JPH0423446A - Evaluating method of reliability of semiconductor element - Google Patents

Evaluating method of reliability of semiconductor element

Info

Publication number
JPH0423446A
JPH0423446A JP12836090A JP12836090A JPH0423446A JP H0423446 A JPH0423446 A JP H0423446A JP 12836090 A JP12836090 A JP 12836090A JP 12836090 A JP12836090 A JP 12836090A JP H0423446 A JPH0423446 A JP H0423446A
Authority
JP
Japan
Prior art keywords
temperature
current
measured
interrupting
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12836090A
Other languages
Japanese (ja)
Inventor
Shigeru Hiraoka
繁 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12836090A priority Critical patent/JPH0423446A/en
Publication of JPH0423446A publication Critical patent/JPH0423446A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to remove in a final process an element having a high possibility of being faulty initially, by determining a measured element as a good product when the change ratio of an interrupting current at an ordinary temperature to the one at a high temperature is within a set range. CONSTITUTION:A semiconductor element to be measured, e.g. a varicap diode 10, is conveyed to the position of interrupting-current measurers 12 along a conveyance route 11, and terminals 13 and 14 for ordinary-temperature or high- temperature measurement are connected to the opposite poles of the varicap diode 10. On the occasion of the high-temperature measurement by the interrupting-current measurers 12, a voltage-current is impressed so that the junction temperature of the varicap diode 10 to be measured may reach a prescribed operational temperature, and at this time, a power is kept to be fixed by adjustment by an actuation current, since nonuniformity exists for each element. According to this constitution, the semiconductor element to be measured which has a high possibility of being faulty initially can be removed in a final inspection process of manufacturing processes.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体素子の検査方法に係わり、特に、ダイオ
ードの製品出荷前の全数検査工程における信頼性評価に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for testing semiconductor devices, and particularly to reliability evaluation in a 100% inspection process of diodes before product shipment.

(従来の技術) 半導体素子の中ダイオードの検査方法を第1図及び第2
図を参照して説明する。即ち、第1図に示すように被測
定半導体素子例えばバリキャップダイオード用搬送路1
の近くに遮断電流測定装置2を配置すると共に、搬送路
1の一部には常温測定部3と、ヒータを設置して高温に
維持できる高温測定部4を設ける。この高温測定部4と
搬送路1の境界付近には断熱材5を設置して高温による
他の部品に対する影響を防止している。このような構造
を持った装置は以後高温ハンドラー(HandQer)
と記載する。実際の測定にあたっては常温と高温の遮断
電流IRIとIR2を測定することになるが、予めでき
るだけ多くの被測定半導体素子例えばダイオードの測定
により両者の相関関係図として第2図を求めるが、それ
に先立ってダイオードの信頼性に関する複数の試験を行
う。この試験はn個の被測定半導体素子に所定の電流電
圧を付勢印加する通電試験と高温多湿の条件に夫々を一
週間放置して劣化する限界を求め更に、この測定値から
製品が市場で初期不良となり易い数値を多年の経験から
加味して第2図に示した良品領域Aを求める。第2図中
6と7は製品が市場で初期不良となり易い領域に該当し
、8は初期不良の領域である。なお、この図は、表示し
ていないがいわゆるログログ(L o gSL o g
)スケイル(ScaQe)である。
(Prior art) A method for inspecting a diode inside a semiconductor device is shown in Figures 1 and 2.
This will be explained with reference to the figures. That is, as shown in FIG.
A interrupting current measuring device 2 is disposed near the transport path 1, and a part of the conveyance path 1 is provided with a room temperature measuring section 3 and a high temperature measuring section 4 that can maintain a high temperature by installing a heater. A heat insulating material 5 is installed near the boundary between the high temperature measurement section 4 and the conveyance path 1 to prevent high temperature from affecting other components. A device with such a structure will be called a high-temperature handler (HandQer).
It is written as. In the actual measurement, the interrupting currents IRI and IR2 at room temperature and high temperature will be measured, but in advance, as many semiconductor devices to be measured as possible, such as diodes, are measured to obtain the correlation diagram shown in Figure 2 between the two. Perform multiple tests on diode reliability. This test consists of an energization test in which a predetermined current and voltage is applied to n semiconductor devices to be measured, and the limit of deterioration by leaving each device in hot and humid conditions for one week. The non-defective region A shown in FIG. 2 is determined by taking into account the values that are likely to cause initial defects based on many years of experience. In FIG. 2, 6 and 7 correspond to areas where the product is likely to become early failure in the market, and 8 is the area where early failure occurs. Although not shown in this figure, the so-called log
) scale (ScaQe).

ところで遮断電流測定装置2を備えた高温ハンドラーに
は演算機能を持ったいわゆるマイコンが付設されており
、ここに第2図に示した良品領域Aを前もって記憶させ
た上で、前記搬送路1により測定ポジションBに運ばれ
た被測定半導体素子例えばバリキャップダイオードの常
温遮断電流IRを測定する。次にポジションCで予め熱
して測定ポジションDの位置でほぼ80℃に保持してI
R2を測定する。
By the way, the high-temperature handler equipped with the breaking current measuring device 2 is equipped with a so-called microcomputer with arithmetic functions, which stores in advance the non-defective area A shown in FIG. The room-temperature cut-off current IR of a semiconductor element to be measured, such as a varicap diode, which is carried to measurement position B, is measured. Next, heat it in advance at position C and hold it at approximately 80℃ at measurement position D.
Measure R2.

なお第2図に示したLl、L2、L3は遮断電流の良品
と不良品の境界を示している。
Note that Ll, L2, and L3 shown in FIG. 2 indicate boundaries between good products and defective products in terms of breaking current.

(発明が解決しようとする課題) このような高温ハンドラーでは常温と高温での測定機構
が必要なので当然であるが設備費がかさむ他に、被測定
半導体素子の加熱は傍熱機構によっているので所定温度
に達するのに時間が要り、ff1l+定インデツクス(
Index)がどうしても遅くなり、生産性の向上にと
って好ましくない。その上高温ハンドラーの保守が常温
ハンドラーに比べて難しい。本発明はこのような事情に
より成されたもので、特に、初期不良となる可能性の高
い被測定半導体素子を製造工程の最終工程で除去するこ
とを目的とするものである。
(Problems to be Solved by the Invention) Such high-temperature handlers require measurement mechanisms at room temperature and high temperature, which naturally increases equipment costs.In addition, since the semiconductor device to be measured is heated by an indirect heating mechanism, It takes time to reach the temperature, ff1l + constant index (
Index) inevitably becomes slow, which is not preferable for improving productivity. Furthermore, maintenance of high temperature handlers is more difficult than that of room temperature handlers. The present invention was developed under these circumstances, and particularly aims to remove semiconductor elements to be measured that are likely to become initially defective in the final step of the manufacturing process.

[発明の構成] (課題を解決するための手段) 常温と高温で測定した被測定半導体素子の遮断電流の変
化比が設定範囲内のものを良品とする点に本発明に係わ
る半導体素子の信頼性評価方法の特徴がある。
[Structure of the Invention] (Means for Solving the Problem) The reliability of the semiconductor device according to the present invention is that a semiconductor device under test whose change ratio of cut-off current measured at room temperature and high temperature is within a set range is considered to be a good product. There are characteristics of gender evaluation methods.

(作用) 本発明では高温ハンドラーに必要な高温例えば80℃を
電圧・電流の電力損失によって被測定半導体素子内部か
ら加熱する方式を採り、しがも常温と高温における遮断
電流測定値の比により極めて安定で信頼性の高い製品の
特性領域が見出だせるとの知見により本発明は完成した
。これにより初期不良となる可能性の高い被測定半導体
素子を製造工程の最終検査工程で除去できるようになっ
た。
(Function) In the present invention, a method is adopted in which the high temperature required for a high-temperature handler, for example, 80°C, is heated from inside the semiconductor device under test by power loss of voltage and current. The present invention was completed based on the knowledge that a stable and highly reliable product characteristic range can be found. This makes it possible to remove semiconductor devices to be measured that are likely to be initially defective in the final inspection step of the manufacturing process.

(実施例) 本発明に係わる実施例を第3図及び第4図を参照して説
明する。第3図の断面図は演算機能を備えたマイコンを
搭載した高温ハンドラーの要部を示しており、常温の遮
断電流IRIの測定結果を保存する。被測定半導体素子
例えばバリキャップダイオード10は搬送路11により
遮断電流測定器12の位置に運ばれ、バリキャップダイ
オード10の両極に常温または高温測定用端子13.1
4を接続する。遮断電流測定器12の高温測定に当たっ
ては被測定バリキャップダイオード10の接合温度が規
定の動作温度に達するように電圧・電流を印加するが、
この電圧はブレイクダウン(Breakdown)電圧
で決まり、しかも素子毎にバラツキがあるために付勢電
流による調整により電力を一定に維持している。
(Example) An example according to the present invention will be described with reference to FIGS. 3 and 4. The cross-sectional view in FIG. 3 shows the main parts of a high temperature handler equipped with a microcomputer with arithmetic functions, and stores the measurement results of the interrupting current IRI at room temperature. A semiconductor element to be measured, such as a varicap diode 10, is carried by a conveyance path 11 to the position of a breaking current measuring device 12, and terminals 13.1 for normal temperature or high temperature measurement are connected to both poles of the varicap diode 10.
Connect 4. When measuring high temperature with the interrupting current measuring device 12, voltage and current are applied so that the junction temperature of the varicap diode 10 to be measured reaches the specified operating temperature.
This voltage is determined by the breakdown voltage, and since it varies from element to element, the power is maintained constant by adjustment using the energizing current.

ところで第3図の遮断電流測定器12により行われれる
遮断電流測定では、従来例と同様に常温における遮断電
流と高温例えば80℃での遮断電流を測定しまた、電圧
印加による温度上昇の経過を第4図に示している。測定
のタイムチャート(Time  Chart)を明らか
にした第4図にあるように温度が飽和状態に達した時点
で電圧・電流の供給を止めると共に速やかに第3図に示
した高温用測定端子14に切替える。
By the way, in the breaking current measurement performed by the breaking current measuring device 12 shown in FIG. 3, the breaking current at normal temperature and the breaking current at high temperature, for example 80°C, are measured as in the conventional example, and the progress of temperature rise due to voltage application is also measured. It is shown in Figure 4. As shown in Figure 4, which shows the measurement time chart, when the temperature reaches the saturated state, the supply of voltage and current is stopped, and the high temperature measurement terminal 14 shown in Figure 3 is immediately connected. Switch.

実際の測定はタイムチャートにあるように先ず測定端子
13を被測定バリキャップダイオード10に電気的に接
続して常温における遮断電流IRIを測定しく第4図1
参照)、200ミリsec (Second)経過後(
第4図2参照)高温遮断電流測定に移行する。高温用測
定端子14に切替えてから前記の方法により常温から8
0℃程度に被測定バリキャップダイオード10の接合温
度を調整後遮断電流IR2を測定して(第4図3参照)
IR1/IR2を高温用ハンドラーに付設するマイコン
により演算し、測定結果を第2図に示した相関図の良品
領域Aの範囲内にあるか否かを判定して良品不良品を判
定する。良品領域Aは従来技術欄に述べたように通電試
験と高温多湿雰囲気内での試験と多年の経験から設定さ
れているものであることを付記する。第4図4に示すよ
うに高温遮断電流IR2の測定は加熱用の電圧・電流源
を切った後に行うので発生する温度低下(第4図4参照
)を見越して印加・付勢する電圧・電流値を設定して加
熱する。
For the actual measurement, first electrically connect the measurement terminal 13 to the varicap diode 10 to be measured, as shown in the time chart, and measure the interrupting current IRI at room temperature.
), after 200 milliseconds (Second) elapsed (
(See Figure 4 2) Move to high temperature cutoff current measurement. After switching to the high temperature measurement terminal 14, the temperature from normal temperature to 8
After adjusting the junction temperature of the varicap diode 10 to be measured to about 0°C, measure the interrupting current IR2 (see Fig. 4, 3).
IR1/IR2 is calculated by a microcomputer attached to the high-temperature handler, and it is determined whether the measurement result is within the non-defective region A of the correlation diagram shown in FIG. 2 to determine whether the product is good or defective. It should be noted that, as stated in the prior art section, the non-defective area A has been established based on current tests, tests in high-temperature, high-humidity atmospheres, and many years of experience. As shown in Figure 4, the high temperature cut-off current IR2 is measured after the heating voltage and current sources are turned off, so the voltage and current are applied and energized in anticipation of the temperature drop that will occur (see Figure 4). Set the value and heat.

[発明の効果] このように本発明に係わる半導体素子の信頼性評価方法
では常温のハンドラーにより例えばバリキャップダイオ
ードの遮断電流が測定でき、その上初期不良を予測して
選別しているので客先におけるトラブル(TroubQ
e)が解消でき、量産上の大きな効果をもたらすもので
ある。
[Effects of the Invention] As described above, the method for evaluating the reliability of semiconductor devices according to the present invention enables the measurement of the cut-off current of, for example, a varicap diode using a handler at room temperature, and also predicts and selects initial failures. Trouble (TroubQ)
e) can be solved, which brings about a great effect in terms of mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の遮断電流測定器の要部を示す断面図、第
2図は常温と高温の測定結果により作製する相関図、第
3図は本発明方法に使用する遮断電流測定器の要部を示
す断面図、第4図は遮断電流測定のタイムチャートであ
る。 1.11:搬送路、 2.12:遮断電流41り窓装置、 3:常温測定部、 4:高温測定部、  5:断熱材、 6.7:初期不良になり易い領域、 7:初期不良領域、 A:良品領域、 10:バリキャップダイオード、 13:常温測定用端子、 14:高温測定用端子。
Fig. 1 is a sectional view showing the main parts of a conventional breaking current measuring device, Fig. 2 is a correlation diagram created from the measurement results at room temperature and high temperature, and Fig. 3 is a main part of the breaking current measuring device used in the method of the present invention. FIG. 4 is a time chart of breaking current measurement. 1.11: Conveyance path, 2.12: Breaking current 41 window device, 3: Room temperature measurement section, 4: High temperature measurement section, 5: Insulation material, 6.7: Area prone to initial failure, 7: Initial failure Area, A: Good product area, 10: Varicap diode, 13: Terminal for normal temperature measurement, 14: Terminal for high temperature measurement.

Claims (1)

【特許請求の範囲】[Claims]  常温と高温で測定した被測定半導体素子の遮断電流の
変化比が設定範囲内のものを良品とすることを特徴とす
る半導体素子の信頼性評価方法
A reliability evaluation method for a semiconductor device, characterized in that a semiconductor device under test whose change ratio of cut-off current measured at room temperature and high temperature is within a set range is considered to be a good product.
JP12836090A 1990-05-18 1990-05-18 Evaluating method of reliability of semiconductor element Pending JPH0423446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12836090A JPH0423446A (en) 1990-05-18 1990-05-18 Evaluating method of reliability of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12836090A JPH0423446A (en) 1990-05-18 1990-05-18 Evaluating method of reliability of semiconductor element

Publications (1)

Publication Number Publication Date
JPH0423446A true JPH0423446A (en) 1992-01-27

Family

ID=14982897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12836090A Pending JPH0423446A (en) 1990-05-18 1990-05-18 Evaluating method of reliability of semiconductor element

Country Status (1)

Country Link
JP (1) JPH0423446A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715887A1 (en) 2019-03-29 2020-09-30 Sintokogio, Ltd. Inspecting device
EP3715886A1 (en) 2019-03-29 2020-09-30 Sintokogio, Ltd. Inspecting device
KR20200115347A (en) 2019-03-29 2020-10-07 신토고교 가부시키가이샤 Inspecting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715887A1 (en) 2019-03-29 2020-09-30 Sintokogio, Ltd. Inspecting device
EP3715886A1 (en) 2019-03-29 2020-09-30 Sintokogio, Ltd. Inspecting device
KR20200115345A (en) 2019-03-29 2020-10-07 신토고교 가부시키가이샤 Inspecting device
KR20200115344A (en) 2019-03-29 2020-10-07 신토고교 가부시키가이샤 Inspecting device
KR20200115347A (en) 2019-03-29 2020-10-07 신토고교 가부시키가이샤 Inspecting device
EP3719835A1 (en) 2019-03-29 2020-10-07 Sintokogio, Ltd. Inspecting device

Similar Documents

Publication Publication Date Title
JPH0653299A (en) Burn-in apparatus
JPS6351654A (en) Method and apparatus for testing thin film conductor
US5696404A (en) Semiconductor wafers with device protection means and with interconnect lines on scribing lines
JPH07130817A (en) Method and apparatus for evaluating reliability of metal wiring
JPH0423446A (en) Evaluating method of reliability of semiconductor element
GB1503935A (en) Monolithically integrated semiconductor elements
US6956391B2 (en) Testing method for electronic component and testing device
JP2006084249A (en) Method and apparatus for inspecting insulation
US20040124865A1 (en) Method and structure for wafer-level reliability electromigration and stress migration test by isothermal heater
JP2009109314A (en) Semiconductor device and its inspecting method
JP2001272434A (en) Method and apparatus for test of semiconductor element
US3414811A (en) Method and apparatus for testing the resistance characteristics of selfheated electrical resistors
US4661771A (en) Method of screening resin-sealed semiconductor devices
JPH04223355A (en) Electromigration monitor of integrated circuit
JPH0210682A (en) Heat-treating equipment
JPH11274017A (en) Method and circuit for predicting fault rate of semiconductor device
KR20200111070A (en) Life test method for thermoelectric module
JPH06151537A (en) Evaluation for life of wiring
JPH08262100A (en) Characteristic inspection method for semiconductor element
JP2001343419A (en) Testing method of semiconductor element and testing equipment thereof
JP2000124280A (en) Semiconductor devices applicable to wafer burn-in
SU369435A1 (en) METHOD OF DETECTION OF INFRINGEMENT OF THE INSULATION OF THERMAL ELECTRODES OF SURFACE TERMOPROP
US3193766A (en) Controlled silicon rectifier test apparatus for determining defects and operating characteristics
KR950003264Y1 (en) Base leakage current checking circuit
JPS5880844A (en) Screening method for semiconductor device