JPH04235535A - Nonlinear optical material and light wavelength changing method using it - Google Patents

Nonlinear optical material and light wavelength changing method using it

Info

Publication number
JPH04235535A
JPH04235535A JP1251091A JP1251091A JPH04235535A JP H04235535 A JPH04235535 A JP H04235535A JP 1251091 A JP1251091 A JP 1251091A JP 1251091 A JP1251091 A JP 1251091A JP H04235535 A JPH04235535 A JP H04235535A
Authority
JP
Japan
Prior art keywords
nonlinear optical
optical material
compound
light wavelength
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1251091A
Other languages
Japanese (ja)
Inventor
Masaki Okazaki
正樹 岡崎
Yasushi Matsuo
康司 松尾
Keizo Ogawa
恵三 小川
Kazumi Kubo
久保 和美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP1251091A priority Critical patent/JPH04235535A/en
Publication of JPH04235535A publication Critical patent/JPH04235535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To exhibit high nonlinear responsiveness and to be excellent in blue light permeability by composing the material of a specific compound. CONSTITUTION:A compound expressed by the formula I is used as a nonlinear optical responsive compound. In the formula I an alkyl group represented by R<1> and R<2> has a carbon number of 1 to 24, preferably 1 to 10. An allyl group represented by R<1> and R<2> has a carbon number of 6 to 24, desirably 6 to 14, and more desirably 6 to 10. A methyne group represented by L<1> and L<2> may be substituted by an alkyl group or allyl group and desirably have a carbon number of 1 to 10 and more desirably 1 to 3: the most desirable carbon number thereof is 1, i.e., CH. One or more hydrogen atom of the compound may be substituted by heavey on hydrogen atom.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は非線形光学材料として有
用な化合物および分子性結晶に関する。また、それらを
非線形光学材料として用いた光波長の変換方法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to compounds and molecular crystals useful as nonlinear optical materials. The present invention also relates to a method of converting optical wavelength using these materials as nonlinear optical materials.

【0002】0002

【従来の技術】近年、非線形光学材料−レーザー光のよ
うな強い光電界を与えたときに現われる、分極と電界と
の間の非線形性−を有した材料が注目を集めている。か
かる材料は、一般に非線形光学材料として知られており
、例えば次のものなどに詳しく記載されている。“ノン
リニア・オプティカル・プロパティーズ・オブ・オーガ
ニック・アンド・ポリメリック・マテリアル”エー・シ
ー・エス・シンポジウム・シリーズ233  デビット
・ジェイ・ウイリアムス編(アメリカ化学協会1983
年刊)「”Nonlinear Optical Pr
operties of Organic and P
olymeric Material” ACS SY
MPOSIUM SERIES 233 David 
J. Williams編(AmericanChem
ical Society,1983年刊)」、「有機
非線形光学材料」加藤正雄・中西八郎監修(シー・エム
・シー社、1985年刊、“ノンリニア・オプティカル
・プロパティーズ・オブ・オーガニック・モレキュール
ズ・アンド・クリスタルズ”第1巻および第2巻、ディ
ー・エス・シュムラおよびジェイ・ジス編(アカデミッ
ク・プレス社1987年刊)「 ”Nonlinear
 OpjticalProperties of Or
ganic Molecules and cryst
als ” vol 1および2 D.S.Cheml
a and J.Zyss編(Academic Pr
ess  社刊)。
BACKGROUND OF THE INVENTION In recent years, nonlinear optical materials, which exhibit nonlinearity between polarization and electric field that appears when a strong optical electric field such as laser light is applied, have attracted attention. Such materials are generally known as nonlinear optical materials and are described in detail in, for example: “Nonlinear Optical Properties of Organic and Polymeric Materials” ACS Symposium Series 233 Edited by David Jay Williams (American Chemical Society 1983)
Annual) ``Nonlinear Optical Pr
operties of organic and p.
Olymeric Material” ACS SY
MPOSIUM SERIES 233 David
J. Edited by Williams (AmericanChem)
ical Society, published in 1983), "Organic Nonlinear Optical Materials" supervised by Masao Kato and Hachiro Nakanishi (CMC, published in 1985, "Nonlinear Optical Properties of Organic Molecules and Crystals") Volumes 1 and 2, edited by D. S. Shumura and J. Jisu (Academic Press, 1987) “Nonlinear
OpticalProperties of Or
ganic molecules and crystal
als” vol 1 and 2 D.S. Cheml
a and J. Edited by Zyss (Academic Pr.
(Published by ess).

【0003】非線形光学材料の用途の1つに、2次の非
線形効果に基づいた第2高調波発生(SHG)および和
周波、差周波を用いた波長変換デバイスがある。これま
で実用上用いられているものは、ニオブ酸リチウムに代
表される無機質のペロブスカイト類である。しかし最近
になり、電子供与基および電子吸引基を有するπ電子共
役系有機化合物は前述の無機質を大きく上回る、非線形
光学材料としての諸性能を有していることが知られるよ
うになった。
One of the uses of nonlinear optical materials is second harmonic generation (SHG) based on second-order nonlinear effects and wavelength conversion devices using sum frequency and difference frequency. The materials that have been practically used so far are inorganic perovskites represented by lithium niobate. However, recently, it has become known that π-electron conjugated organic compounds having an electron-donating group and an electron-withdrawing group have various performances as nonlinear optical materials that far exceed those of the above-mentioned inorganic materials.

【0004】より高性能の非線形光学材料の形成には、
分子状態での非線形感受率の高い化合物を、反転対称性
を生じない様に配列させる必要がある。このうちの一つ
である高い非線形感受率の発現にはπ電子共役鎖の長い
化合物が有用であることが知られており、前述の文献に
も種々記載されているが、それらの化合物においては自
明の如く吸収極大波長が長波長化し、例えば青色光の透
過率の低下を招き、第二高調波としての青色光の発生に
障害となる。このことは、p−ニトロアニリン誘導体に
おいても生じており、第二高調波発生の効率にその波長
の透過率の影響が大きいことは、アライン・アゼマ他著
、プロシーディングス・オブ・エスピ−アイイー、40
0巻、ニュー・オプティカル・マテリアルズ(Alai
n Azems 他著、Proceedings of
 SPIE 、400巻、Now Optical M
aterials )、(1983)186頁第4図よ
り明らかである。従って青色光に対する透過率の高い非
線形光学材料の出現が望まれている。従来、ニトロアニ
リンのベンゼン核の炭素原子を窒素原子などで置き換え
ることが検討されて来たが必ずしも満足のいく結果は得
られていない。
[0004]For the formation of higher performance nonlinear optical materials,
It is necessary to arrange compounds with high nonlinear susceptibility in the molecular state so as not to cause inversion symmetry. It is known that compounds with long π-electron conjugated chains are useful for expressing high nonlinear susceptibility, which is one of these, and are variously described in the above-mentioned literature, but in these compounds, As is obvious, the absorption maximum wavelength becomes longer, leading to a decrease in the transmittance of, for example, blue light, which becomes an obstacle to the generation of blue light as the second harmonic. This also occurs in p-nitroaniline derivatives, and the fact that the transmittance of that wavelength has a large influence on the efficiency of second harmonic generation is described in Aline Azema et al., Proceedings of the National Institutes of Science and Technology. 40
Volume 0, New Optical Materials (Alai
n Azems et al., Proceedings of
SPIE, Volume 400, Now Optical M
This is clear from Figure 4, p. 186, (1983). Therefore, the emergence of nonlinear optical materials with high transmittance for blue light is desired. Conventionally, attempts have been made to replace the carbon atoms in the benzene nucleus of nitroaniline with nitrogen atoms, but satisfactory results have not always been obtained.

【0005】また、本出願人はより優れた方法について
、特開昭62−210430号および特開昭62−21
0432号公報にて開示した。更に、特開昭62−59
934号、特開昭63−23136号、特開昭63−2
6638号、特公昭63−31768号、特開昭63−
163827号、特開昭63−146025号、特開昭
63−85526号、特開昭63−239427号、特
開平1−100521号、特開昭64−56425号、
特開平1−102529号、特開平1−102530号
、特開平1−237625号、特開平1−207724
号公報などに多くの材料が開示されている。
[0005] The present applicant has also disclosed a better method in Japanese Patent Laid-Open Nos. 62-210430 and 62-21.
It was disclosed in Publication No. 0432. Furthermore, JP-A-62-59
No. 934, JP-A-63-23136, JP-A-63-2
6638, JP 63-31768, JP 63-
163827, JP 63-146025, JP 63-85526, JP 63-239427, JP 1-100521, JP 64-56425,
JP-A-1-102529, JP-A-1-102530, JP-A-1-237625, JP-A-1-207724
Many materials have been disclosed in publications such as the above.

【0006】しかしながら、先に述べたように2次の非
線形光学材料として有用であるためには、分子状態での
性能のみでは不十分であり、集合状態での分子配列に反
転対称性の無いことが必須である。しかるに現状では分
子配列を予想することは極めて困難であり、また全有機
化合物中での存在確率も高いのではない。
However, as mentioned above, in order to be useful as a second-order nonlinear optical material, performance in the molecular state alone is insufficient, and the molecular arrangement in the aggregate state must have no inversion symmetry. is required. However, currently it is extremely difficult to predict the molecular arrangement, and the probability of its existence among all organic compounds is not high.

【0007】また、特開昭63−221327号公報に
は桂皮酸エステルの誘導体も合わせて開示されているが
、該発明においてはエステル基が結合されている炭素原
子に更にもう1種の電子吸引基、特にシアノ基が結合さ
れていることが好ましいとの記載があり、具体的に示さ
れた化合物も、その範疇に含まれるものに限られている
。このため、例示された化合物はいずれも、青色SHG
素子として用いるには吸収波長が長過ぎ、好ましいもの
ではない。
[0007] Furthermore, JP-A-63-221327 also discloses derivatives of cinnamic acid esters, but in this invention, the carbon atom to which the ester group is bonded has one more type of electron-attracting There is a description that it is preferable that a group, especially a cyano group, be bonded, and the compounds specifically shown are also limited to those included in this category. Therefore, all of the exemplified compounds are blue SHG
The absorption wavelength is too long to be used as an element, so it is not preferable.

【0008】また、波長変換のための素子として用いる
場合には、結晶中での分子の配列を十分考慮する必要が
あるものの、上記のものの多くはその点の考慮が必ずし
も十分にされていない。更に、現在に至るまで有機非線
形光学材料を用いた波長変換素子が商品として世に出現
していない。
[0008] Furthermore, when used as an element for wavelength conversion, it is necessary to give sufficient consideration to the arrangement of molecules in the crystal, but in many of the above methods, this point is not necessarily sufficiently taken into account. Furthermore, to date, no wavelength conversion element using an organic nonlinear optical material has appeared on the market as a commercial product.

【0009】[0009]

【発明が解決しようとする課題】従って本発明の第一の
目的は、高い非線形応答性を示し、且つ青色光透過性に
優れた有機非線形光学材料を提供することにある。第二
の目的は、青色光透過性に優れ且つ反転対称性のない分
子配列を有する分子性結晶を提供することにある。第三
の目的は、非線形応答性のうち光波長の変換に関する応
答性を利用した方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, a first object of the present invention is to provide an organic nonlinear optical material that exhibits high nonlinear response and excellent blue light transmittance. The second object is to provide a molecular crystal that has excellent blue light transmittance and has a molecular arrangement without inversion symmetry. A third objective is to provide a method that utilizes the response related to optical wavelength conversion among nonlinear responses.

【0010】0010

【課題を解決するための手段】本発明者らは、鋭意研究
を重ねた結果、一般式(I)で表わされる化合物を非線
形光学応答性化合物として用いることにより、又、一般
式(II)で表わされる分子によって構成されることを
特徴とする分子性結晶により、本発明の目的が達成可能
なことを見出した。
[Means for Solving the Problems] As a result of extensive research, the present inventors have found that by using a compound represented by general formula (I) as a nonlinear optically responsive compound, and by using a compound represented by general formula (II), It has been found that the objects of the present invention can be achieved by a molecular crystal characterized in that it is constituted by the molecules represented.

【0011】[0011]

【化3】[Chemical formula 3]

【0012】0012

【化4】 一般式(I)の化合物について更に詳しく説明する。R
1 およびR2 で表わされるアルキル基は炭素数1な
いし24のものであり、好ましくは炭素数1ないし10
であり、更に好ましくは炭素数1ないし5のものである
(例えばメチル、エチル、プロピル、i−プロピル、ブ
チル、i−ブチル、 sec−ブチル、tert−ブチ
ル、ペンチル、i、ペンチル、 sec−ペンチル、t
ert−ペンチルが挙げられる)。また、これらは例え
ばハロゲン原子、ヒドロキシ基、アルコキシ基、アリー
ル基、カルボキシ基、アルコキシカルボニル基、アミノ
基、シアノ基で置換されていてもよい。R1 およびR
2 で表わされるアリール基は炭素数6ないし24のも
のであり、好ましくは炭素数6ないし14であり、更に
好ましくは炭素数6ないし10である(例えばフェニル
、1−ナフチル、2−ナフチルが挙げられる)。また、
これらは例えば前述の基およびアルキル基で置換されて
いてもよい。L1 およびL2 で表わされるメチン基
はアルキル基又はアリール基で置換されていてもよく、
炭素数1ないし10が好ましく、炭素数1ないし3がよ
り好ましい。最も好ましくは炭素数1、すなわちCHで
ある。またこの化合物の水素原子が1個以上重水素原子
で置換されていてもよい。
embedded image The compound of general formula (I) will be explained in more detail. R
The alkyl group represented by 1 and R2 has 1 to 24 carbon atoms, preferably 1 to 10 carbon atoms.
and more preferably one having 1 to 5 carbon atoms (for example, methyl, ethyl, propyl, i-propyl, butyl, i-butyl, sec-butyl, tert-butyl, pentyl, i, pentyl, sec-pentyl) ,t
ert-pentyl). Further, these may be substituted with, for example, a halogen atom, a hydroxy group, an alkoxy group, an aryl group, a carboxy group, an alkoxycarbonyl group, an amino group, or a cyano group. R1 and R
The aryl group represented by 2 has 6 to 24 carbon atoms, preferably 6 to 14 carbon atoms, and more preferably 6 to 10 carbon atoms (for example, phenyl, 1-naphthyl, and 2-naphthyl are listed). ). Also,
These may be substituted, for example, with the groups mentioned above and with alkyl groups. The methine group represented by L1 and L2 may be substituted with an alkyl group or an aryl group,
It preferably has 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms. The most preferred is one carbon number, ie, CH. Further, one or more hydrogen atoms in this compound may be substituted with deuterium atoms.

【0013】以下に一般式(I)で表わされる化合物に
ついて具体例を示す。
Specific examples of the compounds represented by the general formula (I) are shown below.

【0014】[0014]

【化5】[C5]

【0015】これらの化合物は一般には、市販されてい
る4−ヒドロキシ桂皮酸を適宜エーテル化、エステル化
することにより容易に合成することができる。エーテル
化およびエステル化の方法については以下の成書を参考
にすることができる。スタンレー  アール  サンド
ラー、ウォルフ  カロー( StanleyR. S
andler,Wolf Karo )著  オーガニ
ック  ファンクショナル  グループ  プレパレー
ションズ(Organic Functional G
roup Preparations)アカデミック 
 プレス社(Academic Press)1968
年刊  第5章および10章日本化学会編、新実験化学
講座  丸善  1977年刊  第14巻  有機化
合物の合成と反応〔I〕第3章第3節および〔II〕第
5章第2節
These compounds can generally be easily synthesized by suitably etherifying or esterifying commercially available 4-hydroxycinnamic acid. Regarding the methods of etherification and esterification, the following books can be referred to. Stanley R.S.
andler, Wolf Karo) Organic Functional Group Preparations
roup Preparations) Academic
Academic Press 1968
Published annually Chapters 5 and 10 Edited by the Chemical Society of Japan, New Experimental Chemistry Course Maruzen Published 1977 Volume 14 Synthesis and Reactions of Organic Compounds [I] Chapter 3 Section 3 and [II] Chapter 5 Section 2

【0016】次に代表例として化合物の具体例1につい
て合成法を記す。 合成例−1 還流冷却器および攪拌機を備えた5lの三口フラスコに
メタノール3.5lを加え、さらに4−ヒドロキシ桂皮
酸489g(2.98mol)を加え30℃で加熱攪拌
し溶解した。次いで濃硫酸25mlを加え5hr還流し
た後、室温まで法冷した。反応混合物を、NaHCO3
 100gをを14lの水に溶かした溶液に注ぎ、生成
した沈澱を濾取した。濾取した沈澱を水洗後乾燥し、4
−ヒドロキシ桂皮酸  メチルエステルを481g(2
.70mol)得た。 収率  90.6% 融点  139〜140.5℃(メタノールより再結晶
Next, as a representative example, the synthesis method for Compound Example 1 will be described. Synthesis Example-1 3.5 liters of methanol was added to a 5 liter three-necked flask equipped with a reflux condenser and a stirrer, and 489 g (2.98 mol) of 4-hydroxycinnamic acid was added thereto and dissolved by heating and stirring at 30°C. Next, 25 ml of concentrated sulfuric acid was added and the mixture was refluxed for 5 hours, and then cooled down to room temperature. The reaction mixture was diluted with NaHCO3
100 g of the solution was poured into a solution of 14 liters of water, and the precipitate formed was collected by filtration. The filtered precipitate was washed with water and dried,
-Hydroxycinnamic acid methyl ester 481g (2
.. 70 mol) was obtained. Yield: 90.6% Melting point: 139-140.5°C (recrystallized from methanol)

【0017】合成例2(化合物例9の合成)、合成例
1で得られた4−ヒドロキシ桂皮酸メチルエステル1g
を、還流冷却器を備えた100mlのナス型フラスコに
秤取し、50mlのメタノールd4 を加えた。4時間
加熱還流した後、溶媒の40mlを留去した。氷冷し析
出した結晶を濾取した。 収量  0.7g(収率  70%) 融点  138〜141℃ この化合物の 1H−nmrを測定したところ、水酸基
の水素原子の90%は重水素に置換されていた。
Synthesis Example 2 (Synthesis of Compound Example 9), 1 g of 4-hydroxycinnamic acid methyl ester obtained in Synthesis Example 1
was weighed into a 100 ml eggplant-shaped flask equipped with a reflux condenser, and 50 ml of methanol d4 was added. After heating under reflux for 4 hours, 40 ml of the solvent was distilled off. It was cooled on ice and the precipitated crystals were collected by filtration. Yield: 0.7 g (yield: 70%) Melting point: 138-141°C When 1H-nmr of this compound was measured, 90% of the hydrogen atoms in the hydroxyl groups were replaced with deuterium.

【0018】次にここで得られた粉末を単結晶化するわ
けであるが、単結晶化の方法としては、溶媒蒸発法、温
度降下法、蒸気拡散法などの溶液法、ブリッジマン法な
どの誘液法、また昇華による方法が挙げられる。単結晶
化に際しては、結晶工学ハンドブック編集委員会編“結
晶工学ハンドブック(共立出版、1971年刊)第VI
I 編、第8章の記載を参考にして行なうことができる
Next, the powder obtained here is made into a single crystal. Methods for single crystallization include solution methods such as the solvent evaporation method, temperature drop method, and vapor diffusion method, and Bridgman method. Examples include liquid dilution method and sublimation method. For single crystallization, please refer to "Crystal Engineering Handbook (Kyoritsu Shuppan, published 1971)" Volume VI, edited by the Crystal Engineering Handbook Editorial Committee.
This can be done by referring to the description in Part I, Chapter 8.

【0019】波長変換の方法には、適当な大きさの単結
晶を用い、角度位相整合や温度位相整合によるもの、導
波路を用いたチェレンコフ放射による方法などがある。 基本波として用いるレーザ光源としては例えば表1のも
のが挙げられる。なお、基本波の波長に関しては前述し
た材料の吸収による影響を除いては何ら制限されない。 このことは、レーザ・アンド・オプトロニクス(Las
er &Optronics)59頁(1987年11
月刊)より明らかである。
Methods of wavelength conversion include methods using a single crystal of an appropriate size and using angular phase matching or temperature phase matching, and methods using Cerenkov radiation using a waveguide. Examples of the laser light source used as the fundamental wave include those in Table 1. It should be noted that the wavelength of the fundamental wave is not limited in any way except for the influence of absorption of the material mentioned above. This is true for laser and optronics (Las
er & Optronics) page 59 (November 1987)
Monthly) is more obvious.

【0020】[0020]

【表1】[Table 1]

【0021】[0021]

【実施例】次に本発明を実施例に基づいて更に詳しく説
明するが、本発明はこれに限定されるものではない。 実施例1 合成例1で得られた4−ヒドロキシ桂皮酸メチルエステ
ルをクロロホルム溶液とし、溶媒蒸発法により無色プリ
ズム晶を得た。この結晶を用いてX線結晶構造解析を行
なった。以下にその結果を示す。 結晶学的データ 単斜晶系、空間群Cc 格子定数  a=20.304Å  b=7.123Å
  c=6.291Åα=90.00°    β=9
5.85°  γ=90.00° 単位格子当りの分子数  Z=4 また結晶構造図を図1に示す。 上記結晶学データの空間群より、本結晶は反転対称性を
持っていないことがわかる。
EXAMPLES Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereto. Example 1 The 4-hydroxycinnamic acid methyl ester obtained in Synthesis Example 1 was made into a chloroform solution, and colorless prism crystals were obtained by a solvent evaporation method. X-ray crystal structure analysis was performed using this crystal. The results are shown below. Crystallographic data Monoclinic system, space group Cc Lattice constant a = 20.304 Å b = 7.123 Å
c=6.291Åα=90.00° β=9
5.85° γ = 90.00° Number of molecules per unit cell Z = 4 The crystal structure diagram is shown in Figure 1. From the space group of the crystallographic data above, it can be seen that this crystal does not have inversion symmetry.

【0022】実施例2 実施例1で得られた単結晶をメノウ乳鉢で粉末とし、第
2高調波発生の測定をエス・ケー・クルツ(S.K.K
urtz)、ティー・ティー・ペリー(T.T.Per
ry)著、ジャーナル・オブ・アプライド・フィジック
ス(J.Appl.Phys.) 39巻、3798頁
(1968年刊)中に記載されている方法に準じて行っ
た。測定は図2に示した装置により測定を行った。すな
わち、測定は、パルスYAGレーザー光(λ=1.06
4μm、ビーム径≒1mmφ、ピークパワー≒10Mw
/cm2 )を基本波に用い、第1図に示す評価装置に
て、その第2高調波の強度を測定した。測定は、尿素の
第2高調波の強度との相対比較で行った。 また強度が弱い場合には目視による観測を行った。特に
、基本波の2光子吸収による発光(おもに黄、赤の発光
)と第2高調波とを区別するために、分光器を入れ、第
2高調波のみを測定する様にした。さらに粉末法の測定
は、その物質の非線形性の有無を判断することが主目的
であり、その強度比は比線形性の大きさの、参考値であ
る。結果を表2に示した。
Example 2 The single crystal obtained in Example 1 was powdered in an agate mortar, and the second harmonic generation was measured by S.K.
urtz), T.T.Perry
This was carried out according to the method described in J. Appl. Phys., Vol. 39, p. 3798 (published in 1968). The measurement was performed using the apparatus shown in FIG. That is, the measurement was performed using pulsed YAG laser light (λ=1.06
4μm, beam diameter≒1mmφ, peak power≒10Mw
/cm2) was used as the fundamental wave, and the intensity of its second harmonic was measured using the evaluation device shown in FIG. The measurement was performed by relative comparison with the intensity of the second harmonic of urea. In addition, when the intensity was weak, visual observation was performed. In particular, in order to distinguish between light emission due to two-photon absorption of the fundamental wave (mainly yellow and red light emission) and second harmonics, a spectrometer was installed to measure only the second harmonics. Furthermore, the main purpose of powder method measurement is to determine the presence or absence of nonlinearity in the substance, and the intensity ratio is a reference value for the magnitude of specific linearity. The results are shown in Table 2.

【0023】[0023]

【表2】[Table 2]

【0024】[0024]

【化6】[C6]

【0025】従って本発明の化合物は青色光透過性に極
めて優れ、且つ波長変換が可能であることが明らかであ
る。
Therefore, it is clear that the compound of the present invention has excellent blue light transmittance and is capable of wavelength conversion.

【0026】実施例−3合成例2で得られた結晶を用い
、実施例2と同様に第2高調波の測定を行った。目視に
より緑色の第2高調波を観測することができた。
Example 3 Using the crystal obtained in Synthesis Example 2, the second harmonic was measured in the same manner as in Example 2. It was possible to visually observe the green second harmonic.

【0027】[0027]

【発明の効果】本発明の化合物は、青色光透過性が高く
且つ波長変換が可能であるため、青色光発生用波長変換
素子に有用な材料となる。
[Effects of the Invention] The compound of the present invention has high blue light transmittance and is capable of wavelength conversion, so it is a useful material for a wavelength conversion element for generating blue light.

【0028】[0028]

【図面の簡単な説明】[Brief explanation of the drawing]

【0029】[0029]

【図1】[Figure 1]

【0030】実施例1のX線結晶構造解析より得られた
、ステレオ図である。
[0030] FIG. 2 is a stereogram obtained from X-ray crystal structure analysis in Example 1.

【0031】[0031]

【図2】[Figure 2]

【0032】実施例2で用いた第2高調波発生測定装置
である。
This is the second harmonic generation measuring device used in Example 2.

【0033】[0033]

【符号の説明】[Explanation of symbols]

1  粉末試料 2  基本波カットフィルター 3  分光器 4  フオトマル 5  アンプ 6  波長  1.064μm 7        0.532μm 1 Powder sample 2 Fundamental wave cut filter 3 Spectrometer 4 Photomaru 5 Amplifier 6 Wavelength 1.064μm 7 0.532μm

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  下記一般式(I)で表わされる化合物
から成る、非線形光学材料。 一般式(I)式中、R1 およびR2 は水素原子また
は炭素数1〜24のアルキル基、又は炭素数6〜24の
アリール基を表わす。L1 およびL2 はメチン基を
表わす。 【化1】
1. A nonlinear optical material comprising a compound represented by the following general formula (I). In the general formula (I), R1 and R2 represent a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, or an aryl group having 6 to 24 carbon atoms. L1 and L2 represent methine groups. [Chemical formula 1]
【請求項2】  請求項1において、水素原子の少くと
も1個が重水素原子で置換されている化合物から成る、
非線形光学材料。
2. The compound according to claim 1, wherein at least one hydrogen atom is replaced with a deuterium atom.
Nonlinear optical materials.
【請求項3】  下記一般式(II)で表わされる分子
によって構成されることを特徴とする、単斜晶系であり
、Ccの空間群を有する分子性結晶から成る、非線形光
学材料。 一般式(II) 【化2】
3. A nonlinear optical material consisting of a monoclinic molecular crystal having a space group of Cc, characterized in that it is constituted by molecules represented by the following general formula (II). General formula (II) [Chemical formula 2]
【請求項4】  レーザー光と非線形光学材料とを用い
て光波長の変換を行う際に、非線形光学材料として請求
項1および2記載のものを用いる光波長の変換方法。
4. A method of converting a light wavelength using the nonlinear optical material according to claim 1 or 2 when converting a light wavelength using a laser beam and a nonlinear optical material.
JP1251091A 1991-01-11 1991-01-11 Nonlinear optical material and light wavelength changing method using it Pending JPH04235535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251091A JPH04235535A (en) 1991-01-11 1991-01-11 Nonlinear optical material and light wavelength changing method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251091A JPH04235535A (en) 1991-01-11 1991-01-11 Nonlinear optical material and light wavelength changing method using it

Publications (1)

Publication Number Publication Date
JPH04235535A true JPH04235535A (en) 1992-08-24

Family

ID=11807345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251091A Pending JPH04235535A (en) 1991-01-11 1991-01-11 Nonlinear optical material and light wavelength changing method using it

Country Status (1)

Country Link
JP (1) JPH04235535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130128339A1 (en) * 2010-08-05 2013-05-23 Nitto Denko Corporation Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130128339A1 (en) * 2010-08-05 2013-05-23 Nitto Denko Corporation Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum

Similar Documents

Publication Publication Date Title
Deussen et al. New Chiral Bis (dipolar) 6, 6′‐Disubstituted Binaphthol Derivatives for Second‐Order Nonlinear Optics
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JPH04235535A (en) Nonlinear optical material and light wavelength changing method using it
US4909964A (en) Nonlinear optical devices from derivatives of stilbene and diphenylacetylene
JP2762610B2 (en) Squarylium derivative and method for producing the same
US4966730A (en) Nonlinear optical devices from derivatives of stilbene and diphenylacetylene
JPH03164722A (en) Organic nonlinear optical material and method for converting wavelength of light with same
JP2887833B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
JPH0678301B2 (en) Square lilium derivative and method for producing the same
JPH06128234A (en) Compound having asymmetric carbon atom and non-linear optical material composed of the compound
US5072451A (en) Molecular crystal and method for converting light wavelength by use thereof
JP2574697B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same
JP2896604B2 (en) Materials for nonlinear optical elements
JP2550756B2 (en) Nonlinear optical material and nonlinear optical element
JP3158631B2 (en) Nonlinear optical material comprising 1,4-dioxa-8-aza-8- (4&#39;-acetylphenyl) -spiro [4,5] decane
JP2725929B2 (en) Organic nonlinear optical material
JP2694562B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same
GB2205845A (en) Chiral, soluble polydiacetylenes
JPH04233520A (en) Nonlinear optical material
JPH0611747A (en) Nonlinear optical material and nonlinear optical element using that
JP2729673B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same
JP2763224B2 (en) Organic nonlinear optical material
JPH04166820A (en) Non-linear optical material and non-linear optical element
JPH0679125B2 (en) Non-linear optical material
JPH08184866A (en) Stilbene derivative for organic nonlinear optical material and its use