JPH04236405A - Soft magnetic thin film - Google Patents
Soft magnetic thin filmInfo
- Publication number
- JPH04236405A JPH04236405A JP1954591A JP1954591A JPH04236405A JP H04236405 A JPH04236405 A JP H04236405A JP 1954591 A JP1954591 A JP 1954591A JP 1954591 A JP1954591 A JP 1954591A JP H04236405 A JPH04236405 A JP H04236405A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- soft magnetic
- corrosion resistance
- magnetic thin
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 70
- 239000010409 thin film Substances 0.000 title claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 3
- 229910052788 barium Inorganic materials 0.000 claims abstract description 3
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 3
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 3
- 229910052735 hafnium Inorganic materials 0.000 claims abstract description 3
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 3
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 3
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 3
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 229910052796 boron Inorganic materials 0.000 claims abstract 2
- 229910052758 niobium Inorganic materials 0.000 claims abstract 2
- 229910052715 tantalum Inorganic materials 0.000 claims abstract 2
- 238000005260 corrosion Methods 0.000 abstract description 26
- 230000007797 corrosion Effects 0.000 abstract description 26
- 230000035699 permeability Effects 0.000 abstract description 7
- 230000005415 magnetization Effects 0.000 abstract description 3
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 23
- 238000000034 method Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 239000011162 core material Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000012496 blank sample Substances 0.000 description 3
- 150000001845 chromium compounds Chemical class 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007499 fusion processing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- -1 Si--N Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/14—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
- H01F10/147—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel with lattice under strain, e.g. expanded by interstitial nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、Fe−N系の軟磁性薄
膜に関するものであり、特にその耐食性の改善に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe--N soft magnetic thin film, and particularly to improving its corrosion resistance.
【0002】0002
【従来の技術】磁気記録の分野においては、高密度記録
化,短波長記録化が進められており、これに伴って磁気
記録媒体には高保磁力,高残留磁束密度を有することが
要求され、一方磁気ヘッド材には前記磁気記録媒体の特
性を生かすべく高飽和磁束密度,高透磁率,低保磁力を
有することが要求される。BACKGROUND OF THE INVENTION In the field of magnetic recording, higher density recording and shorter wavelength recording are progressing, and along with this, magnetic recording media are required to have high coercive force and high residual magnetic flux density. On the other hand, magnetic head materials are required to have high saturation magnetic flux density, high magnetic permeability, and low coercive force in order to take advantage of the characteristics of the magnetic recording medium.
【0003】このような要求に応える軟磁性材料の一つ
として、Fe−N系材料が従来より知られており、これ
をスパッタリング等の気相メッキ技術によって薄膜化し
て磁気ヘッドのコア材料として利用することが検討され
ている。[0003] Fe-N based materials have been known as one of the soft magnetic materials that meet these demands, and are made into thin films using vapor phase plating techniques such as sputtering and used as core materials for magnetic heads. It is being considered to do so.
【0004】ところが、Fe−N系の軟磁性薄膜は、熱
安定性に劣るという欠点を有する。磁気ヘッドの製造に
おいては、信頼性を確保するための高融点を有するガラ
スを用いた融着工程が不可欠であり、この工程には高温
の熱処理を必要とすることから、前記欠点は大きな問題
となる。However, Fe--N based soft magnetic thin films have a drawback of poor thermal stability. In the manufacture of magnetic heads, a fusing process using glass with a high melting point is essential to ensure reliability, and this process requires high-temperature heat treatment, so the above drawbacks are a major problem. Become.
【0005】このような状況から、Fe−N系軟磁性薄
膜の熱安定性の改善に関しての研究も続けられており、
例えば本願出願人は、特願平2─46322号において
Al,Ga等の添加元素と酸素を導入することでFe─
N系軟磁性薄膜の熱安定性が改善されることを報告した
。Under these circumstances, research on improving the thermal stability of Fe-N based soft magnetic thin films continues.
For example, in Japanese Patent Application No. 2-46322, the applicant of the present application has introduced Fe-
We reported that the thermal stability of N-based soft magnetic thin films was improved.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上述の
添加元素が導入されたFe−N系軟磁性薄膜は耐食性の
点で十分でなく、このような軟磁性薄膜をコア材料とす
る磁気ヘッドは、高温,高湿条件下で保存した場合に、
徐々に錆が発生し、保磁力,飽和磁束密度等の磁気特性
が劣化してしまう。このため、磁気ヘッドとしての実用
性を欠き、商品化する上で大きな障害となっている。[Problems to be Solved by the Invention] However, the Fe-N based soft magnetic thin film into which the above-mentioned additive elements have been introduced does not have sufficient corrosion resistance, and a magnetic head using such a soft magnetic thin film as a core material is When stored under high temperature and high humidity conditions,
Rust gradually occurs and magnetic properties such as coercive force and saturation magnetic flux density deteriorate. For this reason, it lacks practicality as a magnetic head, and is a major obstacle to commercialization.
【0007】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、耐食性を有し、高温,高
湿度条件下で保存した場合でも錆が発生せず、且つ良好
な軟磁気特性,高飽和磁束密度を有する軟磁性薄膜を提
供することを目的とする。[0007] The present invention was proposed in view of the above-mentioned conventional circumstances, and provides a material that has corrosion resistance, does not rust even when stored under high temperature and high humidity conditions, and has good softness. The purpose is to provide a soft magnetic thin film with magnetic properties and high saturation magnetic flux density.
【0008】[0008]
【課題を解決するための手段】本発明者等は、前述の目
的を達成せんものと鋭意研究を重ねた結果、Niを添加
することが耐食性の改善に有効であるとの知見を得るに
至った。本発明はこのような知見に基づいて完成された
ものである。すなわち、本発明は、(Fea Mb N
ic )dNe Of (ただし、a,b,c,d,e
,fは組成を原子%として表し、MはSi,Al,Ta
,B,Mg,Ca,Sr,Ba,Cr,Mn,Zr,N
b,Ti,Mo,V,W,Hf,Ga,Ge,希土類元
素の少なくとも1種を表す。)なる組成式で表され、そ
の組成範囲が
0.1≦b≦5
0.5≦c≦10
a+b+c=100
0.5≦e≦15
0.1≦f≦13
d=100−e−f
であることを特徴とするものである。[Means for Solving the Problem] As a result of intensive research to achieve the above-mentioned object, the present inventors have come to the knowledge that adding Ni is effective in improving corrosion resistance. Ta. The present invention was completed based on such knowledge. That is, the present invention provides (Fea Mb N
ic )dNe Of (However, a, b, c, d, e
, f represents the composition as atomic %, M is Si, Al, Ta
, B, Mg, Ca, Sr, Ba, Cr, Mn, Zr, N
b, represents at least one of Ti, Mo, V, W, Hf, Ga, Ge, and a rare earth element. ), and its composition range is 0.1≦b≦5 0.5≦c≦10 a+b+c=100 0.5≦e≦15 0.1≦f≦13 d=100−e−f It is characterized by:
【0009】前記各組成は、軟磁気特性や飽和磁束密度
等の磁気特性,耐熱性,耐食性を考慮して決められたも
のであるが、特にNiを導入する場合、その導入量は金
属成分中0.5〜10原子%とする。Niの導入が少な
すぎると耐食性の改善が期待できず、逆に多すぎると、
保磁力Hcが大きな値を示すようになる。このとき、さ
らに高い透磁率を確保したい場合には、Niの導入量は
金属成分中0.5〜8原子%とすることが好ましい。ま
た、酸素の導入量は0.1〜13原子%とする。酸素の
導入量が少なすぎても、逆に多すぎても熱安定性改善効
果が期待できず、例えばアニール処理した後の保磁力H
cが大きな値を示すようになる。[0009] Each of the above-mentioned compositions is determined in consideration of magnetic properties such as soft magnetic properties and saturation magnetic flux density, heat resistance, and corrosion resistance. In particular, when Ni is introduced, the amount of Ni introduced depends on the amount of Ni in the metal components. The content should be 0.5 to 10 at%. If too little Ni is introduced, no improvement in corrosion resistance can be expected; on the other hand, if too much Ni is introduced,
The coercive force Hc comes to show a large value. At this time, if it is desired to ensure even higher magnetic permeability, the amount of Ni introduced is preferably 0.5 to 8 atomic % in the metal component. Further, the amount of oxygen introduced is 0.1 to 13 atomic %. If the amount of oxygen introduced is too small or too large, no improvement in thermal stability can be expected; for example, the coercive force H after annealing cannot be expected.
c comes to show a large value.
【0010】上述の軟磁性薄膜は、スパッタリング等の
薄膜形成技術により作製されるが、添加元素の導入方法
としては、まず目的の元素とFeとの合金を調製し、こ
の合金をターゲット,蒸着源として使用する方法が考え
られる。あるいは、Feターゲットの上に各元素のチッ
プを置いて同時にスパッタリングするようにしてもよい
。The above-mentioned soft magnetic thin film is produced by a thin film forming technique such as sputtering, but the method for introducing the additive element is to first prepare an alloy of the desired element and Fe, and then use this alloy as a target or evaporation source. One possible method is to use it as Alternatively, chips of each element may be placed on the Fe target and sputtered simultaneously.
【0011】また、窒素や酸素の導入方法としては、窒
化物,酸化物をターゲット,蒸着源として使用する方法
も考えられるが、通常は雰囲気中に窒素,酸素を導入す
ることで達成される。[0011]Also, as a method for introducing nitrogen or oxygen, a method using a nitride or oxide as a target or vapor deposition source may be considered, but it is usually achieved by introducing nitrogen or oxygen into the atmosphere.
【0012】本発明を適用した軟磁性薄膜は単層膜であ
ってもよいし、パーマロイ等の磁性金属や、Ag,Cu
等の非磁性金属、さらにはSi−N,SiO2 等のセ
ラミクス材料等で分断して積層構造とした多層膜であっ
てもよい。The soft magnetic thin film to which the present invention is applied may be a single layer film, or may be made of magnetic metal such as permalloy, Ag, Cu, etc.
It may also be a multi-layered film divided by non-magnetic metals such as Si--N, SiO2 or other ceramic materials.
【0013】上述の軟磁性薄膜はいわゆるメタル・イン
・ギャップ型の磁気ヘッド等において、フェライト上に
膜付けして磁気コアとされ、これら磁気コアをガラス融
着により一体化することで磁気ヘッドとして構成される
のが一般的である。このとき、ガラス融着の際の加熱に
よって本発明の軟磁性薄膜とガラスあるいは軟磁性薄膜
との反応が問題となる虞れがある。したがって、本発明
の軟磁性薄膜をメタル・インギャップ型の磁気ヘッド等
に適用する場合には、ガラスと軟磁性薄膜の間,あるい
はフェライトと軟磁性薄膜の間にシリコン酸化物,シリ
コン窒化物の非常に薄い膜を反応防止膜として設けるこ
とが好ましい。特にガラスと軟磁性薄膜の間の反応防止
膜は、シリコン酸化物膜,シリコン窒化物膜と金属クロ
ム膜.クロム化合物膜との積層膜とすることが有効であ
る。The above-mentioned soft magnetic thin film is used as a magnetic core in a so-called metal-in-gap type magnetic head, etc. by forming a film on a ferrite, and by integrating these magnetic cores by glass fusing, the magnetic head is formed. It is generally configured. At this time, there is a possibility that the reaction between the soft magnetic thin film of the present invention and the glass or the soft magnetic thin film due to heating during glass fusing may cause a problem. Therefore, when applying the soft magnetic thin film of the present invention to a metal-in-gap type magnetic head, etc., silicon oxide or silicon nitride should be used between the glass and the soft magnetic thin film, or between the ferrite and the soft magnetic thin film. It is preferable to provide a very thin film as a reaction prevention film. In particular, the reaction prevention film between glass and soft magnetic thin film is silicon oxide film, silicon nitride film, and metal chromium film. It is effective to form a laminated film with a chromium compound film.
【0014】前記シリコン酸化物膜やシリコン窒化物膜
は、やはりスパッタリング等の薄膜形成技術によって形
成されるが、その膜厚はフェライトと軟磁性薄膜との間
の反応防止膜では30〜100Åとすることが好ましい
。当該反応防止膜の厚さが30Å未満であると反応を十
分に抑えることができず、逆に100Åを越えると疑似
ギャップとして作用する虞れがある。ガラスと軟磁性薄
膜の間の反応防止膜では、30〜500Åとすることが
好ましい。30Å未満であるとやはり反応を十分に抑え
ることができない。上限については特に規定する必要は
ないが、生産性等の観点から500Å以下とすることが
望ましい。金属クロム膜,クロム化合物膜は、ガラスと
の接合強度を確保すること等を目的として設けられるも
ので、やはりスパッタリング等の薄膜形成技術によって
形成されるが、その膜厚は前記シリコン酸化物膜やシリ
コン窒化物膜の場合と同様の理由から30Å〜500Å
とすることが好ましい。The silicon oxide film or silicon nitride film is also formed by a thin film forming technique such as sputtering, and the film thickness is 30 to 100 Å for a reaction prevention film between the ferrite and the soft magnetic thin film. It is preferable. If the thickness of the reaction prevention film is less than 30 Å, the reaction cannot be sufficiently suppressed, and if it exceeds 100 Å, it may act as a pseudo gap. For a reaction prevention film between glass and a soft magnetic thin film, the thickness is preferably 30 to 500 Å. If it is less than 30 Å, the reaction cannot be sufficiently suppressed. Although there is no need to specify an upper limit, it is desirable to set it to 500 Å or less from the viewpoint of productivity and the like. Metal chromium films and chromium compound films are provided for the purpose of ensuring bonding strength with glass, etc., and are also formed by thin film forming techniques such as sputtering, but the film thickness is different from that of the silicon oxide film or the chromium compound film. 30 Å to 500 Å for the same reason as in the case of silicon nitride film.
It is preferable that
【0015】[0015]
【作用】所定の添加元素が導入されたFe−N系軟磁性
薄膜にNiを導入すると、透磁率,保磁力,飽和磁化量
を維持したまま、耐食性が改善される。これは、Niが
Feに対して直接酸化を抑えるように作用しているから
と考えられる。しかも、Niの場合、窒化物を形成し難
いために、窒素雰囲気中でスパッタリングを行った後に
も大部分が金属Niの形で残ってFeに合金化する。こ
のため、Feに対して効果的に作用し、優れた耐食効果
を発揮するものと推測される。さらに、Niの添加は、
Niが強磁性元素であることから、添加による飽和磁化
量の減少が少なく、磁気特性を維持する上でも有利とな
っている。[Operation] When Ni is introduced into a Fe--N soft magnetic thin film into which predetermined additive elements have been introduced, corrosion resistance is improved while maintaining magnetic permeability, coercive force, and saturation magnetization. This is considered to be because Ni acts directly on Fe to suppress oxidation. Moreover, in the case of Ni, since it is difficult to form a nitride, even after sputtering is performed in a nitrogen atmosphere, most of Ni remains in the form of metal Ni and is alloyed with Fe. Therefore, it is presumed that it acts effectively on Fe and exhibits an excellent corrosion-resistant effect. Furthermore, the addition of Ni
Since Ni is a ferromagnetic element, the amount of saturation magnetization decreases little due to addition, which is advantageous in maintaining magnetic properties.
【0016】[0016]
【実施例】以下、本発明を具体的な実験結果に基づいて
説明する。EXAMPLES The present invention will be explained below based on specific experimental results.
【0017】実験例1
本実験例は、所定の元素が導入されたFe−N系軟磁性
薄膜にNi,Cr,Cu,Moを導入し、耐食性および
軟磁気特性の検討を行った例である。Experimental Example 1 This experimental example is an example in which Ni, Cr, Cu, and Mo were introduced into a Fe-N soft magnetic thin film into which predetermined elements had been introduced, and the corrosion resistance and soft magnetic properties were investigated. .
【0018】先ず、Feを主成分とする合金ターゲット
を準備し、窒素ガス及び酸素ガスを含むアルゴン雰囲気
中でRFスパッタリングを行い、表1に示す組成を有す
る薄膜を作成した。First, an alloy target containing Fe as a main component was prepared, and RF sputtering was performed in an argon atmosphere containing nitrogen gas and oxygen gas to form a thin film having the composition shown in Table 1.
【0019】なお、スパッタリングの条件は、出力30
0W,ガス圧(全圧)1.2mTorrとし、薄膜の膜
厚は3μmとした。また、膜中の窒素含有量,酸素含有
量は、雰囲気中への窒素ガス,酸素ガスの導入量で制御
した。[0019] The conditions for sputtering are an output of 30
The temperature was 0 W, the gas pressure (total pressure) was 1.2 mTorr, and the thickness of the thin film was 3 μm. Further, the nitrogen content and oxygen content in the film were controlled by the amount of nitrogen gas and oxygen gas introduced into the atmosphere.
【0020】このようにして作成された各薄膜について
アニール処理前およびアニール処理後に亘り、耐食性お
よび保磁力の測定を行った。その結果を表1に示す。な
お、アニール処理は、550℃の温度条件下で1時間行
い、耐食性は、3%NaCl溶液中での薄膜の分極抵抗
を100μAの低電流で測定し、測定された抵抗値の逆
数を求めることによって評価した。また、比較として添
加元素を導入しないブランクサンプルについても同様に
して耐食性および磁気特性の測定を行った。The corrosion resistance and coercive force of each of the thin films thus prepared were measured before and after the annealing treatment. The results are shown in Table 1. The annealing treatment was performed at a temperature of 550°C for 1 hour, and the corrosion resistance was determined by measuring the polarization resistance of the thin film in a 3% NaCl solution at a low current of 100 μA, and calculating the reciprocal of the measured resistance value. Evaluated by. In addition, for comparison, the corrosion resistance and magnetic properties of a blank sample in which no additive elements were introduced were also measured in the same manner.
【0020】[0020]
【表1】[Table 1]
【0021】表1を見ると、Niを導入したサンプル1
は、Ni以外の元素を導入したサンプル2〜サンプル5
と比較して、優れた耐食性を有し、且つ良好な軟磁気特
性を維持していることがわかる。たとえば、一般に耐食
性を向上させると考えられているCrを導入したサンプ
ル2およびサンプル3においては、耐食性の改善が認め
られず、また、ブランクサンプルと比較して保磁力が大
きく、軟磁気特性が劣化している。これに対し、サンプ
ル1においては、低保磁力を維持したまま、耐食性が大
幅に改善されている。したがって、これらの結果から、
所定の添加元素が導入されたFe−N系磁性材料へのN
iの導入は、耐食性,軟磁気特性に優れた薄膜を得る上
で有効であることが示された。Looking at Table 1, sample 1 containing Ni
are samples 2 to 5 in which elements other than Ni were introduced.
It can be seen that it has excellent corrosion resistance and maintains good soft magnetic properties. For example, in samples 2 and 3 in which Cr, which is generally thought to improve corrosion resistance, was introduced, no improvement in corrosion resistance was observed, and compared to the blank sample, the coercive force was larger and the soft magnetic properties deteriorated. are doing. On the other hand, in Sample 1, the corrosion resistance was significantly improved while maintaining a low coercive force. Therefore, from these results,
Addition of N to Fe-N magnetic material into which predetermined additive elements have been introduced
It has been shown that the introduction of i is effective in obtaining a thin film with excellent corrosion resistance and soft magnetic properties.
【0022】実験例2
本実験例は、所定の元素が導入されたFe−N系軟磁性
薄膜にNiを種々の濃度で添加し、耐食性,軟磁気特性
について検討を行った例である。Experimental Example 2 In this experimental example, Ni was added at various concentrations to a Fe--N based soft magnetic thin film into which a predetermined element had been introduced, and the corrosion resistance and soft magnetic properties were investigated.
【0023】先ず、表2に示す組成を有する薄膜を実験
例1と同様な方法にて作成した。そして作成された薄膜
について、アニール処理前およびアニール処理後に亘り
、耐食性,透磁率,保磁力について測定を行った。その
結果を表2に示す。First, a thin film having the composition shown in Table 2 was prepared in the same manner as in Experimental Example 1. The produced thin film was then measured for corrosion resistance, magnetic permeability, and coercive force before and after the annealing treatment. The results are shown in Table 2.
【0024】なお、アニール処理の条件および耐食性の
評価法は実験例1と同様である。また、比較としてNi
を添加しないブランクサンプルについても同様にして耐
食性,透磁率,保磁力について測定を行った。Note that the conditions for annealing treatment and the method for evaluating corrosion resistance are the same as in Experimental Example 1. Also, for comparison, Ni
Corrosion resistance, magnetic permeability, and coercive force were similarly measured for a blank sample without the addition of .
【0025】[0025]
【表2】[Table 2]
【0026】表2を見ると、アニール処理後の耐食性は
、Niの添加量の増加に伴って向上していることがわか
る。しかし、添加量が12原子%を越えると、今度は保
持力が2.8と大きな値を示し、良好な軟磁気特性が得
られなくなる。したがって、良好な耐食性,軟磁気特性
を得るためには、Niの添加量は金属成分中0.5〜1
0原子%とすることが好適であることがわかった。また
、さらに高い透磁率を得ようとする場合には、Niを金
属成分中0.5〜8原子%で添加すればよいことが示さ
れた。Looking at Table 2, it can be seen that the corrosion resistance after annealing treatment improves as the amount of Ni added increases. However, when the amount added exceeds 12 at %, the coercive force shows a large value of 2.8, making it impossible to obtain good soft magnetic properties. Therefore, in order to obtain good corrosion resistance and soft magnetic properties, the amount of Ni added in the metal component must be 0.5 to 1.
It was found that it is preferable to set the content to 0 atomic %. Furthermore, it has been shown that in order to obtain even higher magnetic permeability, it is sufficient to add Ni in an amount of 0.5 to 8 atomic % to the metal component.
【0027】[0027]
【発明の効果】以上の説明からも明らかなように、本発
明においては、所定の元素が導入されたFe−N系の軟
磁性薄膜にNiを加えているので、軟磁気特性および耐
熱性を維持したまま、優れた耐食性を得ることが可能で
ある。したがって、このような軟磁性薄膜を磁気ヘッド
のコア材料として使用すれば、高温,高湿度条件下で保
存した場合でも錆が生じ難く実用性の高い磁気ヘッドを
得ることが可能となる。[Effects of the Invention] As is clear from the above explanation, in the present invention, Ni is added to the Fe-N based soft magnetic thin film into which predetermined elements have been introduced, so that the soft magnetic properties and heat resistance are improved. It is possible to obtain excellent corrosion resistance while maintaining the same. Therefore, if such a soft magnetic thin film is used as the core material of a magnetic head, it is possible to obtain a highly practical magnetic head that is resistant to rust even when stored under high temperature and high humidity conditions.
Claims (1)
Of (ただし、a,b,c,d,e,fは組成を原
子%として表し、MはSi,Al,Ta,B,Mg,C
a,Sr,Ba,Cr,Mn,Zr,Nb,Ti,Mo
,V,W,Hf,Ga,Ge,希土類元素の少なくとも
1種を表す。)なる組成式で表され、その組成範囲が0
.1≦b≦5 0.5≦c≦10 a+b+c=100 0.5≦e≦15 0.1≦f≦13 d=100−e−f であることを特徴とする軟磁性薄膜。[Claim 1] (Fea Mb Nic)d Ne
Of (however, a, b, c, d, e, f represent the composition as atomic %, M is Si, Al, Ta, B, Mg, C
a, Sr, Ba, Cr, Mn, Zr, Nb, Ti, Mo
, V, W, Hf, Ga, Ge, and a rare earth element. ), and its composition range is 0
.. A soft magnetic thin film characterized in that 1≦b≦5 0.5≦c≦10 a+b+c=100 0.5≦e≦15 0.1≦f≦13 d=100−e−f.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1954591A JPH04236405A (en) | 1991-01-19 | 1991-01-19 | Soft magnetic thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1954591A JPH04236405A (en) | 1991-01-19 | 1991-01-19 | Soft magnetic thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04236405A true JPH04236405A (en) | 1992-08-25 |
Family
ID=12002290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1954591A Pending JPH04236405A (en) | 1991-01-19 | 1991-01-19 | Soft magnetic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04236405A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617275A (en) * | 1994-05-02 | 1997-04-01 | Sanyo Electric Co., Ltd. | Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio |
-
1991
- 1991-01-19 JP JP1954591A patent/JPH04236405A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617275A (en) * | 1994-05-02 | 1997-04-01 | Sanyo Electric Co., Ltd. | Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60220913A (en) | Magnetic thin film | |
US5439754A (en) | Ferromagnetic film, method of manufacturing the same, and magnetic head | |
JPH07302711A (en) | Soft magnetic alloy thin film and its manufacture | |
US5478416A (en) | Magnetic alloy | |
EP0168825A2 (en) | Magnetic alloy thin film | |
JPH08288138A (en) | Soft magnetic thin film and magnetic head using the film | |
US5675460A (en) | Magnetic head and method of producing the same | |
JPH04236405A (en) | Soft magnetic thin film | |
JP2508489B2 (en) | Soft magnetic thin film | |
JPS6357758A (en) | Nitriding magnetic alloy film | |
JP2808796B2 (en) | Soft magnetic thin film | |
JPH02263416A (en) | Manufacture of soft magnetic alloy film | |
JP3468560B2 (en) | Soft magnetic thin film | |
JPH05283229A (en) | Soft magnetic film | |
JPS58118015A (en) | Magnetic head | |
JP2925257B2 (en) | Ferromagnetic film, method of manufacturing the same, and magnetic head | |
JPH02290004A (en) | Soft magnetic alloy film and its manufacture | |
JP3028564B2 (en) | Soft magnetic alloy film | |
JPH04252006A (en) | Corrosion-resistant magnetically soft film and magnetic head using the same | |
JPH0744107B2 (en) | Soft magnetic thin film | |
JP3087265B2 (en) | Magnetic alloy | |
JPH02163911A (en) | Soft magnetic alloy film and manufacture thereof | |
JPH0647718B2 (en) | Magnetic material having composition-modulated nitride alloy film | |
JPH04288805A (en) | Soft magnetic thin film | |
JP2979557B2 (en) | Soft magnetic film |