JPH04234997A - Quantitative analysis of polyamine - Google Patents
Quantitative analysis of polyamineInfo
- Publication number
- JPH04234997A JPH04234997A JP41632590A JP41632590A JPH04234997A JP H04234997 A JPH04234997 A JP H04234997A JP 41632590 A JP41632590 A JP 41632590A JP 41632590 A JP41632590 A JP 41632590A JP H04234997 A JPH04234997 A JP H04234997A
- Authority
- JP
- Japan
- Prior art keywords
- polyamine
- aldehyde
- aminoalkyl
- generated
- polyamines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は生体試料中のポリアミン
の定量法に関するものである。生体試料中のポリアミン
の量は、癌の発生や、進行状態と密接な関係を持ち、そ
の定量は、癌診断に有用な情報を与えるものとして臨床
的意義が高い。又、最近糖尿病性腎症との関係も報告さ
れており、糖尿病のマーカーとしても注目を集めてきて
いる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying polyamines in biological samples. The amount of polyamine in a biological sample is closely related to the occurrence and progression of cancer, and its quantification has high clinical significance as it provides useful information for cancer diagnosis. In addition, a relationship with diabetic nephropathy has recently been reported, and it is attracting attention as a marker for diabetes.
【0002】0002
【従来の技術】ポリアミンの定量法としては、液体クロ
マトグラフィや、電気泳動法、さらにはより簡便な方法
として、酵素法が提案されている。これまでの酵素法と
しては、試料にポリアミンを酸化する酵素を作用させ、
生成する過酸化水素にアミノアルキルアルコールの存在
下、カタラーゼを作用させ、生成したアルデヒドを測定
する方法(特開昭61−274698号公報参照)や、
試料中のポリアミンをアミノアルキルアルデヒドに変換
させ、生成したアミノアルキルアルデヒドをNAD又は
NADPの存在化、アミノアルキルアルデヒドデヒドロ
ゲナーゼを作用させ、生成するNADH又はNADPH
を定量する方法が知られている(特開昭63−1340
00号公報参照)。BACKGROUND OF THE INVENTION As methods for quantifying polyamines, liquid chromatography, electrophoresis, and, as a simpler method, enzyme method have been proposed. The conventional enzymatic method involves applying an enzyme that oxidizes polyamines to the sample.
A method in which catalase is allowed to act on the generated hydrogen peroxide in the presence of an aminoalkyl alcohol and the generated aldehyde is measured (see JP-A-61-274698),
The polyamine in the sample is converted to aminoalkyl aldehyde, the generated aminoalkyl aldehyde is exposed to the presence of NAD or NADP, and aminoalkyl aldehyde dehydrogenase is applied to generate NADH or NADPH.
There is a known method for quantifying
(See Publication No. 00).
【0003】0003
【発明が解決しようとする課題】しかし、これらの方法
はいずれも感度等の点で満足のゆくものではなく、ポリ
アミンの高感度定量法が求められていた。本発明の目的
は、簡便で高感度なポリアミンの定量法を提供すること
にある。[Problems to be Solved by the Invention] However, none of these methods is satisfactory in terms of sensitivity, etc., and a highly sensitive method for quantifying polyamines has been desired. An object of the present invention is to provide a simple and highly sensitive method for quantifying polyamines.
【0004】0004
【課題を解決するための手段】本発明の要旨は、ポリア
ミンを含む試料にポリアミンを酸化する酵素を作用させ
て、該ポリアミンを過酸化水素とアミノアルキルアルデ
ヒドに変換し、生成した過酸化水素にアルコールの存在
下、カタラーゼを作用させ、アルデヒドに変換し、生成
したアルデヒドと上記アミノアルキルアルデヒドにNA
DまたはNADPの存在下アミノアルキルアルデヒドロ
ゲナーゼを作用させ、生成するNADHまたはNADP
Hを測定することを特徴とするポリアミンの定量法に存
する。[Means for Solving the Problem] The gist of the present invention is to convert a polyamine-containing sample into hydrogen peroxide and aminoalkyl aldehyde by allowing an enzyme that oxidizes the polyamine to act on the sample, and to convert the polyamine into hydrogen peroxide and aminoalkyl aldehyde. In the presence of alcohol, catalase is activated to convert it into aldehyde, and NA is added to the generated aldehyde and the above aminoalkyl aldehyde.
NADH or NADP produced by the action of aminoalkyl aldehydrogenase in the presence of D or NADP
The present invention relates to a method for quantifying polyamines characterized by measuring H.
【0005】この場合、必要があれば、ポリアミンのア
シル体を前もって又は同時にアシルポリアミンアミドヒ
ドロラーゼ(APAH)と作用させ、ポリアミンを遊離
させてもよい。本発明のNADH又は、NADPHを測
定するには、340nmの吸収でもって直接定量するか
、電子伝達体の存在下、ホルマザン発色系又は、レダク
ターゼ及びルシフェラーゼにより発光系に導いて測定す
ることも出来る。In this case, if necessary, the acyl form of the polyamine may be reacted with acyl polyamine amidohydrolase (APAH) in advance or simultaneously to liberate the polyamine. To measure NADH or NADPH of the present invention, it can be directly quantified by absorption at 340 nm, or it can be measured by guiding it to a formazan coloring system or a luminescent system using reductase and luciferase in the presence of an electron carrier.
【0006】本発明に使用するポリアミンを酸化する酵
素は、プトレシンオキシダーゼ、ポリアミンオキシダー
ゼなどであり、いかなる起源のものでもよいが、プトレ
シンオキシダーゼとしては、例えばミクロコッカス属、
ノカルディア属、シュードモナス属等の微生物が産生す
るものがあり、ポリアミンオキシダーゼとしては、いか
なる起源でもよいが、例えばペニシリウム属、アスペル
ギルス属、ストレプトマイセス属等の微生物が産生する
ものがある。[0006] The polyamine oxidizing enzyme used in the present invention includes putrescine oxidase, polyamine oxidase, etc., and may be of any origin.
Some polyamine oxidases are produced by microorganisms such as the genus Nocardia and the genus Pseudomonas, and polyamine oxidases may be of any origin, but some are produced by microorganisms such as the genus Penicillium, the genus Aspergillus, and the genus Streptomyces.
【0007】本発明に使用するアミノアルキルアルデヒ
ドロゲナーゼは、ホルムアルデヒド、アセトアルデヒド
、プロピオンアルデヒドおよびブチルアルデヒドの少な
くとも一種に作用するアミノアルキルデヒドロゲナーゼ
であれば、特に限定されず、また、その起源も特に限定
されず、例えばシュードモナス属等の微生物が産生する
アミノブチルアルデヒドロゲナーゼ(ABAL−DH)
が挙げられる(Agri.Biol.Chem.50(
8)(1986)2009−2016)。本発明に使用
するカタラーゼも特に限定されず、市販品のものでよい
。The aminoalkyl aldehydrogenase used in the present invention is not particularly limited as long as it acts on at least one of formaldehyde, acetaldehyde, propionaldehyde, and butyraldehyde, and its origin is not particularly limited. , for example, aminobutyraldehydrogenase (ABAL-DH) produced by microorganisms such as Pseudomonas sp.
(Agri.Biol.Chem.50(
8) (1986) 2009-2016). Catalase used in the present invention is not particularly limited, and commercially available products may be used.
【0008】各種酵素濃度については特に制限がなく、
測定時間反応条件、経済条件等によって自由に設定でき
る。[0008] There are no particular restrictions on the concentrations of various enzymes;
Measurement time can be freely set depending on reaction conditions, economic conditions, etc.
【0009】本発明に使用するアルコールは、メタノー
ル、エタノール、プロパノール、ブタノールが使用され
るが好ましくはエタノールが用いられる。アルコールの
濃度としては、全体の酵素反応系を阻害しない程度の濃
度であれば良いが、好ましくは、0.05〜2.0%が
適当である。又、市販品のカタラーゼがエタノール溶液
の場合は、特にアルコールの添加を必要としない。[0009] The alcohol used in the present invention includes methanol, ethanol, propanol, and butanol, but ethanol is preferably used. The concentration of alcohol may be as long as it does not inhibit the entire enzyme reaction system, but is preferably 0.05 to 2.0%. Furthermore, when commercially available catalase is an ethanol solution, it is not necessary to add alcohol.
【0010】NAD濃度については、アミノアルキルア
ルデヒドデヒドロゲナーゼ、例えばABAL−DHの反
応を最大に発揮できる濃度で全体の酵素反応系を阻害し
ない程度の濃度であればいかなる濃度でもよいが、好ま
しくは0.1〜20mMが適当である。The NAD concentration may be any concentration that can maximize the reaction of aminoalkyl aldehyde dehydrogenase, such as ABAL-DH, and that does not inhibit the entire enzyme reaction system, but is preferably 0. 1-20mM is suitable.
【0011】上記酵素類、補酵素類及びアルコールを用
いて試料中のポリアミンを測定する場合は、適当な緩衝
液中で測定することが好ましい。緩衝液の種類としては
pH4〜10の範囲に保つことが出来るものなら特に制
限はない。又、反応温度についても試薬が作用すればい
かなる温度でも良いが、好ましくは約20〜40℃付近
が良い。[0011] When polyamines in a sample are measured using the above enzymes, coenzymes, and alcohol, it is preferable to carry out the measurement in an appropriate buffer. There are no particular limitations on the type of buffer as long as it can maintain the pH within the range of 4 to 10. Further, the reaction temperature may be any temperature as long as the reagent acts, but it is preferably around 20 to 40°C.
【0012】本発明において酵素反応は1段階で行って
もよいし2段階以上で行ってもよい。[0012] In the present invention, the enzymatic reaction may be carried out in one step or in two or more steps.
【0013】[0013]
【実施例】実施例1
下記反応混液を用いて既知濃度のプトレシンの定量を行
った。なお、測定は25℃で、波長340nmの吸光度
変化により行った。
0.2M カリウムリン酸緩衝
液pH8.0 1.1ml 30mM
NAD水溶液
0.1 3.0U/ml ABAL
−DH 0.2
25U/ml プトレシンオキシダーゼ
0.1 75KU/ml
カタラーゼ*
0.4 10% エタノー
ル 0.
2 水
0.3
計
2.4ml*市販品(ベーリンガー社製:
10%エタノール溶液)を脱エタノールして用いた。プ
トレシンに対する反応は図1(b)のようであり、反応
は3分以内に終結した。
またこの時の検量線は図2、bの直線で示され後に示す
比較例のものに比べて2倍の感度を得た。[Examples] Example 1 The following reaction mixture was used to quantify putrescine at a known concentration. Note that the measurement was performed at 25° C. by changing the absorbance at a wavelength of 340 nm. 0.2M potassium phosphate buffer pH 8.0 1.1ml 30mM
NAD aqueous solution
0.1 3.0U/ml ABAL
-DH 0.2
25U/ml putrescine oxidase
0.1 75KU/ml
Catalase*
0.4 10% ethanol 0.
2 water
0.3
total
2.4ml *Commercial product (manufactured by Boehringer:
A 10% ethanol solution) was used after removing ethanol. The reaction to putrescine was as shown in Figure 1(b), and the reaction was terminated within 3 minutes. Further, the calibration curve at this time was shown by the straight line in FIG. 2, b, and the sensitivity was twice as high as that of the comparative example shown later.
【0014】比較例
下記反応混液を用いて実施例1と同様に既知濃度のプト
レシンの定量を行った。
0.2M カリウムリン酸緩衝
液pH8.0 1.1ml 30mM
NAD水溶液
0.1 3.0U/ml ABAL
−DH 0.2
25U/ml プトレシンオキシダーゼ
0.1
水
0.9
計
2.4mlプトレ
シンに対する反応は、図1(a)のようであり、反応は
3分以内に終結した。またこの時の検量線は、図2、a
の直線のごとくであった。Comparative Example A known concentration of putrescine was quantified in the same manner as in Example 1 using the following reaction mixture. 0.2M potassium phosphate buffer pH 8.0 1.1ml 30mM
NAD aqueous solution
0.1 3.0U/ml ABAL
-DH 0.2
25U/ml putrescine oxidase
0.1
water
0.9
total
The reaction to 2.4 ml putrescine was as shown in Figure 1(a), and the reaction was terminated within 3 minutes. In addition, the calibration curve at this time is shown in Figure 2, a.
It was like a straight line.
【0015】[0015]
【発明の効果】本発明によれば、従来のポリアミンのU
V系における定量法の2倍の感度を得ることができ、よ
り正確な定量が可能になる。Effects of the Invention According to the present invention, the conventional polyamine U
It is possible to obtain twice the sensitivity of the quantitative method using the V system, and more accurate quantitative determination is possible.
【図1】終濃度0〜120μMのプトレシン定量の34
0nmにおけるNADH生成のタイムコースを示す。図
中(a)は従来法、(b)は本発明の方法によるもので
ある。Figure 1: Quantification of putrescine at final concentrations of 0 to 120 μM.
The time course of NADH production at 0 nm is shown. In the figure, (a) shows the conventional method, and (b) shows the method of the present invention.
【図2】本発明法b及び従来法aの検量線を示す。FIG. 2 shows calibration curves for method b of the present invention and conventional method a.
1 プトレシン濃度が0μMの場合 1. When putrescine concentration is 0 μM
Claims (2)
酸化する酵素を作用させて、該ポリアミンを過酸化水素
とアミノアルキルアルデヒドに変換し、生成した過酸化
水素にアルコールの存在下、カタラーゼを作用させ、ア
ルデヒドに変換し、生成したアルデヒドと上記アミノア
ルキルアルデヒドにNADまたはNADPの存在下アミ
ノアルキルアルデヒドロゲナーゼを作用させ、生成する
NADHまたはNADPHを測定することを特徴とする
ポリアミンの定量法。Claim 1: Applying an enzyme that oxidizes polyamines to a sample containing polyamines to convert the polyamines into hydrogen peroxide and aminoalkyl aldehyde, and applying catalase to the generated hydrogen peroxide in the presence of alcohol; A method for quantifying polyamines, which comprises converting the aldehyde into an aldehyde, reacting the generated aldehyde and the aminoalkyl aldehyde with aminoalkyl aldehydrogenase in the presence of NAD or NADP, and measuring the generated NADH or NADPH.
ホルムアルデヒド、アセトアルデヒド、プロピオンアル
デヒドおよびブチルアルデヒドの少なくとも一種に作用
するアミノアルキルデヒドロゲナーゼである請求項1記
載のポリアミンの定量法。[Claim 2] The aminoalkyl dehydrogenase is
The method for quantifying polyamines according to claim 1, which is an aminoalkyl dehydrogenase that acts on at least one of formaldehyde, acetaldehyde, propionaldehyde and butyraldehyde.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41632590A JPH04234997A (en) | 1990-12-28 | 1990-12-28 | Quantitative analysis of polyamine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP41632590A JPH04234997A (en) | 1990-12-28 | 1990-12-28 | Quantitative analysis of polyamine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04234997A true JPH04234997A (en) | 1992-08-24 |
Family
ID=18524554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP41632590A Pending JPH04234997A (en) | 1990-12-28 | 1990-12-28 | Quantitative analysis of polyamine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04234997A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560271B2 (en) | 2006-12-20 | 2009-07-14 | Agentase, Llc | Seafood spoilage indicator |
-
1990
- 1990-12-28 JP JP41632590A patent/JPH04234997A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560271B2 (en) | 2006-12-20 | 2009-07-14 | Agentase, Llc | Seafood spoilage indicator |
US8017352B2 (en) | 2006-12-20 | 2011-09-13 | Agentase, Llc | Seafood spoilage indicator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Galbán et al. | Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase | |
Zhu et al. | A novel flow through optical fiber biosensor for glucose based on luminol electrochemiluminescence | |
Wangsa et al. | Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide | |
Hlavay et al. | Fibre-optic biosensor for hypoxanthine and xanthine based on a chemiluminescence reaction | |
Moore et al. | Enzymically amplified voltammetric sensor for microliter sample volumes of salicylate | |
Jablonski et al. | Properties and uses of immobilized light-emitting enzyme systems from Beneckea harveyi. | |
Hnaien et al. | A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination | |
Kinoshita et al. | Peroxidase‐based amperometric sensor of hydrogen peroxide generated in oxidase reaction: Application to creatinine and creatine assay | |
Yao et al. | Highly sensitive detection of L-glutamate by on-line amperometric micro-flow analysis based on enzymatic substrate recycling | |
Hasebe et al. | Highly sensitive flow detection of uric acid based on an intermediate regeneration of uricase | |
EP0094161A1 (en) | Method for determining glucose content of fluid | |
Li et al. | Determination of various alcohols based on a new immobilized enzyme fluorescence capillary analysis | |
JP2005118014A (en) | Method of analysis and reagent used for the same | |
JPH04234997A (en) | Quantitative analysis of polyamine | |
Nabi et al. | Flow injection procedures for the determination of ethanol and alcohol dehydrogenase using co-immobilised bacterial luciferase and oxidoreductase | |
JPH0698036B2 (en) | Selective quantification of amino acids | |
Yao et al. | Electroanalytical properties of aldehyde biosensors with a hybrid-membrane composed of an enzyme film and a redox Os-polymer film | |
JP6459400B2 (en) | Enzyme immobilized body, analyzer equipped with the same, and method for measuring L-threonine | |
JPS63198999A (en) | Riboflavin connection identification method and material | |
JP2001078797A (en) | Reagent for eliminating glucose and/or glucono-1,5- lactone | |
JPH04293499A (en) | Catalase activity measurement | |
JPH0698026B2 (en) | Method for measuring polyamines | |
Pisoschi | Determination of several food additives and ingredients by electrochemical techniques | |
Ampon et al. | A spectrophotometric method for the determination of glucose with glucose oxidase [ec 1.11. 1.7] using titanium (iv)-4-(2'-pyridylazo) resorcinol reagent | |
JPH0668490B2 (en) | Method for removing reducing substances in biological samples |