffusion waveguide 14 and on both sides thereof. The electric field 76 at this time is generated in a direction perpendicular to the substrate surface. Due to this electric field, the refractive index ng of the waveguide for the TM mode in which the vibration direction of the magnetic field is parallel to the substrate surface is also expressed by equation (1). Scanning can be performed. Here, since the change in the refractive index ng of the waveguide does not depend on the change in the propagation direction of light due to the bending of the waveguide, the voltage applied to the electrode 74 can be easily controlled.
【0016】また、曲がり導波路を作製するため、Li
NbO3に拡散する材料についても限定しない。また、
拡散導波路の屈折率分布についても特に限定しない。例
えば、図9(a)のように、拡散導波路80の屈折率分
布を屈折率が高い領域が外側に広がるように形成しても
よい。
この場合、導波路の外側に対する光の閉じ込めが弱くな
り、放射の制御が容易になる。さらに、バッファ層70
を設け、電極82により拡散導波路80の内側と外側と
で方向が逆の電界を印加してもよい。これにより、拡散
導波路80の内側の屈折率が減少すると共に、外側の屈
折率が増加するため電界の印加により光の放射が容易に
なる。また、同図(b)のようにTi等の拡散物濃度が
高く導波路となる領域84のまわり、特に外側に、領域
84よりも拡散物濃度が低い領域86を設けてもよい。
また、同図(c)のように、Ti等の拡散物濃度が高く
導波路となる領域84の内側87および外側88に基板
12の屈折率が低くなるMgO等の材料を拡散してもよ
い。これにより、導波路中への光の閉じ込めが強くなり
、弱い電界が印加されたときに光が外部へ放射されるこ
とがなくなるため、曲がり導波路20の屈折率が大きな
部分に対して有効である。すなわち、図1に示した曲が
り導波路20の形状は一定である必要はなく、屈折率の
変化に応じて図9(a)、(b)、(c)に示した導波
路を組み合わせてもよい。[0016] Furthermore, in order to fabricate a curved waveguide, Li
The material that diffuses into NbO3 is also not limited. Also,
There are no particular limitations on the refractive index distribution of the diffusion waveguide either. For example, as shown in FIG. 9(a), the refractive index distribution of the diffusion waveguide 80 may be formed such that the region with a high refractive index spreads outward. In this case, light confinement to the outside of the waveguide becomes weaker, making it easier to control radiation. Furthermore, the buffer layer 70
may be provided, and an electric field having opposite directions may be applied between the inside and outside of the diffusion waveguide 80 using the electrode 82. As a result, the refractive index on the inside of the diffusion waveguide 80 decreases, and the refractive index on the outside increases, making it easier to emit light by applying an electric field. Further, as shown in FIG. 2B, a region 86 having a lower concentration of diffused substances than the region 84 may be provided around, particularly outside, a region 84 which has a high concentration of diffused substances such as Ti and serves as a waveguide. Furthermore, as shown in FIG. 2(c), a material such as MgO which lowers the refractive index of the substrate 12 may be diffused into the inner side 87 and outer side 88 of the region 84 which is a waveguide and has a high concentration of diffused substances such as Ti. . This strengthens the confinement of light within the waveguide and prevents the light from being emitted to the outside when a weak electric field is applied, making it effective for parts of the curved waveguide 20 with a large refractive index. be. That is, the shape of the curved waveguide 20 shown in FIG. 1 does not need to be constant, and the waveguides shown in FIGS. 9(a), (b), and (c) may be combined depending on the change in refractive index. good.
【0017】また、Ti拡散の代わりに、よく知られて
いるプロトン交換を用いて曲がり導波路20を作製して
もよい。プロトン交換では大きな表面屈折率の変化が実
現できるため、全体的に曲がり導波路20の曲率半径を
小さくでき光走査素子全体をさらに小型化することがで
きる。Furthermore, the curved waveguide 20 may be fabricated using well-known proton exchange instead of Ti diffusion. Since a large change in the surface refractive index can be realized by proton exchange, the radius of curvature of the curved waveguide 20 can be reduced overall, and the entire optical scanning element can be further miniaturized.
【0018】また、図1に示した実施例では曲がり導波
路の屈折率が減少するように電界を印加していたが、電
界の印加方向は特に限定されるわけではなく、曲がり導
波路の屈折率が増加するように電界を印加してもよい。
すなわち、曲がり導波路の屈折率を電界を印加しないと
きには光が放射されるように小さくしておき、電界を印
加することにより屈折率が増加し光が閉じ込められるよ
うにしてもよい。このとき、曲がり導波路の屈折率が大
きな部分では小さな電界を印加すれば光が閉じ込められ
る。一方、屈折率が小さな部分では大きな電界を印加し
ないと光が閉じ込められないため、印加電界の大きさに
より光の放射位置を制御することができる。Furthermore, in the embodiment shown in FIG. 1, an electric field was applied to reduce the refractive index of the curved waveguide, but the direction in which the electric field is applied is not particularly limited. An electric field may be applied such that the rate increases. That is, the refractive index of the curved waveguide may be made small so that light is emitted when no electric field is applied, and when an electric field is applied, the refractive index increases and the light is confined. At this time, if a small electric field is applied to the portion of the curved waveguide where the refractive index is large, light can be confined. On the other hand, since light cannot be confined in a portion with a small refractive index unless a large electric field is applied, the light emission position can be controlled by the magnitude of the applied electric field.
【0019】また、図1における直線導波路18につい
て、その長さ、形状等については限定しない。また、直
線導波路18は必ずしも必要ではなく設けなくてもよい
。このとき、レーザ光は直接曲がり導波路20に入射さ
せればよい。また、光源である半導体レーザ22は導波
路端面に直接結合させる必要はなく、図10(a)のよ
うに光ファイバを用いて半導体レーザから発せられたレ
ーザ光を直線導波路18に結合してもよい。また、同図
(b)のように半導体レーザ22から発せられたレーザ
光を対物レンズ92を用いて直線導波路18に結合して
もよい。Furthermore, the length, shape, etc. of the linear waveguide 18 in FIG. 1 are not limited. Further, the straight waveguide 18 is not necessarily required and may not be provided. At this time, the laser light may be made to directly enter the curved waveguide 20. Furthermore, the semiconductor laser 22, which is a light source, does not need to be directly coupled to the end face of the waveguide, but the laser light emitted from the semiconductor laser may be coupled to the straight waveguide 18 using an optical fiber as shown in FIG. 10(a). Good too. Alternatively, the laser beam emitted from the semiconductor laser 22 may be coupled to the linear waveguide 18 using an objective lens 92 as shown in FIG. 2(b).
【0020】また、曲がり導波路20の形成されている
基板12の形状についても特に限定されない。例えば図
11(a)に示すように、放射光が出射する基板12の
端面95を凸状に加工してもよい。これにより、基板面
に平行な面内で光を集束させることができる。基板面に
垂直な方向は円筒レンズを用いて集束させる。また、放
射光が出射する基板12の端面95を基板面に垂直な方
向にも凸状に加工すれば円筒レンズは不用となる。また
、同図(b)のように放射光94が出射する基板12の
端面95を凹状に加工してもよい。凸レンズ97と組み
合わせることにより走査範囲を大きくすることができる
。Furthermore, the shape of the substrate 12 on which the curved waveguide 20 is formed is not particularly limited. For example, as shown in FIG. 11(a), the end surface 95 of the substrate 12 from which the radiation light is emitted may be processed into a convex shape. Thereby, light can be focused within a plane parallel to the substrate surface. The direction perpendicular to the substrate surface is focused using a cylindrical lens. Further, if the end surface 95 of the substrate 12 from which the radiation light is emitted is processed to have a convex shape also in the direction perpendicular to the substrate surface, the cylindrical lens becomes unnecessary. Alternatively, the end surface 95 of the substrate 12 from which the radiation light 94 is emitted may be processed into a concave shape, as shown in FIG. 2B. By combining with the convex lens 97, the scanning range can be enlarged.
【0021】また、図12(a)のように、曲がり導波
路20のまわりの放射光が伝搬する領域にスラブ型導波
路98を形成してもよい。これにより、放射光もスラブ
型導波路98を伝搬するため、基板面に垂直方向には広
がらずに伝搬する。また、同図(b)のように基板60
の上にスラブ型導波路62を形成し、その上にSiO2
等の誘電体99を装荷しても同様の効果が得られる。こ
のとき、誘電体99は曲がり導波路の形状で作製すれば
よい。Furthermore, as shown in FIG. 12(a), a slab waveguide 98 may be formed in a region around the curved waveguide 20 through which the emitted light propagates. As a result, since the emitted light also propagates through the slab waveguide 98, it propagates without spreading in the direction perpendicular to the substrate surface. In addition, as shown in FIG. 6(b), the substrate 60
A slab waveguide 62 is formed on the top, and a SiO2
A similar effect can be obtained even if a dielectric material 99 such as the like is loaded. At this time, the dielectric 99 may be manufactured in the shape of a curved waveguide.
【0022】[0022]
【発明の効果】以上詳述したことから明らかなように、
本発明によれば、電気光学効果を有し光の伝搬方向に対
して導波路の等価屈折率が徐々に変化する曲がり導波路
を用いて光走査素子を構成しており、回転機構等の可動
部が不用となり、構成が簡単で生産性が高くなるととも
に、小型化することができる。[Effect of the invention] As is clear from the detailed description above,
According to the present invention, an optical scanning element is constructed using a curved waveguide that has an electro-optic effect and the equivalent refractive index of the waveguide gradually changes with respect to the propagation direction of light. The structure is simple, productivity is high, and the size can be reduced.
【図1】本発明である光走査素子の構成を示す上面図で
ある。FIG. 1 is a top view showing the configuration of an optical scanning element according to the present invention.
【図2】(a)〜(g)は光走査素子の製造方法を示す
説明図である。FIGS. 2(a) to 2(g) are explanatory diagrams showing a method for manufacturing an optical scanning element.
【図3】電界の印加方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method of applying an electric field.
【図4】(a)は光走査素子の動作を説明する上面図、
(b)は印加電界の波形を示す説明図である。FIG. 4(a) is a top view illustrating the operation of the optical scanning element;
(b) is an explanatory diagram showing the waveform of an applied electric field.
【図5】光走査素子の構成を示す上面図である。FIG. 5 is a top view showing the configuration of an optical scanning element.
【図6】(a)〜(c)は導波路の形状を示す説明図で
ある。FIGS. 6(a) to 6(c) are explanatory diagrams showing the shape of a waveguide.
【図7】電界の印加方法を示す断面図である。FIG. 7 is a cross-sectional view showing a method of applying an electric field.
【図8】電界の印加方法を示す断面図である。FIG. 8 is a cross-sectional view showing a method of applying an electric field.
【図9】(a)〜(c)は拡散導波路の形状を示す断面
図である。FIGS. 9(a) to 9(c) are cross-sectional views showing the shape of a diffusion waveguide.
【図10】(a)、(b)は光の入射方法を示す説明図
である。FIGS. 10(a) and 10(b) are explanatory diagrams showing a method of light incidence.
【図11】(a)、(b)は光走査素子の基板形状を示
す説明図である。FIGS. 11(a) and 11(b) are explanatory diagrams showing the shape of a substrate of an optical scanning element.
【図12】(a)、(b)は導波路の形状を説明する断
面図である。FIGS. 12(a) and 12(b) are cross-sectional views illustrating the shape of a waveguide.
【図13】従来の走査装置を示す説明図である。FIG. 13 is an explanatory diagram showing a conventional scanning device.
12 基板 14 拡散導波路 16 電極 20、52 曲がり導波路 72 電極 95 基板端面 12 Board 14 Diffusion waveguide 16 Electrode 20, 52 Curved waveguide 72 Electrode 95 Board end surface
Claims (4)
に形成され、電気光学効果を有し、光の伝搬方向に対し
て等価屈折率が徐々に減少あるいは変化する曲がり導波
路と、前記曲がり導波路に電界を印加する電極とから成
ることを特徴とする光走査素子。1. A substrate, a curved waveguide formed on the substrate or on the surface of the substrate, which has an electro-optical effect and whose equivalent refractive index gradually decreases or changes with respect to the propagation direction of light, and the curved waveguide. An optical scanning element characterized by comprising an electrode that applies an electric field to a wave path.
、前記曲がり導波路の導波路幅が光の伝搬方向に対して
徐々に減少あるいは変化していることを特徴とする光走
査素子。2. The optical scanning element according to claim 1, wherein the waveguide width of the curved waveguide gradually decreases or changes in the light propagation direction.
、前記曲がり導波路の周囲に電界を印加する電極を有す
ることを特徴とする光走査素子。3. The optical scanning element according to claim 1, further comprising an electrode for applying an electric field around the curved waveguide.
、前記基板の端面のうち、光が外部へ放射される部分が
非平面であることを特徴とする光走査素子。4. The optical scanning element according to claim 1, wherein a portion of the end face of the substrate from which light is emitted to the outside is non-planar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP511891A JPH04237030A (en) | 1991-01-21 | 1991-01-21 | Optical scanning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP511891A JPH04237030A (en) | 1991-01-21 | 1991-01-21 | Optical scanning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04237030A true JPH04237030A (en) | 1992-08-25 |
Family
ID=11602412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP511891A Pending JPH04237030A (en) | 1991-01-21 | 1991-01-21 | Optical scanning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04237030A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145199A1 (en) * | 2008-05-26 | 2009-12-03 | 日本電信電話株式会社 | Waveguide type device and module |
-
1991
- 1991-01-21 JP JP511891A patent/JPH04237030A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145199A1 (en) * | 2008-05-26 | 2009-12-03 | 日本電信電話株式会社 | Waveguide type device and module |
US8625943B2 (en) | 2008-05-26 | 2014-01-07 | Nippon Telegraph And Telephone Corporation | Waveguide device and module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5786926A (en) | Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof | |
JP2629170B2 (en) | Laser printer | |
US5101297A (en) | Method for producing a diffraction grating in optical elements | |
JPH09113832A (en) | Optical scanning device | |
JP5232493B2 (en) | Optical modulator and image recording apparatus | |
EP0376710B1 (en) | A method of operating a light wavelength converter | |
JP2009031732A5 (en) | ||
US5224195A (en) | Light wavelength converter for a wavelength of laser beams into a short wavelength | |
JPH04237031A (en) | Optical scanning element | |
JPH04237030A (en) | Optical scanning device | |
JPH04237029A (en) | Optical scanning element | |
JPH04507012A (en) | Multi-channel integrated light modulator for laser printers | |
JP2706237B2 (en) | Laser printer | |
JPH0434505A (en) | Optical waveguide type device and production thereof | |
US5706370A (en) | Optical deflection scanning device | |
JPH01107213A (en) | Optical waveguide element | |
JPS58130327A (en) | Two-dimensional optical deflector | |
JP3013857B2 (en) | Optical scanning device | |
JP2854672B2 (en) | Optical scanning device | |
JPS62289809A (en) | Picture recorder | |
JPS60108819A (en) | Optical printer | |
JPH03196023A (en) | One-dimensional variable focus element and light beam scanner using this element | |
JPH04274415A (en) | Optical scanning element | |
JPH10333189A (en) | Focal distance variable lens device | |
JPH0728101A (en) | Light scan device |