JPH04232925A - Electrochromic window - Google Patents

Electrochromic window

Info

Publication number
JPH04232925A
JPH04232925A JP3111040A JP11104091A JPH04232925A JP H04232925 A JPH04232925 A JP H04232925A JP 3111040 A JP3111040 A JP 3111040A JP 11104091 A JP11104091 A JP 11104091A JP H04232925 A JPH04232925 A JP H04232925A
Authority
JP
Japan
Prior art keywords
lithium
electrochromic window
solid
electrode
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3111040A
Other languages
Japanese (ja)
Other versions
JP3003010B2 (en
Inventor
Luca Marchese
ルーカ・マルケーゼ
Stefano Passerini
ステファーノ・パッセリーニ
Maria Andrei
マリア・アンドレイ
Bruno Scrosati
ブルーノ・スクロザーチ
Arnaldo Roggero
アルナルド・ロッヂェロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eni Tecnologie SpA
Original Assignee
Eniricerche SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eniricerche SpA filed Critical Eniricerche SpA
Publication of JPH04232925A publication Critical patent/JPH04232925A/en
Application granted granted Critical
Publication of JP3003010B2 publication Critical patent/JP3003010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE: To improve an electrochromic reaction rate by forming a solid high- polymer electrolyte disposed between specific electrodes of a solid soln. of an ionic lithium compd. in a specific solid crosslinked polyepoxide. CONSTITUTION: A glass supporting body 1 has a layer 2 of the oxide of tin and indium and, further, a tungsten oxide layer 3 is precipitated thereon. The solid high-polymer electrolyte 4 consist of the film-like solid crosslinked polyepoxide contg. lithium perchlorate. This crosslinked polyepoxide is a product which is obtd. by copolymerizing the epoxide expressed by formula II and the monoepoxide expressed by formula I at a mutual molar ratio of 2:100 and has a weight average mol.wt. of about 25000AMU and a glass transition temp. of -77 deg.C. In the formula I, R is a methyl group or ethyl group and (n) is an integer from 1 to 6. In the formula II, (m) is an integer from 1 to 6.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】本発明は、高分子ポリエポキシド電解質の
使用に基くエレクトロクロミックウインドウ(改善され
た特性を有する)に係る。
The present invention relates to electrochromic windows (with improved properties) based on the use of polymeric polyepoxide electrolytes.

【0002】当分野では、電気信号が与えられる際、最
大透過率状態から逆の最小透過率状態に切替えられる光
学装置が知られている。これらの装置は、建築及び自動
車の分野において、エネルギーの節約の点でかなり注目
されている。これらの装置では、光学的変調は、エレク
トロクロミック物質の使用により電気化学的方法によっ
て好適に誘発される。「エレクトロクロミック物質」と
は、好適な電気化学処理によって色相の可逆変化を生じ
うる化合物をいう。代表的な例は酸化タングステン(W
O3)であり、該化合物は、電気化学インターカレーシ
ョン(intercalation)法により、下記の
如く透明から青色に変化する。 これは、インターカレーティングイオンM+(通常、ア
ルカリ金属イオン)を供給する透明な電解質を収容する
セル内で生ずる。セルが他に光学的に不動の物質(すな
わち、与えられる信号がアノード信号又はカソード信号
のいずれであるかに拘らず透明である物質)、又はWO
3に対して相補的な特性を有するエレクトロクロミック
物質を含有する場合、信号(たとえばカソード信号)が
与えられる際、暗色となり(青色のMxWO3の生成に
よる)、一方、逆の信号(たとえばアノード信号)が与
えられる際には透明に戻る(明色のWO3への復帰によ
る)装置が得られる。従って、方形波信号を与えること
により、装置の光透過率を変調させることができ、これ
により、該装置に、上述の如き重要な技術的意義を有す
るエレクトロクロミックウインドウの特性が与えられる
。この公知の技術に関して、B.Scrosati に
よる Chimicaoggi,1989年6月号,第
41−45頁を参照する。
Optical devices are known in the art that can be switched from a maximum transmission state to an opposite minimum transmission state when an electrical signal is applied. These devices have received considerable attention in the architectural and automotive fields for their energy savings. In these devices, optical modulation is preferably induced by electrochemical methods through the use of electrochromic substances. "Electrochromic material" refers to a compound that can undergo a reversible change in hue upon suitable electrochemical treatment. A typical example is tungsten oxide (W
O3), and the compound changes from transparent to blue by an electrochemical intercalation method as described below. This occurs within a cell containing a transparent electrolyte that supplies the intercalating ions M+ (usually alkali metal ions). The cell is made of an otherwise optically immobile material (i.e., a material that is transparent regardless of whether the applied signal is an anode signal or a cathode signal), or a WO
If it contains an electrochromic material with complementary properties to 3, it will be dark (due to the formation of blue MxWO3) when a signal (e.g. cathodic signal) is applied, while the opposite signal (e.g. anodic signal) A device is obtained which returns to transparency (by reverting to light colored WO3) when . Thus, by applying a square wave signal, the light transmission of the device can be modulated, thereby giving the device the properties of an electrochromic window, which has important technical significance as described above. Regarding this known technique, B. See Chimicaoggi, June 1989, pp. 41-45.

【0003】本発明に係る技術分野では、用途との関連
性から、迅速かつ可逆的なエレクトロクロミック反応を
達成できるように、固状形のエレクトロクロミック装置
の積層形状及びエレクトロクロミック物質の両方につい
ての改善を求める要求が存在する。同一出願人に係る特
許出願には、積層構造を有し、酸化タングステン層と酸
化ニッケル層との間(これらの層はインジウム及びスズ
の酸化物のフィルムにより導電性とされたガラス支持体
上に析出される)に挿入された架橋ポリエーテルを基材
とする固状高分子電解質の使用によって改善された性能
が付与されたエレクトロクロミックウインドウが開示さ
れている。
[0003] In the technical field to which the present invention relates, in order to achieve a rapid and reversible electrochromic reaction, both the stacked form of a solid electrochromic device and the electrochromic material have been developed. There are demands for improvement. The patent application filed by the same applicant has a laminated structure between a tungsten oxide layer and a nickel oxide layer (these layers are on a glass support made electrically conductive by a film of indium and tin oxides). An electrochromic window is disclosed that is endowed with improved performance through the use of a solid polyelectrolyte based on a cross-linked polyether intercalated with the deposited polyether.

【0004】発明者らは、エレクトロクロミックウイン
ドウにおいてポリエポキシを基材とする固状高分子電解
質を採用することにより、その性能、特にエレクトロク
ロミック反応の速度に関する性能がさらに改善されると
の知見を得て本発明に至った。これによれば、本発明は
、(a)内表面上に酸化スズ又はスズ及びインジウムの
酸化物の導電性物質層を有する透明な導電性ガラス板上
に設けた酸化タングステン(WO3)電極、(b)内表
面上に酸化スズ又はスズ及びインジウムの酸化物の導電
性物質層を有する透明な導電性ガラス板上に設けた金属
リチウムの電気化学インターカレーションによって活性
化された酸化ニッケル(NiOz;ここzは1ないし1
.66である)対電極、及び(c)前記電極(a)と前
記対電極(b)との間に配置された固状高分子電解質を
包含してなり、該高分子電解質を、一般式(I)(式中
、Rはメチル基又はエチル基であり、nは1ないし6の
整数である)で表されるモノエポキシドと、一般式(I
I) (式中、mは1ないし6の整数である)で表されるジエ
ポキシドとをジエポキシド(II):モノエポキシド(
I)のモル比1:100ないし10:100で共重合さ
せて得られた重量平均分子量少なくとも10000 A
MU 及びガラス転移温度(Tg)−60ないし−80
℃を有する固状架橋ポリエポキシド中におけるイオン性
リチウム化合物の固溶体で形成したことを特徴とするエ
レクトロクロミックウインドウに係る。
[0004] The inventors have discovered that by employing a polyepoxy-based solid polymer electrolyte in an electrochromic window, its performance, particularly regarding the rate of electrochromic reaction, can be further improved. This led to the present invention. According to this, the present invention provides (a) a tungsten oxide (WO3) electrode provided on a transparent conductive glass plate having a conductive material layer of tin oxide or tin and indium oxide on the inner surface; b) Nickel oxide (NiOz) activated by electrochemical intercalation of metallic lithium on a transparent conductive glass plate with a conductive material layer of tin oxide or oxides of tin and indium on the inner surface; Here z is 1 or 1
.. 66), and (c) a solid polymer electrolyte disposed between the electrode (a) and the counter electrode (b), the polymer electrolyte having the general formula ( I) (wherein R is a methyl group or an ethyl group, and n is an integer of 1 to 6);
I) (wherein m is an integer of 1 to 6) diepoxide (II): monoepoxide (
A weight average molecular weight of at least 10,000 A obtained by copolymerizing I) in a molar ratio of 1:100 to 10:100.
MU and glass transition temperature (Tg) -60 to -80
The present invention relates to an electrochromic window characterized in that it is formed of a solid solution of an ionic lithium compound in a solid crosslinked polyepoxide having a temperature of .degree.

【0005】本発明によるエレクトロクロミックウイン
ドウでは、酸化タングステン電極は、現在当分野で公知
の技術に従ってスパッタリング又は蒸発法により、酸化
スズ又はスズ及びインジウムの酸化物のフィルムによっ
て導電性としたガラス板上に酸化タングステン(WO3
)の薄層を析出させることにより調製される。酸化タン
グステン層は、代表的には厚さ約3000Åである。導
電性ガラスは市販品である。酸化ニッケル対電極も、当
分野で公知の方法に従い導電性ガラス上への析出によっ
て調製される。しかしながら、この初期の相では、酸化
ニッケルはエレクトロクロミックウインドウにおける対
電極としては作動できない。このため、リチウムのプレ
−インターカレーションによる活性化処理が必要である
。この目的のため、電極を、非プロトン性溶媒(たとえ
ばプロピレンカーボネート)中にリチウム塩(たとえば
過塩素酸リチウム)を含有する溶液及び金属リチウム対
電極を収容するセル内に挿入する。カソード分極により
、酸化ニッケル内におけるリチウムのインターカレーシ
ョンが生ずる。この処理により、前記酸化ニッケル層の
光学特性が変化される。事実、その構造内に侵入したリ
チウムのため酸化ニッケルは透明となり、その透明性を
失うことなく、あるいはWO3の反応を相補するエレク
トロクロミック反応によりその着色状態に戻ることなく
可逆的に前記リチウムを付与又は取り戻すことができる
。本発明によるエレクトロクロミックウインドウでは、
電極(a)と対電極(b)との間に位置する固状高分子
電解質が、固状の架橋ポリエポキシド中におけるイオン
性リチウム化合物の固溶体によって構成される。リチウ
ムのイオン性化合物は、有利には、過塩素酸リチウム、
ホウ酸リチウム、フルオロホウ酸リチウム、チオシアン
酸リチウム、ヘキサフルオロヒ酸リチウム、トリフルオ
ロ酢酸リチウム及びトリフルオロメタンスルホン酸リチ
ウムの中から選ばれる。中でも、過塩素酸リチウムが好
適である。本発明の目的に有効な固状架橋ポリエポキシ
ドは、好ましくは、前記一般式におけるRがメチル基で
あり、n及びmが1ないし6の整数であるジエポキシド
(II)及びモノエポキシド(I)を相互モル比1:1
00ないし6:100で共重合させることによって得ら
れた重量平均分子量10000ないし100000 A
MU を有する生成物である。固状高分子電解質におけ
るポリエポキシド中の酸素:イオン性化合物中のリチウ
ムの原子比は、6:1ないし24:1の範囲内であり、
好ましくは約14:1である。
In the electrochromic window according to the invention, tungsten oxide electrodes are deposited on glass plates made conductive by tin oxide or tin and indium oxide films by sputtering or evaporation methods according to techniques currently known in the art. Tungsten oxide (WO3
) is prepared by depositing a thin layer of The tungsten oxide layer is typically about 3000 Å thick. The conductive glass is a commercially available product. A nickel oxide counter electrode is also prepared by deposition onto conductive glass according to methods known in the art. However, in this early phase, nickel oxide cannot act as a counter electrode in the electrochromic window. Therefore, activation treatment by lithium pre-intercalation is required. For this purpose, the electrode is inserted into a cell containing a solution containing a lithium salt (eg lithium perchlorate) in an aprotic solvent (eg propylene carbonate) and a metallic lithium counter electrode. Cathode polarization causes intercalation of lithium within the nickel oxide. This treatment changes the optical properties of the nickel oxide layer. In fact, due to the lithium that has penetrated into its structure, the nickel oxide becomes transparent and can be reversibly loaded with said lithium without losing its transparency or returning to its colored state by an electrochromic reaction complementary to that of WO3. Or you can get it back. In the electrochromic window according to the invention,
A solid polymer electrolyte located between the electrode (a) and the counter electrode (b) is constituted by a solid solution of an ionic lithium compound in a solid crosslinked polyepoxide. The ionic compound of lithium is advantageously lithium perchlorate,
selected from lithium borate, lithium fluoroborate, lithium thiocyanate, lithium hexafluoroarsenate, lithium trifluoroacetate, and lithium trifluoromethanesulfonate. Among these, lithium perchlorate is preferred. The solid crosslinked polyepoxide useful for the purpose of the present invention is preferably a diepoxide (II) and a monoepoxide (I) in which R in the general formula is a methyl group and n and m are integers of 1 to 6. Molar ratio 1:1
Weight average molecular weight 10,000 to 100,000 A obtained by copolymerizing at a ratio of 00 to 6:100
The product has MU. The atomic ratio of oxygen in the polyepoxide to lithium in the ionic compound in the solid polymer electrolyte is in the range of 6:1 to 24:1,
Preferably the ratio is about 14:1.

【0006】図1に、本発明によるウインドウの好適な
1具体例を示す。特に、この図において、符号1はガラ
ス支持体を示し、この支持体はスズ及びインジウムの酸
化物の層2を有し、さらにその上にスパッタリングによ
り酸化タングステン層(厚さ約3000Å)3が析出さ
れている。符号4は固状高分子電解質を示す。この電解
質は厚さ約100μmのフィルム状であり、過塩素酸リ
チウムを含有する固状架橋ポリエポキシドでなる。さら
に詳述すれば、この架橋ポリエポキシドは、式で表され
るジエポキシドと、式 で表されるモノエポキシドとを相互モル比2:100で
共重合させることによって得られた重量平均分子量約2
5000 AMU(Atomic Mass Unit
s)及びガラス転移温度(Tg)−77℃を有する生成
物である。このポリエポキシド中に、酸素(ポリエポキ
シドに含有される):リチウム(過塩素酸リチウムに含
有される)の原子比が約14:1となる量で過塩素酸リ
チウムを溶解させる。符号5はガラス支持体を示す。こ
の支持体はスズ及びインジウムの酸化物の層6を有し、
この層の上に、上述の如く操作することによって、リチ
ウムによるインターカレーションを介して活性化した酸
化ニッケル層7を析出させる。符号8はシーラントを示
す。9はスペーサーであり、10は方形波電圧の外部発
生機であり、11は電極の導電性層及び対電極の導電性
層と接続する2つの端子と電圧源10とを接続するライ
ンである。図1に示すエレクトロクロミックウインドウ
を、一般に−2ホ゛ルトないし+2ホ゛ルトの範囲内で
変動する方形波信号で作動させる。マイナスのインパル
ス(カソードWO3)の間ではウインドウは暗色(WO
3のインターカレーション)であり、つづくプラスのイ
ンパルス(アノードWO3)の間ではウインドウは暗色
から透明(WO3からのリチウムの脱インターカレーシ
ョン)に変化し、透過率は大きい。この挙動(非常に多
数回繰返される)は次の反応に関連する。 この挙動を図2に概略して示す。エレクトロクロミック
反応(すなわち、カソード及びアノード反応)が完了す
るまでに必要な時間は約数十秒である。この時間はセル
を作動する信号の値に応じて変動する。+2.5ホ゛ル
トから−3ホ゛ルトの方形波では、透過率における最小
値から最大値までの変動及びその逆は約20秒の時間内
で達成される。
FIG. 1 shows a preferred example of a window according to the present invention. In particular, in this figure, reference numeral 1 designates a glass support, which has a layer 2 of tin and indium oxides, on which a tungsten oxide layer (about 3000 Å thick) 3 is deposited by sputtering. has been done. Reference numeral 4 indicates a solid polymer electrolyte. This electrolyte is in the form of a film about 100 μm thick and is made of solid crosslinked polyepoxide containing lithium perchlorate. More specifically, this crosslinked polyepoxide is obtained by copolymerizing diepoxide represented by the formula and monoepoxide represented by the formula at a mutual molar ratio of 2:100 and has a weight average molecular weight of about
5000 AMU (Atomic Mass Unit)
s) and a glass transition temperature (Tg) of -77°C. Lithium perchlorate is dissolved in the polyepoxide in an amount such that the atomic ratio of oxygen (contained in the polyepoxide) to lithium (contained in the lithium perchlorate) is about 14:1. Reference numeral 5 indicates a glass support. The support has a layer 6 of oxides of tin and indium;
On this layer, a layer 7 of nickel oxide activated via intercalation with lithium is deposited by operating as described above. Reference numeral 8 indicates a sealant. 9 is a spacer, 10 is an external generator of square wave voltage, and 11 is a line connecting the voltage source 10 with two terminals connecting the conductive layer of the electrode and the conductive layer of the counter electrode. The electrochromic window shown in FIG. 1 is operated with a square wave signal that generally varies within the range of -2 volts to +2 volts. During the negative impulse (cathode WO3) the window is dark (WO
During the subsequent positive impulse (anode WO3), the window changes from dark to transparent (deintercalation of lithium from WO3) and the transmittance is large. This behavior (repeated very many times) is relevant for the following reaction. This behavior is schematically illustrated in FIG. The time required for the electrochromic reaction (ie, cathodic and anodic reactions) to complete is approximately tens of seconds. This time varies depending on the value of the signal activating the cell. For a +2.5 volt to -3 volt square wave, the change in transmission from minimum to maximum and vice versa is achieved within a time of about 20 seconds.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるエレクトロクロミックウインドウ
の好適な1具体例を示す図である。
FIG. 1 is a diagram showing a preferred embodiment of an electrochromic window according to the present invention.

【図2】本発明のエレクトロクロミックウインドウの挙
動を示すグラフである。
FIG. 2 is a graph showing the behavior of the electrochromic window of the present invention.

【符号の説明】[Explanation of symbols]

1,5    ガラス支持体 2,6    スズ及びインジウムの酸化物の層3  
      電極 4        固状高分子電解質 7        対電極 8        シーラント 9        スペーサー 10      電圧源 11      ライン
1,5 Glass support 2,6 Tin and indium oxide layer 3
Electrode 4 Solid polymer electrolyte 7 Counter electrode 8 Sealant 9 Spacer 10 Voltage source 11 Line

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】(a)内表面上に酸化スズ又はスズ及びイ
ンジウムの酸化物の導電性物質層を有する透明な導電性
ガラス板上に設けた酸化タングステン(WO3)電極、
(b)内表面上に酸化スズ又はスズ及びインジウムの酸
化物の導電性物質層を有する透明な導電性ガラス板上に
設けた金属リチウムの電気化学インターカレーションに
よって活性化された酸化ニッケル(NiOz;ここでz
は1ないし1.66である)対電極、及び(c)前記電
極(a)と前記対電極(b)との間に配置された固状高
分子電解質を包含してなり、該高分子電解質を、一般式
(I)(式中、Rはメチル基又はエチル基であり、nは
1ないし6の整数である)で表されるモノエポキシドと
、一般式(II) (式中、mは1ないし6の整数である)で表されるジエ
ポキシドとをジエポキシド(II):モノエポキシド(
I)のモル比1:100ないし10:100で共重合さ
せて得られた重量平均分子量少なくとも10000 A
MU 及びガラス転移温度(Tg)−60ないし−80
℃を有する固状架橋ポリエポキシド中におけるイオン性
リチウム化合物の固溶体で形成したことを特徴とする、
エレクトロクロミックウインドウ。
1. (a) a tungsten oxide (WO3) electrode provided on a transparent conductive glass plate having a conductive material layer of tin oxide or tin and indium oxide on the inner surface;
(b) Nickel oxide (NiOz ;here z
is 1 to 1.66), and (c) a solid polymer electrolyte disposed between the electrode (a) and the counter electrode (b), the polymer electrolyte , a monoepoxide represented by the general formula (I) (wherein R is a methyl group or an ethyl group, and n is an integer of 1 to 6), and a monoepoxide represented by the general formula (II) (wherein, m is is an integer from 1 to 6) and diepoxide (II):monoepoxide (
A weight average molecular weight of at least 10,000 A obtained by copolymerizing I) in a molar ratio of 1:100 to 10:100.
MU and glass transition temperature (Tg) -60 to -80
characterized by being formed of a solid solution of an ionic lithium compound in a solid crosslinked polyepoxide having a temperature of
electrochromic window.
【請求項2】請求項1記載のものにおいて、前記酸化タ
ングステン電極が、導電性ガラス上に、スパッタリング
又は蒸発によって、厚さ約3000Åの酸化タングステ
ン層を析出させることによって得られたものである、エ
レクトロクロミックウインドウ。
2. The tungsten oxide electrode according to claim 1, wherein the tungsten oxide electrode is obtained by depositing a tungsten oxide layer with a thickness of about 3000 Å on a conductive glass by sputtering or evaporation. electrochromic window.
【請求項3】請求項1記載のものにおいて、前記酸化ニ
ッケル対電極が、導電性ガラス上に酸化ニッケルを析出
させ、ついでリチウムの電気化学インターカレーション
によって活性化処理して得られたものである、エレクト
ロクロミックウインドウ。
3. The nickel oxide counter electrode according to claim 1, wherein the nickel oxide counter electrode is obtained by depositing nickel oxide on conductive glass and then activating it by electrochemical intercalation of lithium. An electrochromic window.
【請求項4】請求項1記載のものにおいて、前記イオン
性リチウム化合物が、過塩素酸リチウム、ホウ酸リチウ
ム、フルオロホウ酸リチウム、チオシアン酸リチウム、
ヘキサフルオロヒ酸リチウム、トリフルオロ酢酸リチウ
ム及びトリフルオロメタンスルホン酸リチウムの中から
選ばれるものである、エレクトロクロミックウインドウ
4. The product according to claim 1, wherein the ionic lithium compound is lithium perchlorate, lithium borate, lithium fluoroborate, lithium thiocyanate,
An electrochromic window selected from lithium hexafluoroarsenate, lithium trifluoroacetate and lithium trifluoromethanesulfonate.
【請求項5】請求項4記載のものにおいて、前記イオン
性リチウム化合物が過塩素酸リチウムである、エレクト
ロクロミックウインドウ。
5. The electrochromic window of claim 4, wherein the ionic lithium compound is lithium perchlorate.
【請求項6】請求項1記載のものにおいて、前記固状架
橋ポリエポキシドが、前記一般式におけるRがメチル基
であり、n及びmが1ないし6の整数であるジエポキシ
ド(II)及びモノエポキシド(I)を相互モル比1:
100ないし6:100で共重合させることによって得
られた重量平均分子量10000ないし100000 
AMU を有する生成物である、エレクトロクロミック
ウインドウ。
6. The solid crosslinked polyepoxide according to claim 1, wherein R in the general formula is a methyl group, and n and m are integers of 1 to 6, diepoxide (II) and monoepoxide ( I) in mutual molar ratio 1:
Weight average molecular weight 10,000 to 100,000 obtained by copolymerizing at a ratio of 100 to 6:100
Electrochromic windows, products with AMU.
【請求項7】請求項1記載のものにおいて、前記固状高
分子電解質における前記ポリエポキシド中の酸素:前記
イオン性化合物中のリチウムの原子比が6:1ないし2
4:1、好ましくは14:1である、エレクトロクロミ
ックウインドウ。
7. The product according to claim 1, wherein the atomic ratio of oxygen in the polyepoxide to lithium in the ionic compound in the solid polymer electrolyte is 6:1 to 2.
Electrochromic window that is 4:1, preferably 14:1.
【請求項8】請求項1記載のものにおいて、方形波電圧
源及び前記電極及び対電極の導電性物質層にそれぞれ接
続する2つの端子に前記電圧源を接続するラインをさら
に包含してなる、エレクトロクロミックウインドウ。
8. The method of claim 1 further comprising a square wave voltage source and a line connecting said voltage source to two terminals respectively connected to the conductive material layers of said electrode and counter electrode. electrochromic window.
JP3111040A 1990-06-13 1991-04-16 Electrochromic window Expired - Lifetime JP3003010B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT02063290A IT1248840B (en) 1990-06-13 1990-06-13 POLYEPOXY POLYMERIC ELECTROLYTE-BASED ELECTROCHROME WINDOW
IT20632A/90 1990-06-13

Publications (2)

Publication Number Publication Date
JPH04232925A true JPH04232925A (en) 1992-08-21
JP3003010B2 JP3003010B2 (en) 2000-01-24

Family

ID=11169816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111040A Expired - Lifetime JP3003010B2 (en) 1990-06-13 1991-04-16 Electrochromic window

Country Status (8)

Country Link
US (1) US5394264A (en)
EP (1) EP0461685B1 (en)
JP (1) JP3003010B2 (en)
AT (1) ATE115299T1 (en)
DE (1) DE69105632T2 (en)
DK (1) DK0461685T3 (en)
ES (1) ES2065609T3 (en)
IT (1) IT1248840B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679283A (en) * 1994-07-22 1997-10-21 Gentex Corporation Electrochromic layer and devices comprising same
IT1276151B1 (en) * 1995-11-17 1997-10-27 Eniricerche Spa ELECTROLYTIC MEMBRANE AND PROCEDURE FOR ITS PHOTO-CROSS LINKAGE ON CATHODE MEMBRANE
US5928572A (en) * 1996-03-15 1999-07-27 Gentex Corporation Electrochromic layer and devices comprising same
DE19923906A1 (en) 1999-05-26 2000-11-30 Basf Ag Optically transparent polymeric solid electrolyte
TW434704B (en) * 1999-06-11 2001-05-16 Univ Nat Yunlin Sci & Tech Device of amorphous WO3 ion sensitive field effect transistor (ISFET) and method for making the same
KR19990084108A (en) * 1999-09-14 1999-12-06 강보선 Discoloration film by electric energy
US20020061718A1 (en) * 1999-09-29 2002-05-23 Treichel Method and system for reducing photo-assisted corrosion in wafers during cleaning processes
DE10137544A1 (en) 2001-08-01 2003-02-13 Basf Ag Primer layers for EC windows
DE10327517A1 (en) 2003-06-17 2005-01-13 Ht Troplast Ag Ion-conducting thermoplastic compositions for electrochromic glazings
US7156522B2 (en) * 2003-07-16 2007-01-02 Plut William J Projection-type display devices with reduced weight and size
US7372610B2 (en) 2005-02-23 2008-05-13 Sage Electrochromics, Inc. Electrochromic devices and methods
ES2741968T3 (en) 2011-09-23 2020-02-12 Novozymes Bioag As Combinations of lipo-chitooligosaccharides and methods to use in increasing plant growth
DE102015114194A1 (en) 2015-08-26 2017-03-02 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co. Kg Process for producing a conductive plastic film
WO2020018377A1 (en) 2018-07-14 2020-01-23 Polyceed Inc. Recycling of smart windows
PL3955053T3 (en) 2018-07-16 2024-04-08 Huntsman International Llc Method of making an ion-conductive polymer film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171034U (en) * 1985-04-13 1986-10-23
JPS6429627U (en) * 1987-08-13 1989-02-22

Also Published As

Publication number Publication date
DE69105632T2 (en) 1995-06-22
IT9020632A1 (en) 1991-12-13
IT1248840B (en) 1995-01-30
EP0461685B1 (en) 1994-12-07
IT9020632A0 (en) 1990-06-13
ES2065609T3 (en) 1995-02-16
EP0461685A2 (en) 1991-12-18
US5394264A (en) 1995-02-28
ATE115299T1 (en) 1994-12-15
JP3003010B2 (en) 2000-01-24
DK0461685T3 (en) 1995-04-03
DE69105632D1 (en) 1995-01-19
EP0461685A3 (en) 1992-07-01

Similar Documents

Publication Publication Date Title
US20230176439A1 (en) Electrochromic devices and methods
US11708449B2 (en) Electrochromic multi-layer devices with cross-linked ion conducting polymer
EP0519921B1 (en) Electrochromic element, materials for use in such element, processes for making such element and such materials and use of such element in an electrochromic glass device
US4938571A (en) Solid state electrochromic light modulator
CN101377599B (en) Electrochromism reflecting device
US5288381A (en) Method for producing electrochromic material and electro-optical device using same
JPH04232925A (en) Electrochromic window
EP1273056A2 (en) Method for improving the durability of ion insertion materials
JPH0676940U (en) Transparent electrochromic articles
JP3789483B2 (en) Iridium oxide films for electrochromic devices
Panero et al. Electrochromic windows based on polyaniline, tungsten oxide and gel electrolytes
USRE34469E (en) Solid state electrochromic light modulator
US5307201A (en) Electrode of nickel oxide intercalated with lithium ions and electrochromic devices which incorporate such an electrode
JPH06222399A (en) Manufacture of solid-polymer high-speed ionic conductive layer for electrochromic device
EP0454240A2 (en) Electrochromic window, based on a polymeric electrolyte
Lampert et al. Characteristics of laminated electrochromic devices using polyorganodisulfide electrodes
JPH04324842A (en) Electrochromic element
JPH04324841A (en) Electrochromic element
Lampert et al. Characteristics of laminated electrochromic devices using polyorganodisulfide electrodes
WO2003046653A1 (en) Electrolyte and electrochromic device
JPH06202164A (en) Electrochromic element and electrolyte film
JPH06250231A (en) Electrochromic element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990922