JPH04236748A - Manufacture of high corrosion resistant zirconium alloy - Google Patents

Manufacture of high corrosion resistant zirconium alloy

Info

Publication number
JPH04236748A
JPH04236748A JP382891A JP382891A JPH04236748A JP H04236748 A JPH04236748 A JP H04236748A JP 382891 A JP382891 A JP 382891A JP 382891 A JP382891 A JP 382891A JP H04236748 A JPH04236748 A JP H04236748A
Authority
JP
Japan
Prior art keywords
zirconium alloy
corrosion resistance
oxide film
manufacture
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP382891A
Other languages
Japanese (ja)
Inventor
Toshio Kubo
久保 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP382891A priority Critical patent/JPH04236748A/en
Publication of JPH04236748A publication Critical patent/JPH04236748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To offer a method for manufacturing a zirconium alloy improved in corrosion resistance without the deterioration in its mechanical strength and ductility by solving the problem that the mechanical strength and ductility are deteriorated even if the corrosion resistance is improved as for the method for improving the corrosion resistance of the conventional zirconium alloy. CONSTITUTION:A zirconium alloy is treated in steam of 450 to 550 deg.C, in the air or a mixed gas of oxygen-an intert gas to form an oxidized film on the surface or is treated in steam of about 300 to 450 deg.C to form an oxidized film on the surface and is thereafter subjected to heating treatment at 450 to 550 deg.C to improve the corrosion resistance of the zirconium alloy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、軽水冷却型原子炉の炉
心材料、特に核燃料集合体部材として好適な高耐食性ジ
ルコニウム合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly corrosion-resistant zirconium alloy suitable as a core material for a light water-cooled nuclear reactor, particularly as a member of a nuclear fuel assembly.

【0003】0003

【従来の技術】ジルコニウム合金は中性子吸収断面積が
小さく、 400℃以下で純水あるいは水蒸気との反応
が少なく、かつ適切な強度および延性を持つなど、被覆
管、スペーサ、チャンネルボックス等の核燃料集合体構
成部材として優れた性能を持っている。しかし、従来使
用されてきたジルコニウム合金は炉心使用期間中に冷却
水と反応し、ノジュラー腐食と呼ばれる局部腐食等が生
じることがわかってきた。
[Prior Art] Zirconium alloys have a small neutron absorption cross section, little reaction with pure water or water vapor at temperatures below 400°C, and appropriate strength and ductility, making them ideal for nuclear fuel assemblies such as cladding, spacers, and channel boxes. It has excellent performance as a body component. However, it has been found that the zirconium alloys that have been used in the past react with cooling water during the use of the core, causing localized corrosion called nodular corrosion.

【0004】そのため、ジルコニウム合金の耐食性を改
善することが望まれ、例えば、ジルコニウム合金を約 
900℃以上に加熱した後、室温まで急冷する処理(焼
入れ処理)を施す方法(特開昭58−224139 号
公報)等の製造方法の改良が提案されている。また耐食
性に優れた素材を選別使用する方法等が採られている。
Therefore, it is desired to improve the corrosion resistance of zirconium alloys.
Improvements in manufacturing methods have been proposed, such as a method of heating to 900° C. or higher and then rapidly cooling to room temperature (quenching treatment) (Japanese Patent Laid-Open No. 58-224139). In addition, methods are being adopted to select and use materials with excellent corrosion resistance.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
焼入れ処理によって耐食性を向上させる方法では、焼入
れにより加工性の低下や延性の低下が生じる等の問題が
あった。
However, the above-mentioned method of improving corrosion resistance by quenching has problems such as deterioration of workability and ductility due to quenching.

【0006】本発明は上記情況に鑑みてなされたもので
、特に核燃料集合体部材として適した耐食性を有し、か
つ加工性や延性の低下が生じないようなジルコニウム合
金を製造する方法を提供することを目的とするものであ
る。 [発明の構成]
The present invention has been made in view of the above circumstances, and provides a method for producing a zirconium alloy that has corrosion resistance particularly suitable for nuclear fuel assembly members and that does not cause deterioration in workability or ductility. The purpose is to [Structure of the invention]

【0007】[0007]

【課題を解決するための手段】本発明は、ジルコニウム
合金を 450〜550℃の水蒸気中、空気中または酸
素−不活性ガス混合ガス中において処理して表面に酸化
膜を形成することを特徴とする高耐食性ジルコニウム合
金の製造方法に関し、さらにジルコニウム合金を水蒸気
中約 300〜 450℃で処理して表面に酸化膜を形
成した後、 450〜 550℃で加熱処理することを
特徴とする高耐食性ジルコニウム合金の製造方法に関す
る。
[Means for Solving the Problems] The present invention is characterized in that a zirconium alloy is treated in water vapor, air, or an oxygen-inert gas mixture at a temperature of 450 to 550°C to form an oxide film on the surface. A method for producing a highly corrosion-resistant zirconium alloy, which further comprises treating the zirconium alloy in steam at about 300 to 450°C to form an oxide film on the surface, and then heat-treating the zirconium alloy at 450 to 550°C. This invention relates to a method for producing an alloy.

【0008】[0008]

【作用】従来のジルコニウム合金の表面酸化膜中には大
きさ1μm以下の微小な合金元素析出物が分散しており
、この析出物の存在が耐食性を低下させる要因となって
いた。従来のジルコニウム合金の酸化膜の形成は、ジル
コニウム合金を約 300〜450℃の水蒸気中で酸化
させて表面に厚さ約1μmの酸化膜を形成させる方法に
よっていたが、本発明者は、この従来の酸化膜形成温度
より高温である約 450℃以上の温度で、水蒸気中、
空気中もしくは酸素−不活性ガス混合ガス中で酸化させ
ることにより、酸化膜中に存在していた合金元素析出物
が酸化膜マトリクス中へ溶け出し、その結果、析出物の
数および大きさがともに減少することを見出した。また
、従来の方法で酸化膜を形成した後、 450℃以上で
加熱処理することによっても、同様に合金元素析出物が
酸化膜マトリクス中へ溶け出すことを見出した。
[Operation] In the surface oxide film of conventional zirconium alloys, minute alloying element precipitates with a size of 1 μm or less are dispersed, and the presence of these precipitates has been a factor in reducing corrosion resistance. The conventional method for forming an oxide film on a zirconium alloy was to oxidize the zirconium alloy in water vapor at about 300 to 450°C to form an oxide film with a thickness of about 1 μm on the surface. In water vapor at a temperature of approximately 450°C or higher, which is higher than the oxide film formation temperature of
By oxidizing in air or in an oxygen-inert gas mixture, the alloying element precipitates present in the oxide film dissolve into the oxide film matrix, and as a result, both the number and size of the precipitates decrease. I discovered that. Furthermore, it has been found that alloying element precipitates similarly dissolve into the oxide film matrix when an oxide film is formed by a conventional method and then subjected to heat treatment at 450° C. or higher.

【0009】本発明はかかる知見に基づいてなされたも
のである。なお、 550℃以上で加熱した場合には、
ジルコニウム合金の機械強度が低下するため、加熱温度
はいずれの場合も 450℃〜 550℃の範囲とする
The present invention has been made based on this knowledge. In addition, when heated at 550℃ or higher,
Since the mechanical strength of the zirconium alloy decreases, the heating temperature is in the range of 450°C to 550°C in both cases.

【0010】以上説明したように、本発明では従来の酸
化膜形成温度より高温で、かつ従来提案されていた焼入
れ温度よりは低温で、ジルコニウム合金に酸化膜形成処
理を施すことにより、耐食性の向上したしかも機械強度
及び延性の低下しないジルコニウム合金を得ることがで
きる。
As explained above, in the present invention, corrosion resistance is improved by subjecting a zirconium alloy to an oxide film formation treatment at a temperature higher than the conventional oxide film formation temperature and lower than the quenching temperature conventionally proposed. Moreover, a zirconium alloy with no decrease in mechanical strength and ductility can be obtained.

【0011】[0011]

【実施例】本発明の実施例を図面を参照して説明する。 ジルコニウム合金を、圧力 105気圧の水蒸気中にお
いて 475℃で24時間酸化させ、表面に厚さ3μm
の酸化膜を形成させた。これを供試材Aとする。また、
別にジルコニウム合金を従来条件である 400℃で2
4時間酸化させて厚さ1μmの酸化膜を設けた後、 4
75℃で24時間真空焼鈍した。これを供試材Bとする
。ここに用いたジルコニウム合金は、Zrの他にSn,
Fe,Crを添加したもの、またはこれにさらにNiを
添加したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described with reference to the drawings. The zirconium alloy was oxidized at 475°C for 24 hours in steam at a pressure of 105 atm, and a thickness of 3 μm was formed on the surface.
An oxide film was formed. This is designated as sample material A. Also,
Separately, zirconium alloy was heated under the conventional conditions of 400°C.
After oxidizing for 4 hours to form an oxide film with a thickness of 1 μm, 4
Vacuum annealing was performed at 75°C for 24 hours. This is designated as sample material B. In addition to Zr, the zirconium alloy used here contains Sn,
These are those to which Fe and Cr are added, or those to which Ni is further added.

【0012】供試材Aおよび供試材Bと、従来の酸化処
理したジルコニウム合金を、高温高圧水蒸気中で腐食さ
せ、それぞれの耐食性を調べた。結果を図1に示す。図
からあきらかなように、本発明の供試材A,Bは、従来
の酸化処理ジルコニウム合金に比べて大幅に腐食量が少
ない。なお、耐食性向上効果は、酸化温度および焼鈍温
度ともに 450℃以上となった場合にみられることが
、試験の結果確かめられた。
Test material A, test material B, and a conventional oxidized zirconium alloy were corroded in high-temperature, high-pressure steam to examine their respective corrosion resistances. The results are shown in Figure 1. As is clear from the figure, test materials A and B of the present invention exhibit significantly less corrosion than conventional oxidized zirconium alloys. The test results confirmed that the corrosion resistance improvement effect is seen when both the oxidation temperature and annealing temperature are 450°C or higher.

【0013】上記供試材Aの表面酸化処理を水蒸気中に
代って大気中にて 450〜 550℃で24時間実施
した場合、および酸素−不活性ガス混合雰囲気中で 4
50〜 550℃で24時間実施した場合も、同様に耐
食性向上効果がみられた。
[0013] When the surface oxidation treatment of the above sample material A was carried out in air instead of water vapor at 450 to 550°C for 24 hours, and in an oxygen-inert gas mixed atmosphere.
A similar effect of improving corrosion resistance was observed when the test was carried out at 50 to 550°C for 24 hours.

【0014】[0014]

【発明の効果】本発明によれば、ジルコニウム合金の機
械強度および延性を損なわずに耐食性を大幅に向上させ
ることができ、特に核燃料集合体構成部材として優れた
ジルコニウム合金を提供することができる。
According to the present invention, it is possible to significantly improve the corrosion resistance of a zirconium alloy without impairing its mechanical strength and ductility, and it is possible to provide a zirconium alloy that is particularly excellent as a component of a nuclear fuel assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来の方法で酸化処理したジルコニウム合金と
本発明により製造したジルコニウム合金の耐食性を比較
した図。
FIG. 1 is a diagram comparing the corrosion resistance of a zirconium alloy oxidized by a conventional method and a zirconium alloy manufactured according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ジルコニウム合金を 450〜 55
0℃の水蒸気中、空気中または酸素−不活性ガス混合ガ
ス中において処理して表面に酸化膜を形成することを特
徴とする高耐食性ジルコニウム合金の製造方法。
[Claim 1] Zirconium alloy of 450 to 55
A method for producing a highly corrosion-resistant zirconium alloy, which comprises forming an oxide film on the surface by treating it in water vapor, air, or an oxygen-inert gas mixture at 0°C.
【請求項2】  ジルコニウム合金を水蒸気中約 30
0〜 450℃で処理して表面に酸化膜を形成した後、
 450〜 550℃で加熱処理することを特徴とする
高耐食性ジルコニウム合金の製造方法。
[Claim 2] A zirconium alloy is dissolved in water vapor at a temperature of about 30%.
After processing at 0 to 450°C to form an oxide film on the surface,
A method for producing a highly corrosion-resistant zirconium alloy, which comprises heat-treating at 450 to 550°C.
JP382891A 1991-01-17 1991-01-17 Manufacture of high corrosion resistant zirconium alloy Pending JPH04236748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP382891A JPH04236748A (en) 1991-01-17 1991-01-17 Manufacture of high corrosion resistant zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP382891A JPH04236748A (en) 1991-01-17 1991-01-17 Manufacture of high corrosion resistant zirconium alloy

Publications (1)

Publication Number Publication Date
JPH04236748A true JPH04236748A (en) 1992-08-25

Family

ID=11568062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP382891A Pending JPH04236748A (en) 1991-01-17 1991-01-17 Manufacture of high corrosion resistant zirconium alloy

Country Status (1)

Country Link
JP (1) JPH04236748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209257A (en) * 1991-08-23 1993-08-20 General Electric Co <Ge> Method for annealing to improve nodular corrosion resistance of zircalloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209257A (en) * 1991-08-23 1993-08-20 General Electric Co <Ge> Method for annealing to improve nodular corrosion resistance of zircalloy

Similar Documents

Publication Publication Date Title
JP4022257B2 (en) Tube for nuclear fuel assembly and method for manufacturing the same
JP4042362B2 (en) Ni-base alloy product and manufacturing method thereof
KR100765015B1 (en) A Method of Producing a Ni based alloy with an oxide film
JPH0625389B2 (en) Zirconium based alloy with high corrosion resistance and low hydrogen absorption and method for producing the same
JP4720590B2 (en) Method for producing Cr-containing nickel-base alloy tube
JP2001181761A (en) Niobiuim-containing zirconium alloy suitable for nuclear fuel cladding
JPH0829571A (en) Production of member for nuclear plant
CN116970873B (en) Beryllium-containing ferrite heat-resistant steel and manufacturing method thereof
KR101779128B1 (en) Alumina-forming duplex stainless steels as accident resistant fuel cladding materials for light water reactors
JPH04236748A (en) Manufacture of high corrosion resistant zirconium alloy
JP4556740B2 (en) Method for producing Ni-based alloy
JPS6050869B2 (en) Method for manufacturing zirconium alloy structural members for boiling water reactors
JP2535114B2 (en) Manufacturing method for nuclear power plant members
JPS6082636A (en) Zirconiun alloy having high corrosion resistance and its manufacture
JPS6067648A (en) Nuclear fuel covering pipe and its preparation
JPH07173587A (en) Production of zirconium alloy welded member
JP2523514B2 (en) Fuel assembly
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
US2693412A (en) Alloy steels
JPH04285151A (en) Zirconium alloy excellent in corrosion resistance and hydrogen absorbing resistance and method for treating its surface
JPH0336255A (en) Spring for nuclear power plant fuel
JPH0649608A (en) Production of high corrosion resistant zirconium-based alloy material
JPS59208043A (en) Corrosion-resistant hafnium alloy and its production
JPH09279316A (en) Ferritic stainless steel extremely few in hot rolling scale flaw and excellent in high temperature characteristic
CN117174354A (en) Composite cladding pipe for nuclear reactor fuel element, preparation method of composite cladding pipe and fuel rod