JPH0423595B2 - - Google Patents

Info

Publication number
JPH0423595B2
JPH0423595B2 JP59137848A JP13784884A JPH0423595B2 JP H0423595 B2 JPH0423595 B2 JP H0423595B2 JP 59137848 A JP59137848 A JP 59137848A JP 13784884 A JP13784884 A JP 13784884A JP H0423595 B2 JPH0423595 B2 JP H0423595B2
Authority
JP
Japan
Prior art keywords
tank
water
aeration tank
plate
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59137848A
Other languages
Japanese (ja)
Other versions
JPS6115795A (en
Inventor
Hiroyuki Horikita
Juzo Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP59137848A priority Critical patent/JPS6115795A/en
Publication of JPS6115795A publication Critical patent/JPS6115795A/en
Publication of JPH0423595B2 publication Critical patent/JPH0423595B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は制限された用地を有効に利用して効率
良く下水の活性汚泥処理を行うことができる深槽
曝気槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a deep aeration tank that can effectively utilize limited land and efficiently perform activated sludge treatment of sewage.

(従来の技術) 水深が5mを越す深槽曝気槽は制限された用地
内で下水処理能力の向上を図るために多くの下水
処理場において使用されているが、散気板を槽底
部に配置すると散気板にかかるヘツドが大きくな
るために高吐出圧のブロアを必要とするうえ、散
気水深が5mを越すと散気された空気中の窒素ガ
スが水中に多量に溶解するため後工程の沈澱池に
おいて水中から窒素ガスが析出し、この窒素ガス
が活性汚泥フロツクに付着して汚泥を浮上させ、
処理水の水質悪化を招く欠点があつた。そこで、
本出願人は第7図に示すように曝気槽50の内部
をバツフル板51により2分してその一方の中層
部に散気板52を設けた旋回流式深槽曝気槽を開
発し、先に特願昭59−75633号として提案したと
ころである。
(Prior art) Deep aeration tanks with a water depth of over 5 m are used in many sewage treatment plants to improve sewage treatment capacity in restricted areas, but an aeration plate is placed at the bottom of the tank. This requires a blower with high discharge pressure because the head applied to the diffuser plate becomes large, and if the depth of the diffused water exceeds 5 m, a large amount of nitrogen gas in the diffused air will dissolve in the water, so it will be necessary to use a blower in the subsequent process. Nitrogen gas precipitates from the water in the settling tank, and this nitrogen gas adheres to the activated sludge flocs and causes the sludge to rise to the surface.
There was a drawback that the quality of treated water deteriorated. Therefore,
The present applicant has developed a swirling flow type deep tank aeration tank in which the inside of the aeration tank 50 is divided into two by a baffle plate 51 and an aeration plate 52 is provided in the middle part of one of the two, as shown in FIG. This was proposed in Japanese Patent Application No. 59-75633.

(発明が解決しようとする問題点) ところが第7図のような旋回流式深槽曝気槽で
は旋回流に乗つた気泡は静水中におけるよりも大
きい上昇速度で上昇して水面に達するので気液接
触時間は比較的短くなり、酸素溶解効率を25%以
上とすることはほとんど不可能であつた。また、
曝気槽50をバツフル板51により2分すること
なく、その中層部の全面に散気板52を分散させ
る試みもなされたが、散気板52の上層と下層と
の水の入れかわりが悪くなり、槽底部では嫌気状
態になるとともに汚泥が堆積する欠点を生じた。
従つて、酸素溶解効率が大きく、槽内全体の水の
撹拌が十分に行われて汚泥の堆積がなく、しかも
既存の通常の吐出圧のブロアの利用ができて汚泥
の浮上現象が生ずることもない深槽曝気槽が求め
られていた。
(Problem to be Solved by the Invention) However, in a swirling flow type deep aeration tank as shown in Fig. 7, air bubbles riding on the swirling flow rise to the water surface at a higher rate of rise than in still water, so the gas and liquid The contact time was relatively short and it was almost impossible to achieve an oxygen dissolution efficiency of more than 25%. Also,
Attempts have been made to distribute the aeration plates 52 over the entire middle layer of the aeration tank 50 without dividing the aeration tank 50 into two by the full plate 51, but this results in poor exchange of water between the upper and lower layers of the aeration plate 52. However, the bottom of the tank became anaerobic and sludge accumulated.
Therefore, the oxygen dissolution efficiency is high, the water in the entire tank is sufficiently agitated, and there is no accumulation of sludge, and an existing blower with a normal discharge pressure can be used, which prevents the sludge floating phenomenon. A deep aeration tank was needed.

(問題点を解決するための手段) 本発明はこのような従来の問題点を解決するた
めに完成されたものであり、5m以上の水深を有
する曝気槽の両壁面に近い部分に垂直なバツフル
板を曝気槽の槽幅Wに対して0.7〜0.9Wの間隔を
持たせて立設して曝気槽の中央部にバツフル板に
囲まれた広い領域を形成し、該領域内の中層部の
ほぼ全面に多数の散気板を分散配置し、更にバツ
フル板の上部に気泡を含む上昇流をスムーズに下
降流に変えるための上部導水板を設けたことを特
徴とするものである。
(Means for Solving the Problems) The present invention was completed in order to solve these conventional problems. The plates are set upright at intervals of 0.7 to 0.9 W with respect to the tank width W of the aeration tank to form a wide area surrounded by the buttful plates in the center of the aeration tank, and the middle part of the area is A large number of air diffuser plates are distributed over almost the entire surface, and an upper water guide plate is provided above the baffle plate to smoothly convert upward flow containing air bubbles into downward flow.

実施例 次に、本発明を図示の実施例について詳細に説
明すると、1は5m以上、例えば10mの水深Hを
有し0.8H〜1.2H程度の槽幅Wを有する曝気槽、
2,2はその両壁面3,3に近い部分に垂直に立
設されたバツフル板である。バツフル板2,2間
の幅Xは0.7W〜0.9Wであり、本実施例では0.8W
とされている。これらのバツフル板2,2によつ
て曝気槽1の中央部にはバツフル板2に囲まれた
広い領域4が形成されることとなり、この領域4
内の中層部にはそのほぼ全面にわたり多数の散気
板5が均一に分散配置される。各散気板5には図
示を略したブロアから空気が供給されて気泡とな
つて浮上し、そのエアリフト効果により領域4内
に上昇流を生じて領域4内の水は水面に向つて上
昇したうえでバツフル板2と壁面3との間隙に形
成される下降流路6から槽底に向つて下降するこ
ととなる。従つてバツフル板2,2間の幅Xが広
すぎると下降流路6での通水抵抗が増大して槽内
の水の循環が阻害され、逆に狭すぎると散気面積
が減少し、散気板5から水中に吹込まれた理論酸
素量に対する水中に溶け込んだ酸素量として定義
される酸素溶解効率を向上させることができない
ので、この点からも幅Xは前述のように0.7W〜
0.9W程度とすることが好ましい。また、散気水
深hは気泡と水との接触時間を十分にとり、酸素
溶解効率及びエアリフト効果を向上させるには可
及的に大きくすることが望まれるが、散気水深h
が5m以上となる前述のように窒素ガスが溶解し
て沈澱池において汚泥を浮上させる虞れを生ずる
ので、本実施例においては4〜5mとするのが好
ましい。このような槽内の循環を最も円滑に行わ
せるためにはバツフル板2の上部開口寸法aを
0.1H〜0.4H、更に好ましくは0.2H〜0.3Hとする
とともに、バツフル板2の下端部には下降流路6
の下降流をスムーズに槽底に沿う水平流に変える
ための導水板7が設けられる。槽底角部には30〜
60゜、好ましくは45゜の角度θ1を持ち(W−X)/
4〜(W−X)の長さlの面取部8が形成されて
おり、導水板7はこの面取部8に平行な部分7a
と槽底に平行な部分7bとから成るもので、汚泥
の堆積を防止し得る底面流速を与えるために槽底
との間隔Lは(W−X)/2〜(W−X)、壁面
3から導水板7の先端までの距離Cは導水板7上
にデツドゾーンが形成されることを防止するため
にW/4以下となるようにする。導水板7及び槽
底角部の面取部8の形状は第2図のように円弧状
としてもよく、この場合には面取部8の曲率半径
r1は(W−X)/4〜(W−X)とするのが好ま
しい。また、槽底中央部には両側から槽底に沿つ
て接近する流れをスムーズに上昇流に変えるため
に山形の中央導水板9が設置される。その斜面が
槽底との間になす角度θ2は30〜60゜、その片側斜
面の水平長さeは前述の槽底角部の面取部8の長
さlと同程度とすることが好ましい。中央導水板
9は第3図に示されるような断面円弧状のものと
してもよく、この場合にはその曲率半径r2は前記
の面取部8の曲率半径r1と同程度とすることが好
ましい。更に、槽上角部にも槽底角部の面取部8
と同様の面取部10を設けるとともに、該面取部
10には水面化に没する上部導水板11が設けら
れる。上部導水板11は長さgの水平部11a
と、30〜60゜の角度θ3で水中に傾斜し水平長さf
の傾斜部11bとから成るものであり、全体の水
平長さf+gは0.2W〜0.4W、fは0.1W〜0.2W
とすることが望ましい。この上部導水板11は気
泡を含む上昇流をスムーズに下降流に変えて酸素
溶解効率を向上させるためのものであり、全面に
わたり空気抜孔12が透設されている。なお、そ
の形状は第4図に示すように傾斜部11bを断面
円弧状としてもよい。
Embodiments Next, the present invention will be described in detail with reference to the illustrated embodiments. 1 is an aeration tank having a water depth H of 5 m or more, for example 10 m, and a tank width W of about 0.8 H to 1.2 H;
Reference numerals 2 and 2 designate vertically erected vertical boards near both wall surfaces 3 and 3. The width X between the full plates 2 and 2 is 0.7W to 0.9W, and in this example it is 0.8W.
It is said that These baffle plates 2, 2 form a wide area 4 surrounded by the buffle plates 2 in the center of the aeration tank 1, and this area 4
A large number of air diffusers 5 are uniformly distributed over almost the entire surface of the middle layer. Air was supplied to each diffuser plate 5 from a blower (not shown) and floated up as bubbles, and due to the air lift effect, an upward flow was generated in the area 4, causing the water in the area 4 to rise toward the water surface. Then, it descends toward the bottom of the tank through a downward passage 6 formed in the gap between the buff-full plate 2 and the wall surface 3. Therefore, if the width X between the buttful plates 2, 2 is too wide, the water flow resistance in the descending flow path 6 will increase and the circulation of water in the tank will be inhibited, and if it is too narrow, the aeration area will decrease, Since it is not possible to improve the oxygen dissolution efficiency, which is defined as the amount of oxygen dissolved in water relative to the theoretical amount of oxygen blown into the water from the air diffuser plate 5, from this point of view as well, the width
It is preferable to set it to about 0.9W. In addition, it is desirable that the aeration water depth h be as large as possible in order to provide sufficient contact time between bubbles and water and to improve the oxygen dissolution efficiency and air lift effect.
If the length is 5 m or more, as mentioned above, there is a risk that nitrogen gas will dissolve and float the sludge in the sedimentation tank, so in this embodiment, it is preferably 4 to 5 m. In order to achieve the smoothest circulation in the tank, the upper opening dimension a of the bath full plate 2 should be adjusted.
0.1H to 0.4H, more preferably 0.2H to 0.3H, and a downward flow path 6 is provided at the lower end of the buttful plate 2.
A water guide plate 7 is provided to smoothly convert the downward flow of water into a horizontal flow along the bottom of the tank. 30~ for the bottom corner of the tank
(W-X)/with an angle θ 1 of 60°, preferably 45°
A chamfered portion 8 having a length l of 4 to (W-X) is formed, and the water guide plate 7 has a portion 7a parallel to this chamfered portion 8.
and a part 7b parallel to the tank bottom, and in order to provide a bottom flow velocity that can prevent sludge accumulation, the distance L from the tank bottom is (W-X)/2 to (W-X), and the wall surface 3 The distance C from the water guide plate 7 to the tip of the water guide plate 7 is set to be W/4 or less in order to prevent a dead zone from being formed on the water guide plate 7. The shape of the water guide plate 7 and the chamfered portion 8 at the bottom corner of the tank may be an arc shape as shown in FIG. 2, and in this case, the radius of curvature of the chamfered portion 8
It is preferable that r 1 is (W-X)/4 to (W-X). Further, a chevron-shaped central water guiding plate 9 is installed at the center of the tank bottom in order to smoothly convert the flow approaching along the tank bottom from both sides into an upward flow. The angle θ 2 between the slope and the tank bottom is 30 to 60°, and the horizontal length e of the slope on one side is approximately the same as the length l of the chamfered portion 8 at the corner of the tank bottom. preferable. The central water guide plate 9 may have an arcuate cross section as shown in FIG . preferable. Furthermore, the chamfered portion 8 of the bottom corner of the tank is also provided at the top corner of the tank.
A chamfered portion 10 similar to that shown in FIG. The upper water guide plate 11 has a horizontal portion 11a with a length g.
, it is tilted into the water at an angle θ 3 of 30 to 60° and has a horizontal length f.
The total horizontal length f+g is 0.2W to 0.4W, and f is 0.1W to 0.2W.
It is desirable to do so. This upper water guide plate 11 is for smoothly converting an upward flow containing air bubbles into a downward flow to improve oxygen dissolution efficiency, and is provided with air vent holes 12 throughout the entire surface. Incidentally, the shape of the inclined portion 11b may be an arcuate cross section as shown in FIG.

(作用) このように構成されたものは、曝気槽1の中央
部に形成された領域4内の中層部にほぼ全面にわ
たつて分散配置された多数の散気板5にブロアか
ら空気を供給すれば、空気は各散気板5から気泡
となつてバツフル板2に囲まれた領域4内を上昇
し、そのエアリフト効果により広い領域4内に緩
やかな上昇流を生じ、かくして上層部へ持上げら
れた水はバツフル板2の上部の水面下に設けられ
た上部導水板11に案内されつつバツフル板2と
壁面3との間に形成される下降流路6から槽底に
向つて下降して循環するものであるが、この上昇
流はバツフル板2に囲まれた広い領域4内全体に
おいて均等に生ずるのでその上昇速度は緩やか
で、散気板5から生ずる気泡との間に十分な気液
接触時間が確保されて25%をはるかに越える酸素
溶解効率を得ることができるものである。また、
上層部へ持上げられた水は曝気槽1の両壁面3に
近い部分に立設されたバツフル板2と壁面3との
間に形成される下降流路6を通つて下層部へ循環
し、槽内全体の水の撹拌が十分に行われるととも
に槽底への汚泥の堆積が防止され、しかも、散気
板5にかかるヘツドは槽底に散気板を配置した場
合に比較して小さくなるので通常の吐出圧のブロ
アが利用できるうえ窒素の溶解に起因する沈澱池
における汚泥の浮上現象も防止できるものであ
る。本発明の深槽曝気槽における酸素溶解効率の
実測値は第5図のグラフに示されるとおりであつ
て、曝気槽1の容積Vに対する吹込空気量Gsと
して定義される空気吹込率Gs/Vの変化に対応
して曲線イ,ロ,ハで示すとおりの優れた値を示
す。このグラフにおいて曲線ニは第7図に示され
る従来の深槽曝気槽についてのデータであり、曲
線イは導水板7のないバツフル板2と散気板5の
みを第1図のように設けた場合のデータ、曲線ロ
はそれに導水板7と中央導水板9を付加した場合
のデータ、曲線ハは更に上部導水板11を付加し
た第1図に示されるとおりの深槽曝気槽について
のデータである。このように本発明によれば従来
に比較して酸素溶解効率が10〜20%程度向上した
こととなる。また、第6図は空気吹込率と槽の底
面流速との関係を示したもので、曲線イ,ロ,ハ
は第5図について説明したと同一条件下における
測定値である。本発明によれば底面流速は汚泥堆
積を防止できる限界流速と言われている10cm/
secを容易に上まわることができ、槽底への汚泥
の堆積を十分に防止することができる。
(Function) With this configuration, air is supplied from the blower to a large number of diffuser plates 5 distributed over almost the entire surface of the middle layer of the region 4 formed in the center of the aeration tank 1. Then, the air becomes bubbles from each diffuser plate 5 and rises in the area 4 surrounded by the baffle plate 2, and due to the air lift effect, a gentle upward flow is generated in the wide area 4, and is thus lifted to the upper part. The water is guided by the upper water guide plate 11 provided below the water surface on the upper part of the baffle plate 2, and descends toward the bottom of the tank from the descending channel 6 formed between the buffle plate 2 and the wall surface 3. However, since this upward flow occurs evenly throughout the wide area 4 surrounded by the baffle plate 2, its rising speed is slow, and there is sufficient air and liquid between it and the bubbles generated from the diffuser plate 5. The contact time is ensured and oxygen dissolution efficiency of far more than 25% can be obtained. Also,
The water lifted to the upper part circulates to the lower part through the downward passage 6 formed between the wall 3 and the baffle plate 2 which is installed upright in the part close to both walls 3 of the aeration tank 1, and then flows to the lower part of the tank. Water throughout the tank is sufficiently agitated and sludge is prevented from accumulating on the bottom of the tank.Moreover, the head applied to the air diffuser plate 5 is smaller than when the air diffuser plate is placed at the bottom of the tank. A blower with a normal discharge pressure can be used, and the surfacing phenomenon of sludge in a sedimentation tank caused by dissolution of nitrogen can also be prevented. The actual measured value of the oxygen dissolution efficiency in the deep aeration tank of the present invention is as shown in the graph of FIG. In response to changes, it shows excellent values as shown by curves A, B, and C. In this graph, curve 2 is the data for the conventional deep aeration tank shown in Figure 7, and curve A is the data for the conventional deep aeration tank shown in Figure 7, and curve A is the data for the conventional deep aeration tank shown in Figure 1. Curve B is the data for the case where water guide plate 7 and center water guide plate 9 are added to it, and curve C is the data for the deep tank aeration tank as shown in Fig. 1 in which the upper water guide plate 11 is further added. be. As described above, according to the present invention, the oxygen dissolution efficiency is improved by about 10 to 20% compared to the conventional method. Further, FIG. 6 shows the relationship between the air blowing rate and the flow velocity at the bottom of the tank, and curves A, B, and C are measured values under the same conditions as explained in FIG. 5. According to the present invention, the bottom flow velocity is 10 cm/cm, which is said to be the critical flow velocity that can prevent sludge accumulation.
sec can be easily exceeded, and the accumulation of sludge on the tank bottom can be sufficiently prevented.

(発明の効果) 本発明は以上の説明からも明らかなように、酸
素溶解効率が従来のものよりも10〜20%程度大き
く、従つて、下水処理場全体の電力消費量の40〜
50%を占める曝気槽の電力消費量を大幅に削減す
ることができ、また、槽内全体の水の循環が十分
に行われて汚泥の堆積がなく、しかも通常の吐出
圧のブロアが利用でき、沈澱地における汚泥の浮
上現象も生じないものである。よつて、本発明は
従来の深槽曝気槽の問題点を解決したものとして
産業の発展に寄与するところは極めて大きいもの
である。
(Effects of the Invention) As is clear from the above explanation, the present invention has an oxygen dissolution efficiency that is approximately 10 to 20% higher than that of the conventional method, and therefore accounts for 40 to 20% of the power consumption of the entire sewage treatment plant.
The power consumption of the aeration tank, which accounts for 50%, can be significantly reduced, and the water circulation throughout the tank is sufficient, eliminating the accumulation of sludge, and a blower with normal discharge pressure can be used. , sludge floating phenomenon in the sedimentation area does not occur. Therefore, the present invention greatly contributes to the development of industry as it solves the problems of conventional deep aeration tanks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す縦断面図、第2
図は槽底角部の変形例を示す縦断面図、第3図は
中央導水板の変形例を示す縦断面図、第4図は上
部導水板の変形例を示す縦断面図、第5図は空気
吹込率と酸素溶解効率との関係を示すグラフ、第
6図は空気吹込率と底面流速との関係を示すグラ
フ、第7図は従来の深槽曝気槽の縦断面図であ
る。 1:曝気槽、2:バツフル板、3:壁面、4:
領域、5:散気板。
Fig. 1 is a vertical sectional view showing an embodiment of the present invention, Fig. 2
The figure is a longitudinal sectional view showing a modification of the bottom corner of the tank, FIG. 3 is a longitudinal sectional view showing a modification of the central water guiding plate, FIG. 4 is a longitudinal sectional view showing a modification of the upper water guiding plate, and FIG. 6 is a graph showing the relationship between air blowing rate and oxygen dissolution efficiency, FIG. 6 is a graph showing the relationship between air blowing rate and bottom flow velocity, and FIG. 7 is a longitudinal cross-sectional view of a conventional deep aeration tank. 1: Aeration tank, 2: Full plate, 3: Wall surface, 4:
Area, 5: Diffuser plate.

Claims (1)

【特許請求の範囲】[Claims] 1 5m以上の水深を有する曝気槽1の両壁面3
に近い部分に垂直なバツフル板2を曝気槽1の槽
幅Wに対して0.7〜0.9Wの間隔を持たせて立設し
て曝気槽1の中央部にバツフル板2に囲まれた広
い領域4を形成し、該領域4内の中層部のほぼ全
面に多数の散気板5を分散配置し、更にバツフル
板2の上部に気泡を含む上昇流をスムーズに下降
流に変えるための上部導水板11を設けたことを
特徴とする深槽曝気槽。
1 Both walls 3 of the aeration tank 1 with a water depth of 5 m or more
Vertical butt-full plates 2 are erected near the part close to the tank width W of the aeration tank 1 with an interval of 0.7 to 0.9W to create a wide area surrounded by the butt-full plates 2 in the center of the aeration tank 1. 4, a large number of air diffusers 5 are distributed over almost the entire surface of the middle layer in the area 4, and an upper water guide is provided above the baffle plate 2 to smoothly convert the upward flow containing air bubbles into a downward flow. A deep aeration tank characterized by being provided with a plate 11.
JP59137848A 1984-07-03 1984-07-03 Deep aeration tank Granted JPS6115795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59137848A JPS6115795A (en) 1984-07-03 1984-07-03 Deep aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59137848A JPS6115795A (en) 1984-07-03 1984-07-03 Deep aeration tank

Publications (2)

Publication Number Publication Date
JPS6115795A JPS6115795A (en) 1986-01-23
JPH0423595B2 true JPH0423595B2 (en) 1992-04-22

Family

ID=15208215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59137848A Granted JPS6115795A (en) 1984-07-03 1984-07-03 Deep aeration tank

Country Status (1)

Country Link
JP (1) JPS6115795A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288743A (en) * 1999-02-03 2000-10-17 Dengensha Mfg Co Ltd Controller for resistance welding equipment
JP4994349B2 (en) * 2008-12-01 2012-08-08 メタウォーター株式会社 Nitrification carrier circulation method in deep tank aeration tank
JP5933053B2 (en) * 2015-02-13 2016-06-08 佐竹化学機械工業株式会社 Square stirring tank
CN108101203B (en) * 2017-12-21 2021-03-19 武汉森泰环保股份有限公司 Reaction-precipitation integrated deepwater aeration tower and treatment process thereof
CN117401797B (en) * 2023-12-15 2024-02-20 江苏省特种设备安全监督检验研究院 Boiler ash water treatment recycling device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141797U (en) * 1982-03-16 1983-09-24 水道機工株式会社 Sewage treatment equipment
JPS5974899U (en) * 1982-11-08 1984-05-21 荏原インフイルコ株式会社 Gas-liquid contact device

Also Published As

Publication number Publication date
JPS6115795A (en) 1986-01-23

Similar Documents

Publication Publication Date Title
US4368060A (en) Gas sparging method
JPH0423595B2 (en)
JPS62298409A (en) Upward flow type inclined settling pond
JPH0418720Y2 (en)
US3435954A (en) Waste water purification apparatus
CN214218238U (en) Deamination tower
JPH0131359Y2 (en)
US2024345A (en) Sewage purifying device
CN213317640U (en) Device for removing impurities in tundish
JPS61136407A (en) Upwardly flowing type inclined sedimentation basin
JPS5921919Y2 (en) Sewage treatment equipment
JPH0647598Y2 (en) Sewage treatment equipment
JP4354852B2 (en) Airlift aeration tank suitable for batch activated sludge process
CN213407819U (en) Go out mill weir and sedimentation tank
JPH1043784A (en) Fluid bed type biological treating device
JPH0534798Y2 (en)
JPH0634880Y2 (en) Fluid carrier biological treatment equipment
JPH0677752B2 (en) Swirl type deep aeration tank and aeration method
JP2915631B2 (en) Vacuum refining of molten steel in ladle
JPS6135919B2 (en)
FI57357C (en) KAERL FOER FLOTATIONSCELL
JPH04238658A (en) Immersion nozzle for continuous casting
JPH0131354Y2 (en)
JP2002079283A (en) Aerobic treatment tank
JP2500068B2 (en) Full aeration tank