JPH04234062A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH04234062A
JPH04234062A JP41612590A JP41612590A JPH04234062A JP H04234062 A JPH04234062 A JP H04234062A JP 41612590 A JP41612590 A JP 41612590A JP 41612590 A JP41612590 A JP 41612590A JP H04234062 A JPH04234062 A JP H04234062A
Authority
JP
Japan
Prior art keywords
layer
light
photoreceptor
image
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41612590A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
浩 伊藤
Naooki Miyamoto
宮本 直興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP41612590A priority Critical patent/JPH04234062A/en
Publication of JPH04234062A publication Critical patent/JPH04234062A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the electrophotographic sensitive body capable of improving the copy quality for a specified light source in the optical rear recording method. CONSTITUTION:An antireflection layer 4 having specified conditions for the picture exposure light is formed on the surface of the light-transmissive substrate 1 of an electrophtographic sensitive body on the recording light incident side, or the thickness of a light-transmissive conductive layer 2 is controlled so that the reflection of the recording light is prevented. Consequently, loss of the recording exposure light due to the reflection on the surface of the substrate 1 or at the interface between the substrate and the layer 2 is eliminated, the incident light quantity on a photosensitive body layer 3 is substantially increased, and the copy density is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、コロナ帯電を用いない
で、露光と現像の画像形成プロセスをほぼ同時に行なう
光背面記録方式の電子写真装置に用いる電子写真感光体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoreceptor for use in an electrophotographic apparatus using a backside recording method, which performs image forming processes of exposure and development almost simultaneously without using corona charging.

【0002】0002

【従来の技術】従来の電子写真装置としては、コロナ放
電による感光体の帯電を利用した、いわゆるカールソン
方式の電子写真装置が広く用いられている。図6に、こ
の従来の電子写真装置の概略を示す。この装置において
は、ドラム状やベルト状の感光体17の周囲にコロナ帯
電器18、露光装置19、現像器20、転写器21、ク
リーニング装置22、除電器23等を配置し、帯電、露
光、現像、転写、定着のプロセスを経て記録紙上に画像
を形成させる。このようなカールソン方式の電子写真装
置においては、装置の構成および画像形成プロセスが複
雑になる結果、装置が大型化し、また大気中でのコロナ
放電を利用することから、それによって発生するオゾン
ガスが、装置各部や装置の置かれる環境に悪影響を与え
るという問題点があった。
2. Description of the Related Art As a conventional electrophotographic apparatus, a so-called Carlson type electrophotographic apparatus, which utilizes charging of a photoreceptor by corona discharge, is widely used. FIG. 6 shows an outline of this conventional electrophotographic apparatus. In this device, a corona charger 18, an exposure device 19, a developing device 20, a transfer device 21, a cleaning device 22, a static eliminator 23, etc. are arranged around a drum-shaped or belt-shaped photoreceptor 17, and charging, exposure, An image is formed on recording paper through the processes of development, transfer, and fixing. In such a Carlson type electrophotographic device, the structure and image forming process of the device are complicated, resulting in a larger device.Also, since corona discharge in the atmosphere is used, the ozone gas generated by it is There is a problem in that it adversely affects each part of the device and the environment in which the device is placed.

【0003】この問題点の解決のために、特開昭58−
44445号、特開昭58−153957号、特開昭6
1−46961号、特開昭62−280772号や画像
電子学会誌  第16巻  第5号(1987年)等に
おいてコロナ帯電を利用しない電子写真方式が提案され
ている。 図5にその一例を示す。
[0003] In order to solve this problem, Japanese Unexamined Patent Application Publication No. 1988-
No. 44445, JP-A-58-153957, JP-A-6
1-46961, Japanese Patent Application Laid-Open No. 62-280772, and Journal of the Institute of Image Electronics Engineers, Vol. 16, No. 5 (1987), electrophotographic methods that do not utilize corona charging have been proposed. An example is shown in FIG.

【0004】図5においては、現像器12にバイアス電
位を印加し、導電性磁性トナー13を介して感光体11
に電荷を与えると同時に感光体11の支持体側より、L
ED発光素子14により記録露光を与えて感光体11上
に画像形成し、その後導電性転写ローラ15に現像器1
2と同極の電圧を印加して、記録紙16に画像を写し取
るようになっている。このような電子写真方式を光背面
記録方式と呼んでいる。
In FIG. 5, a bias potential is applied to the developing device 12, and the photoreceptor 11 is transferred through the conductive magnetic toner 13.
At the same time, from the support side of the photoreceptor 11, L
The ED light emitting element 14 applies recording exposure to form an image on the photoreceptor 11, and then the developing device 1 is applied to the conductive transfer roller 15.
By applying a voltage of the same polarity as 2, an image is transferred onto the recording paper 16. This type of electrophotographic method is called a backside optical recording method.

【0005】この電子写真方式に用いられる感光体とし
ては、透光性支持体上に透光性導電層を形成し、その上
に感光体材料からなる光導電層を積層したものが基本で
ある。この光導電層の材料としては、従来より利用され
ていたa−Se、a−SeAs、CdS 、ZnO 、
有機光半導体(OPC) 等が紹介されており、また特
開昭63−240553号や特開平2−106761号
においては、a−Siが提案されている。
[0005] The photoreceptor used in this electrophotographic method is basically one in which a light-transmitting conductive layer is formed on a light-transmitting support, and a photoconductive layer made of a photoreceptor material is laminated thereon. . The materials for this photoconductive layer include conventionally used a-Se, a-SeAs, CdS, ZnO,
Organic optical semiconductors (OPC) and the like have been introduced, and a-Si has been proposed in JP-A-63-240553 and JP-A-2-106761.

【0006】[0006]

【発明が解決しようとする課題】前記光背面記録方式の
電子写真方式においては、LEDヘッド等の単一波長の
光源を用いて、感光体の支持体側から画像露光を行なう
が、その際に露光光の一部が透光性支持体の表面や、該
支持体と前記透光性導電層との境界面で反射してしまい
、光キャリアの生成に有効に生かされないという問題点
があった。
[Problems to be Solved by the Invention] In the electrophotographic method of the optical back recording method, image exposure is performed from the support side of the photoreceptor using a single wavelength light source such as an LED head. There is a problem in that a part of the light is reflected on the surface of the transparent support or the interface between the support and the transparent conductive layer, and is not effectively utilized for the generation of photocarriers.

【0007】そのため、プロセスの高速化のためには光
源の発光光量や感光体の光感度を必要以上に高めなけれ
ばならず、また、感光体がドラム形状の場合には、最終
的に支持体表面で反射した光がLEDヘッドの表面や感
光体の内部で乱反射して、画像のムラやノイズとして画
質に悪影響を与えるという問題もあった。  また、本
発明者らは、特に小型で低消費電力のダイナミックドラ
イブ方式のLEDヘッドとの組合せにおいて、露光ドッ
ト毎に大きな露光光量が得られにくいという問題に直面
し、プロセスの高速化に対しては、露光光のロスを無く
して有効に感光体層に導入するような工夫が、感光体側
にも必要になることを認識した。
Therefore, in order to speed up the process, it is necessary to increase the amount of light emitted by the light source and the photosensitivity of the photoreceptor, and if the photoreceptor is in the form of a drum, the support There is also a problem in that the light reflected on the surface is diffusely reflected on the surface of the LED head and inside the photoreceptor, which adversely affects the image quality as unevenness and noise in the image. In addition, the present inventors faced the problem that it was difficult to obtain a large amount of exposure light for each exposed dot, especially when combined with a small and low power consumption dynamic drive type LED head, and the inventors of the present invention faced the problem that it was difficult to obtain a large amount of exposure light for each exposed dot. recognized that the photoreceptor side would also need to be devised to eliminate exposure light loss and effectively introduce it into the photoreceptor layer.

【0008】[0008]

【発明の目的】従って、本発明の目的は、光背面記録方
式の電子写真感光体において、記録露光の際に露光光の
一部が前記透光性支持体の表面や、支持体と前記透光性
導電層との境界面で反射してしまい、光キャリアの生成
に有効に生かされないという従来の問題点を改善し、前
記光導電層への入射光量を上げることによって、印画濃
度を高めて画像品質を向上させることにある。
OBJECTS OF THE INVENTION Therefore, an object of the present invention is to provide an electrophotographic photoreceptor using a backside recording method, in which a part of the exposure light is transmitted to the surface of the light-transmitting support, or between the support and the transparent support during recording exposure. This improves the conventional problem of reflection at the interface with the photoconductive layer and the ineffective use of photocarrier generation, and increases the printing density by increasing the amount of light incident on the photoconductive layer. The purpose is to improve image quality.

【0009】[0009]

【課題を解決するための手段】本発明によれば、透光性
支持体上に透光性導電層と、光導電層を含む感光体層と
を積層して形成され、感光体層表面に接触させた現像剤
に現像バイアス電圧を印加すると共に透光性支持体側か
ら入射した光にて、感光体上に画像を形成するようにし
た光背面記録方式の電子写真に用いる感光体において、
透光性支持体の透光性導電層を形成する反対側の表面に
、画像露光光に対する反射防止層を形成したことを特徴
とする電子写真感光体が提供される。
[Means for Solving the Problems] According to the present invention, a light-transmitting conductive layer and a photoreceptor layer including a photoconductive layer are laminated on a light-transmitting support, and the surface of the photoreceptor layer is In a photoreceptor used in electrophotography using a backside recording method, an image is formed on the photoreceptor by applying a developing bias voltage to the developer that is in contact with it and using light incident from the side of the transparent support.
There is provided an electrophotographic photoreceptor characterized in that an antireflection layer against image exposure light is formed on the surface of a transparent support opposite to the surface on which the transparent conductive layer is formed.

【0010】更に、本発明によれば、前記光背面記録方
式の電子写真に用いる感光体において、前記透光性導電
層の厚みを、前記入射光に対して反射防止作用を有する
厚みに形成したことを特徴とする電子写真感光体が提供
される。
Further, according to the present invention, in the photoreceptor used for electrophotography using the optical backside recording method, the thickness of the transparent conductive layer is formed to have an antireflection effect against the incident light. An electrophotographic photoreceptor is provided.

【0011】[0011]

【作用】以下、本発明を詳細に説明する。本発明の要点
は、画像露光光に対する反射防止層を新規に設けるか、
または、透光性導電層を反射防止効果があるような厚み
にすることによって、上記画像露光光が効果的に光導電
層中に入射するようにすることである。
[Operation] The present invention will be explained in detail below. The main point of the present invention is to provide a new anti-reflection layer for image exposure light, or
Alternatively, the image exposure light is effectively made to enter the photoconductive layer by making the light-transmitting conductive layer thick enough to have an antireflection effect.

【0012】図1は、本発明の第1の発明に係わる感光
体の層構成を示す図である。図1において、1は透光性
支持体、2は透光性導電層、3は感光体層、4は反射防
止層を示す。
FIG. 1 is a diagram showing the layer structure of a photoreceptor according to the first aspect of the present invention. In FIG. 1, 1 is a transparent support, 2 is a transparent conductive layer, 3 is a photoreceptor layer, and 4 is an antireflection layer.

【0013】図2は、本発明の第2の発明に係わる感光
体の層構成を示す図である。図2において、図1と対応
する符号は図1と同様の部分を示す。
FIG. 2 is a diagram showing the layer structure of a photoreceptor according to the second aspect of the present invention. In FIG. 2, reference numerals corresponding to those in FIG. 1 indicate the same parts as in FIG.

【0014】図3は、感光体に光が入射したときの上記
各層の境界で反射光が生ずることを説明するための原理
図である。図3において、5は屈折率n 0 媒質、6
は屈折率n1 媒質、7は屈折率n 2 の媒質、8は
入射光、9は透過光、10は反射光を示す。
FIG. 3 is a principle diagram for explaining that when light is incident on a photoreceptor, reflected light is generated at the boundaries between the layers. In FIG. 3, 5 is a medium with a refractive index n 0 , and 6
is a medium with a refractive index n1, 7 is a medium with a refractive index n2, 8 is incident light, 9 is transmitted light, and 10 is reflected light.

【0015】以下に、図1の感光体において、反射防止
層4により反射防止効果が得られる理由を、図3に従っ
て説明する。  図3によれば、屈折率n 2媒質7と
屈折率n 0 の媒質5との間に屈折率n 1 の媒質
6を挿入し、媒質7から媒質5の方向に波長λの光を垂
直に入射したときの反射率Rは、次のようになる。
The reason why the antireflection effect can be obtained by the antireflection layer 4 in the photoreceptor shown in FIG. 1 will be explained below with reference to FIG. 3. According to FIG. 3, a medium 6 with a refractive index n 1 is inserted between a medium 7 with a refractive index n 2 and a medium 5 with a refractive index n 0 , and light with a wavelength λ is perpendicularly directed from the medium 7 to the medium 5. The reflectance R upon incidence is as follows.

【0016】R =(n 0 2 +n 1 2 )(
n 1 2 +n 2 2 ) −4n0 n 1 2
 n 2 + (n 0 2 −n 1 2 )(n 
1 2−n 2 2 )cosδ/ (n 0 2 +
n 1 2 )(n 1 2 +n 2 2 ) +4
n 0n 1 2 n 2 + (n 0 2 −n 
1 2 )*    *(n 1 2−n 2 2 )
cosδ     ・・・・ (式1)ここでδは厚さ
dの媒質6を通過する場合の位相の遅れであり、垂直入
射の場合は次式で与えられる。 δ= 4 πn 1 d λ−1         ・
・・・(式2)
R = (n 0 2 + n 1 2 ) (
n 1 2 + n 2 2 ) -4n0 n 1 2
n 2 + (n 0 2 - n 1 2 ) (n
1 2-n 2 2 ) cos δ/ (n 0 2 +
n 1 2 ) (n 1 2 + n 2 2 ) +4
n 0n 1 2 n 2 + (n 0 2 −n
1 2 ) * * (n 1 2 - n 2 2 )
cos δ... (Equation 1) Here, δ is the phase delay when passing through the medium 6 with the thickness d, and in the case of normal incidence, it is given by the following equation. δ= 4 πn 1 d λ−1 ・
...(Formula 2)

【0017】媒質5が空気でn 0 =
1 .0、媒質7がガラスでn 2 =1.5として、
δとn 1 を変えたときのR の変化は図4のように
なる(同図において垂直入射の場合、φ0 =0とする
)。図4のグラフにおいて、縦軸はR、横軸はδを示す
。この図4から明らかなように、cos δ=−1 、
即ちδ=(2m+1)π(m は整数)の時にRは極大
または極小を示し、     R = (n1 2 −n0 n 2 ) 2
 /(n1 2 +n0 n 2 ) 2 ・・・・(
式3)で与えられる。このR をR=0 とおくと、n
 1 2 = n 0 n 2           
・・・・(式4)n 1 d = λ/4+mλ/2 
           ・・・・(式5)となる。即ち
この条件を満たすn 1 、dの媒質6を媒質7と媒質
5との間に挿入すると、波長λの光に対してR=0 と
なり、媒質5と媒質6との境界面で反射が起こらなくな
る。
When the medium 5 is air, n 0 =
1. 0, medium 7 is glass and n 2 = 1.5,
The change in R when δ and n 1 are changed is as shown in FIG. 4 (in the figure, in the case of normal incidence, φ0 = 0). In the graph of FIG. 4, the vertical axis shows R and the horizontal axis shows δ. As is clear from FIG. 4, cos δ=-1,
That is, when δ=(2m+1)π (m is an integer), R shows a maximum or minimum, and R = (n1 2 - n0 n 2 ) 2
/(n1 2 +n0 n2) 2...(
It is given by Equation 3). If we set this R as R=0, then n
1 2 = n 0 n 2
...(Formula 4) n 1 d = λ/4+mλ/2
...(Formula 5) is obtained. That is, when medium 6 with n 1 and d that satisfies this condition is inserted between medium 7 and medium 5, R=0 for light with wavelength λ, and no reflection occurs at the interface between medium 5 and medium 6. It disappears.

【0018】このように(式4)、(式5)を同時に満
たす場合を特に無反射条件というが、その様な適切な媒
質が無い場合、n 1 <n 2 である媒質6を選択
して(式5)を満たすようにしても、反射率は減少し、
反射防止の効果がある。
The case where (Equation 4) and (Equation 5) are satisfied at the same time is particularly called the no-reflection condition, but if there is no such suitable medium, select medium 6 where n 1 < n 2 . Even if (Equation 5) is satisfied, the reflectance decreases,
It has an anti-reflection effect.

【0019】本発明においては、媒質5に空気層が、媒
質6に反射防止層4が、媒質7に透光性支持体1が各々
相当する。本発明においては、反射防止層に用いる材料
自身の安定性や、該反射防止層と透光性支持体との密着
性、更には被覆形成の容易性等を考慮して、適切な材料
を選択する。
In the present invention, the medium 5 corresponds to the air layer, the medium 6 corresponds to the antireflection layer 4, and the medium 7 corresponds to the transparent support 1. In the present invention, appropriate materials are selected in consideration of the stability of the material itself used for the antireflection layer, the adhesion between the antireflection layer and the transparent support, and the ease of coating formation. do.

【0020】この反射防止層の材料には、TiO 2 
、In2 O 3 、SnO 2 、ITO(In2 
O 3 :SnO2 ) 、SiO 、SiO 2 、
Al2 O 3 、WO3 、CdO 、CeO 2 
、Sb2 O 5 、ZrO 2 、ZnS 、CdS
 、Cd2 SnO 4 、MgF 2 、CaF 2
 、LiF 2 、AlF 3 、NaF、CeF 3
 等の酸化物や、Ag、Au、Cr、Al、Ni等の金
属薄膜、およびそれらの組合せ等が使用可能であり、材
質、厚み、組合せは、支持体の材質や露光の波長に応じ
て適宜選択される。  この反射防止層を形成する方法
としては、蒸着法、スパッタリング法、CVD法、塗布
法、浸漬法、スプレー法等がある。
[0020] The material of this antireflection layer is TiO 2
, In2O3, SnO2, ITO(In2
O3:SnO2), SiO2, SiO2,
Al2O3, WO3, CdO, CeO2
, Sb2O5, ZrO2, ZnS, CdS
, Cd2SnO4, MgF2, CaF2
, LiF 2 , AlF 3 , NaF, CeF 3
oxides such as Ag, Au, Cr, Al, Ni, etc., metal thin films such as Ag, Au, Cr, Al, Ni, etc., and combinations thereof can be used, and the material, thickness, and combination can be selected as appropriate depending on the material of the support and the wavelength of exposure. selected. Methods for forming this antireflection layer include vapor deposition, sputtering, CVD, coating, dipping, and spraying.

【0021】透光性支持体1には、ガラス(パイレック
スガラス、ソーダガラス、ホウ珪酸ガラス等)、石英、
サファイア等の透明な無機材料や、弗素樹脂、ポリエス
テル、ポリカーボネート、ポリエチレン、ポリエチレン
テレフタレート、ビニロン、エポキシ、マイラー等の透
明な有機樹脂等があり、ドラム状、ベルト状等の形状で
提供される。
The transparent support 1 may be made of glass (Pyrex glass, soda glass, borosilicate glass, etc.), quartz,
They include transparent inorganic materials such as sapphire, and transparent organic resins such as fluororesin, polyester, polycarbonate, polyethylene, polyethylene terephthalate, vinylon, epoxy, and mylar, and are provided in shapes such as drums and belts.

【0022】透光性導電層2には、ITO(インジウム
・スズ・酸化物)、酸化錫、酸化鉛、酸化インジウム、
ヨウ化銅等の透明導電性材料を用いたり、Al、Ni、
Au等の金属を半透明になる程度に薄く形成してもよい
The transparent conductive layer 2 contains ITO (indium tin oxide), tin oxide, lead oxide, indium oxide,
Using transparent conductive materials such as copper iodide, Al, Ni,
A metal such as Au may be formed thin enough to be semitransparent.

【0023】この透光性導電層2は、真空蒸着法、活性
反応蒸着法、RFスパッタ法、DCスパッタ法、RFマ
グネトロンスパッタ法、DCマグネトロンスパッタ法、
熱CVD 法、プラズマCVD 法、スプレー法、塗布
法、浸漬法等により形成する。透光性導電層2の厚みは
、通常は数十〜数万Å、好適には数百〜数千Åである。
The transparent conductive layer 2 can be formed by vacuum deposition, active reaction deposition, RF sputtering, DC sputtering, RF magnetron sputtering, DC magnetron sputtering,
It is formed by a thermal CVD method, a plasma CVD method, a spray method, a coating method, a dipping method, or the like. The thickness of the transparent conductive layer 2 is usually several tens to tens of thousands of angstroms, preferably several hundred to several thousand angstroms.

【0024】感光体層3として積層される光導電性材料
としては、a−Si、a−SiC 等のa−Si系、a
−Se、a−AsSe、a−SeTe等のaSe系、C
dS 、ZnO 、有機光半導体(OPC) 等の種々
の材料が使用可能であるが、就中、a−Si系の感光体
材料を用いると、高い光感度や優れた耐久性、無公害性
等の優れた特性が得られる。また、電荷注入阻止層や表
面層を積層することで、より望ましい特性が得られるが
、これらの層は、グロー放電分解法、スパッタリング法
、ECR法、蒸着法等により成膜形成し、その形成に当
たって、ダングリングボンド終端用の元素、例えば水素
(H) やハロゲンを含有させる。またこれら各層には
、電気特性その他の物性の調整のために、C 、O 、
N 、Geや、IIIa族元素、Va 族元素等を適宜
含有させると良い。
The photoconductive material laminated as the photoreceptor layer 3 includes a-Si type materials such as a-Si and a-SiC;
-Se, a-AsSe, a-SeTe, etc., C
Various materials such as dS, ZnO, and organic optical semiconductors (OPC) can be used, but in particular, a-Si photoreceptor materials offer high photosensitivity, excellent durability, non-pollution, etc. Excellent properties can be obtained. Further, more desirable characteristics can be obtained by laminating a charge injection blocking layer or a surface layer, but these layers are formed by a glow discharge decomposition method, a sputtering method, an ECR method, a vapor deposition method, etc. At this time, an element for dangling bond termination, such as hydrogen (H) or halogen, is contained. In addition, each of these layers contains C 2 , O 2 ,
It is preferable to appropriately contain N 2 , Ge, IIIa group elements, Va 2 group elements, and the like.

【0025】電荷注入素子層の厚みは0.01〜5 μ
m 、好適には0.3 〜3 μm の範囲内が良く、
表面層の厚みは、0.05〜5 μm 、好適には0.
1 〜3 μm の範囲内が良い。 そして、感光体層全体の膜厚は、必要な帯電および絶縁
耐圧の確保や露光された光の吸収や残留電位の抑制等か
ら、1 〜15μm 、好適には2 〜10μm の範
囲内が良い。
[0025] The thickness of the charge injection device layer is 0.01 to 5 μm.
m, preferably within the range of 0.3 to 3 μm,
The thickness of the surface layer is 0.05 to 5 μm, preferably 0.05 μm.
It is preferably within the range of 1 to 3 μm. The thickness of the entire photoreceptor layer is preferably in the range of 1 to 15 .mu.m, preferably 2 to 10 .mu.m, in order to ensure the necessary charging and dielectric strength, and to suppress the absorption of exposed light and residual potential.

【0026】次に本発明の第2の発明によれば、透光性
導電層2を反射防止効果があるような厚みにすることが
要点である。それによって、透光性支持体1を通過して
感光体層3に入射する光に対して、反射防止作用が得ら
れる。
Next, according to the second aspect of the present invention, the key point is to make the transparent conductive layer 2 thick enough to have an antireflection effect. Thereby, an antireflection effect can be obtained for light that passes through the transparent support 1 and enters the photoreceptor layer 3.

【0027】本発明において、反射防止効果が得られる
ことは、図3により前述したのと同様の手順で考えるこ
とができる。ここで、媒質5に透光性支持体1が、媒質
6に透光性導電層2が、媒質7に感光体層3が各々相当
する。すなわち、前記の(式4)、(式5)において、
両方の式を同時に満たすように透光性導電層2を形成す
れば、無反射条件となる。そのような適切な媒質がない
場合、n0 <n 1 <n 2 である透光性導電材
料で(式5)を満たすような層厚に透光性導電層2を形
成しても前述と同様に反射防止の効果がある。
In the present invention, the fact that an antireflection effect can be obtained can be considered by following the same procedure as described above with reference to FIG. Here, the medium 5 corresponds to the transparent support 1, the medium 6 corresponds to the transparent conductive layer 2, and the medium 7 corresponds to the photoreceptor layer 3. That is, in the above (Formula 4) and (Formula 5),
If the transparent conductive layer 2 is formed so as to simultaneously satisfy both equations, a non-reflection condition is achieved. If there is no such suitable medium, the same effect as described above can be obtained even if the transparent conductive layer 2 is formed with a layer thickness that satisfies (Formula 5) using a transparent conductive material that satisfies n0 < n 1 < n 2. has an anti-reflective effect.

【0028】感光体層3がa−Si系である場合には、
その屈折率が、a−Siで約3.0 〜3.5 、a−
SiC 、a−SiN 、a−SiO で約2.4 〜
3.2 、a−SiGe、a−SiSnで約3.4 〜
4.0 であり、一方酸化物系の透光性導電材料のほと
んどはそれらより小さな屈折率であるので、透光性導電
層2としては、ITO、酸化錫、酸化インジウムを始め
とする各種材料が使用可能である。
[0028] When the photoreceptor layer 3 is of a-Si type,
Its refractive index is about 3.0 to 3.5 for a-Si,
Approximately 2.4 ~ for SiC, a-SiN, and a-SiO
3.2, about 3.4 for a-SiGe and a-SiSn
4.0, and on the other hand, most oxide-based transparent conductive materials have a refractive index smaller than these, so various materials such as ITO, tin oxide, and indium oxide can be used for the transparent conductive layer 2. is available.

【0029】透光性導電層2の製法、及び、透光性支持
体1、感光体層3の各層の仕様及び材料、製法について
は第1の発明で述べたのと同様でよい。
The manufacturing method of the transparent conductive layer 2, and the specifications, materials, and manufacturing methods of each layer of the transparent support 1 and the photoreceptor layer 3 may be the same as those described in the first invention.

【0030】また、この第2の発明においては、前記第
1の発明に示した反射防止層4を組み合わせて用いても
よいことは当然である。この場合には、反射防止効果を
一層高めることができる。
[0030] Furthermore, in this second invention, it goes without saying that the antireflection layer 4 shown in the first invention may be used in combination. In this case, the antireflection effect can be further enhanced.

【0031】以上のように、透光性支持体表面に、露光
波長に応じて上式で求められるような適切な屈折率と厚
みを持つ反射防止層を設けるか、透光性導電層を反射防
止作用を有する厚みとすることにより、透光性支持体表
面乃至、該支持体と透光性導電層境界面での露光光の反
射によるロスをなくすことが出来る。これにより、感光
体層への効率の良い露光が行なえると共に、感光体内側
での乱反射を無くし、画像の乱れやノイズを無くすこと
が出来る。
As described above, either an anti-reflection layer having an appropriate refractive index and thickness as determined by the above formula depending on the exposure wavelength is provided on the surface of the transparent support, or a transparent conductive layer is coated with a reflective layer. By setting the thickness to have a preventive effect, it is possible to eliminate loss due to reflection of exposure light at the surface of the transparent support or the interface between the support and the transparent conductive layer. As a result, the photoreceptor layer can be efficiently exposed to light, and diffuse reflection on the inside of the photoreceptor can be eliminated, and image disturbance and noise can be eliminated.

【0032】従って、特にダイナミックドライブ方式の
LEDヘッドのように大きな露光光量が得られにくい光
源との組合せにおいて、透光性支持体からの露光を効率
良く感光体層に導入出来るようになるため、発光光量や
感光体の光感度を必要最小量に抑えられることにより、
機器のコスト増も抑えられ、有利となる。
Therefore, especially in combination with a light source such as a dynamic drive type LED head where it is difficult to obtain a large amount of exposure light, the exposure light from the transparent support can be efficiently introduced into the photoreceptor layer. By reducing the amount of emitted light and the photosensitivity of the photoreceptor to the minimum required amount,
This is advantageous because the increase in equipment costs can also be suppressed.

【0033】[0033]

【実施例】(例1)露光波長660nm のLEDヘッ
ドを用いた光背面記録方式の電子写真用の感光体を以下
の条件で作製した。
Examples (Example 1) A photoreceptor for electrophotography using an optical back recording method using an LED head with an exposure wavelength of 660 nm was prepared under the following conditions.

【0034】支持体には屈折率n 2 =1.5 のホ
ウ珪酸ガラスからなる透明な円筒状支持体を用いると、
(式4)、(式5)より、無反射条件はn 1 =1.
2 、d =137.5 ( +m*275)nmとな
るが、これらを同時に満たす安定な材料が無いため、屈
折率1.38のフッ化マグネシウム(MgF2 ) 蒸
着法により、360nm の厚みでこの円筒状支持体の
内周面に被覆した。
When a transparent cylindrical support made of borosilicate glass with a refractive index n 2 =1.5 is used as the support,
From (Formula 4) and (Formula 5), the no-reflection condition is n 1 =1.
2, d = 137.5 (+m*275) nm, but since there is no stable material that satisfies these requirements at the same time, we created this cylinder with a thickness of 360 nm by vapor deposition of magnesium fluoride (MgF2) with a refractive index of 1.38. The inner circumferential surface of the shaped support was coated.

【0035】次いで、この支持体の外周面に反応蒸着法
によりITOからなる透光性導電層を1000Åの厚み
で形成し、更に容量結合型グロー放電分解装置により、
第1表に示す条件で、IIIa族元素を含有するa−S
i電荷注入阻止層と、a−Si光導電層と、a−SiC
 表面層からなる厚み約6μm の感光体層を積層し、
光背面記録方式用の電子写真感光体を作製した。
Next, a transparent conductive layer made of ITO was formed on the outer circumferential surface of this support to a thickness of 1000 Å by a reactive vapor deposition method, and further, using a capacitively coupled glow discharge decomposition device,
a-S containing group IIIa elements under the conditions shown in Table 1.
i-charge injection blocking layer, a-Si photoconductive layer, and a-SiC
A photoreceptor layer with a thickness of approximately 6 μm consisting of a surface layer is laminated,
An electrophotographic photoreceptor for backside recording was fabricated.

【0036】[0036]

【表1】[Table 1]

【0037】この感光体を図5の構成の光背面記録方式
の電子写真装置に装着し、その感光体内部の現像機と対
向する位置にダイナミックドライブ方式のLEDヘッド
を配し、現像電極と感光体の透光性電極層との間に+1
00V の電圧を印加しながら、波長660nm 、露
光量0.7 μJ/cm2 の条件で画像露光を行ない
、感光体上にトナー像を形成し、そのトナー像を記録紙
に転写し、熱定着を行なって画像を得た。この画像を評
価したところ、O.D.が1.2 の画像濃度を有し、
バックのかぶりや画像の乱れのない、解像度の良好な画
像であった。
This photoreceptor is installed in an electrophotographic apparatus using a backside recording method having the configuration shown in FIG. +1 between the translucent electrode layer on the body
While applying a voltage of 0.0 V, image exposure is performed at a wavelength of 660 nm and an exposure amount of 0.7 μJ/cm2 to form a toner image on the photoreceptor, and the toner image is transferred to recording paper and thermally fixed. I did it and got the image. When this image was evaluated, O. D. has an image density of 1.2,
The image was of good resolution, with no background fog or image distortion.

【0038】また、この感光体の支持体の反射防止層側
の660nm の波長に対する反射率を調べたところ、
約1%であった。
[0038] Furthermore, when the reflectance of the antireflection layer side of the support of this photoreceptor at a wavelength of 660 nm was examined, it was found that
It was about 1%.

【0039】(比較例1)内周面への反射防止層の被覆
を行なわなかった以外は実施例1と同様の条件で、反射
防止層4のない感光体を製作した。  この感光体を実
施例1と同様に画像評価したところ、O.D.が1.1
 とやや低い画像濃度であり、バックのかぶりは特に見
られなかったが、画像のエッジ部に乱れが見られ、実施
例1に比べて解像度が劣る画像であった。
(Comparative Example 1) A photoreceptor without the antireflection layer 4 was produced under the same conditions as in Example 1 except that the inner peripheral surface was not coated with the antireflection layer. When this photoreceptor was subjected to image evaluation in the same manner as in Example 1, it was found that O. D. is 1.1
The image density was somewhat low, and no particular background fog was observed, but disturbances were observed at the edges of the image, and the image was inferior in resolution compared to Example 1.

【0040】また、この感光体の支持体の内周面の66
0nm の波長に対する反射率を調べたところ、約5%
であった。
[0040] Also, 66 on the inner circumferential surface of the support of this photoreceptor
When we investigated the reflectance for a wavelength of 0 nm, it was approximately 5%.
Met.

【0041】(例2)支持体に屈折率n 2 =1.5
のホウ珪酸ガラスからなる透明な円筒状支持体を用い、
次いで、この支持体の外周面に反応蒸着法により屈折率
2.0 のITOからなる透光性導電層を165nm 
の厚みで形成し、更に容量結合型グロー放電分解装置に
より、(例1)と同様の条件でa−Si注入阻止層、a
−Si光導電層、a−SiC 表面層を順次積層し、感
光体を製作した。
(Example 2) The support has a refractive index n 2 =1.5.
Using a transparent cylindrical support made of borosilicate glass,
Next, a transparent conductive layer made of ITO with a refractive index of 2.0 was formed on the outer peripheral surface of this support to a thickness of 165 nm using a reactive vapor deposition method.
A-Si injection blocking layer, a-Si injection blocking layer, a
A -Si photoconductive layer and an a-SiC surface layer were sequentially laminated to produce a photoreceptor.

【0042】この感光体を、(例1)と同様に画像評価
したところ、O.D.が1.2 の画像濃度を有し、バ
ックのかぶりや画像の乱れのない、解像度の良好な画像
が得られた。
When this photoreceptor was subjected to image evaluation in the same manner as in (Example 1), it was found that O. D. An image with an image density of 1.2 and good resolution without background fog or image disturbance was obtained.

【0043】また、この感光体の透光性導電層での66
0nm の波長に対する反射率を調べたところ、約0.
6%であった。
[0043] In addition, 66 in the transparent conductive layer of this photoreceptor
When we investigated the reflectance for a wavelength of 0 nm, it was found to be approximately 0.
It was 6%.

【0044】(比較例2)ITOの層厚を70nmとし
た以外は実施例2と同様の条件で感光体を製作した。
(Comparative Example 2) A photoreceptor was manufactured under the same conditions as in Example 2 except that the ITO layer thickness was 70 nm.

【0045】この感光体を(例2)と同様に画像評価し
たところ、O.D.が1.1 とやや低い画像濃度であ
り、バックのかぶりは特に見られなかったが、比較例2
と同様に画像のエッジ部に乱れが見られ、解像度が劣る
画像であった。
When this photoreceptor was subjected to image evaluation in the same manner as in (Example 2), it was found that O. D. The image density was rather low at 1.1, and no background fog was observed, but Comparative Example 2
Similarly to the image, there were disturbances at the edges and the resolution was poor.

【0046】また、この感光体の透光性光導電層での6
60nm の波長に対する反射率は、約5.5%であっ
た。
[0046] Also, in the transparent photoconductive layer of this photoreceptor,
The reflectance for a wavelength of 60 nm was approximately 5.5%.

【0047】[0047]

【発明の効果】以上のように、透光性支持体表面に、露
光波長に応じて上式で求められるような適切な屈折率と
厚みを持つ反射防止層を設けるか、または、透光性導電
層を反射防止作用を有する厚みとすることにより、透光
性支持体表面乃至、該支持体と透光性導電層境界面での
露光光の反射を無くすことができ、これにより、感光体
層への効率の良い露光が行なえ、印画濃度を高めるとと
もに、感光体内側での乱反射を無くし、画像の乱れやノ
イズを無くすことができた。
Effects of the Invention As described above, an antireflection layer having an appropriate refractive index and thickness as determined by the above formula depending on the exposure wavelength is provided on the surface of a transparent support, or By making the conductive layer thick enough to have an antireflection effect, it is possible to eliminate the reflection of exposure light on the surface of the transparent support or at the interface between the support and the transparent conductive layer, thereby preventing the photoreceptor from being reflected. The layers could be exposed to light efficiently, increasing print density, eliminating diffuse reflection inside the photoreceptor, and eliminating image disturbances and noise.

【0048】特にダイナミックドライブ方式のLEDヘ
ッドとの組合せにおいて、ヘッド自体の発光量や感光体
の光感度を必要以上に上げなくて済むようになるととも
に、プロセスの高速化に有利となった。
Particularly in combination with a dynamic drive type LED head, it is no longer necessary to increase the amount of light emitted by the head itself or the photosensitivity of the photoreceptor more than necessary, and this is advantageous in speeding up the process.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の発明の感光体の層構成を表わす
断面図である。
FIG. 1 is a cross-sectional view showing the layer structure of a photoreceptor according to a first aspect of the present invention.

【図2】本発明の第2の発明の感光体の層構成を表わす
断面図である。
FIG. 2 is a cross-sectional view showing the layer structure of a photoreceptor according to a second aspect of the present invention.

【図3】感光体に光が入射したときに各層の境界で反射
光が生ずることを説明するための原理図である。
FIG. 3 is a principle diagram for explaining that reflected light occurs at the boundaries of each layer when light is incident on a photoreceptor.

【図4】薄膜内に入射した光の位相変化量と反射率との
関係図である。
FIG. 4 is a diagram showing the relationship between the amount of phase change of light incident on the thin film and the reflectance.

【図5】光背面記録方式の電子写真プロセスを示す概略
図である。
FIG. 5 is a schematic diagram showing an electrophotographic process using a backside recording method.

【図6】従来のカールソン方式の電子写真プロセスを示
す概略図である。
FIG. 6 is a schematic diagram showing a conventional Carlson type electrophotographic process.

【符号の説明】[Explanation of symbols]

1  透光性支持体 2  透光性導電層 3  感光体層 4  反射防止層 1 Translucent support 2 Translucent conductive layer 3 Photoreceptor layer 4. Anti-reflection layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透光性支持体上に透光性導電層と、光導電
層から成る感光体層とを順次積層して形成し、該感光体
層表面に接触させた現像剤に現像バイアス電圧を印加す
ると共に、上記透光性支持体側から入射した光により、
上記感光体層上に画像を形成するようにした光背面記録
方式の電子写真に用いる電子写真感光体において、前記
透光性支持体の前記透光性導電層を形成する側の表面と
は反対側の表面に前記入射光に対する反射防止層を形成
したことを特徴とする電子写真感光体。
1. A light-transmitting conductive layer and a photoreceptor layer consisting of a photoconductive layer are sequentially laminated on a light-transparent support, and a developing bias is applied to a developer brought into contact with the surface of the photoreceptor layer. By applying a voltage and by light incident from the transparent support side,
In the electrophotographic photoreceptor used for electrophotography using a backside recording method, in which an image is formed on the photoreceptor layer, the surface of the transparent support is opposite to the surface on which the transparent conductive layer is formed. An electrophotographic photoreceptor characterized in that an antireflection layer against the incident light is formed on a side surface.
【請求項2】透光性支持体上に透光性導電層と、光導電
層から成る感光体層とを順次積層して形成し、該感光体
層表面に接触させた現像剤に現像バイアス電圧を印加す
ると共に、上記透光性支持体側から入射した光により、
上記感光体層上に画像を形成するようにした光背面記録
方式の電子写真に用いる電子写真感光体において、前記
透光性導電層を前記入射光に対する反射防止機能を有す
る厚みとしたことを特徴とする電子写真感光体。
2. A light-transmitting conductive layer and a photoreceptor layer consisting of a photoconductive layer are sequentially laminated on a light-transparent support, and a developer brought into contact with the surface of the photoreceptor layer is applied with a developing bias. By applying a voltage and by light incident from the transparent support side,
The electrophotographic photoreceptor used for electrophotography using a backside recording method, in which an image is formed on the photoreceptor layer, is characterized in that the light-transmitting conductive layer has a thickness that has an antireflection function against the incident light. An electrophotographic photoreceptor.
JP41612590A 1990-12-28 1990-12-28 Electrophotographic sensitive body Pending JPH04234062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41612590A JPH04234062A (en) 1990-12-28 1990-12-28 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41612590A JPH04234062A (en) 1990-12-28 1990-12-28 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH04234062A true JPH04234062A (en) 1992-08-21

Family

ID=18524366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41612590A Pending JPH04234062A (en) 1990-12-28 1990-12-28 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH04234062A (en)

Similar Documents

Publication Publication Date Title
US6183930B1 (en) Electrophotographic photosensitive member having surface of non-monocrystalline carbon with controlled wear loss
JP2829629B2 (en) Image forming method by electrophotography using amorphous silicon photoconductor and electrophotographic apparatus
JP2004077650A (en) Electrophotographic apparatus
JPH04234062A (en) Electrophotographic sensitive body
JP3122281B2 (en) Method of forming light receiving member for electrophotography
JP3754751B2 (en) Light receiving member
US5268247A (en) Electrophotographic copying machine and electrophotographic member therefor and method of forming an electrophotographic member
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
JP2008145737A (en) Electrophotographic photoreceptor, method for manufacturing the same, and electrophotographic apparatus using the same
EP0157595B1 (en) Copying machine having reduced image memory
JP2948937B2 (en) Image forming device
JPS61138258A (en) Photoconductive laminate structure
JP2005274755A (en) Image forming apparatus
JPS62156666A (en) Photosensitive body
JPH052296A (en) Image forming device
JP2002236379A (en) Electrophotographic photoreceptive member and electrophotographic device using the same
JP2004133399A (en) Electrophotographic photoreceptor
JPS6163850A (en) Electrophotographic sensitive body
JPH0478880A (en) Electrophotographic copying device
JPS63311259A (en) Electrophotographic sensitive body
JPS6163851A (en) Electrophotographic sensitive body
JPH11212286A (en) Electrophotographic photoreceptor
JPS6381430A (en) Electrophotographic sensitive body
JPH06337531A (en) Image forming device
JPH08292594A (en) Photoreceptor and image forming device