JPH04232802A - Measuring method for micro-size - Google Patents

Measuring method for micro-size

Info

Publication number
JPH04232802A
JPH04232802A JP41533890A JP41533890A JPH04232802A JP H04232802 A JPH04232802 A JP H04232802A JP 41533890 A JP41533890 A JP 41533890A JP 41533890 A JP41533890 A JP 41533890A JP H04232802 A JPH04232802 A JP H04232802A
Authority
JP
Japan
Prior art keywords
intensity
reflected light
light intensity
pattern
dimensions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41533890A
Other languages
Japanese (ja)
Inventor
Hiroo Fujita
宏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP41533890A priority Critical patent/JPH04232802A/en
Publication of JPH04232802A publication Critical patent/JPH04232802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the micro-size without being affected by the fluctuation of the reflectance with simple software by using the approximate size determined from the pattern width of the preset intensity level as a reference to measure the correct size. CONSTITUTION:The reflected light of the laser light 130 focused to a micro-spot diameter and deflected on the face of a measured object 12 is reflected by a beam splitter 110 to becomes the reflected light 135, and the reflected light intensity at each deflection position is detected by a light reception section 140 synchronously with the deflection control voltage 125. A reflected light intensity pattern generation section 13 stores the data of the reflected light intensity in one period of deflection, a data procession section 150 constituted of a CPU processes the data of the reflected light intensity pattern and calculates the size. The reflected light intensity pattern is converted into binary values by the preset intensity slice level, the pattern width (half-value width) is calculated 14, the reflected light intensity calculated 15 from the approximate size of the measured object 12 thus obtained is used as a reference to calculate the correct edge position, and it is converted 19 into the actual size.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はレ−ザ光を用いて1ミク
ロンメ−トル以下の微小寸法を測定する寸法測定方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dimension measuring method for measuring minute dimensions of 1 micrometer or less using laser light.

【0002】0002

【従来の技術】近年の精密加工技術の進歩により、1ミ
クロンメ−トル以下のサブミクロン領域の微細加工が行
われるようになり、被加工物の精密な寸法、形状等の測
定のニ−ズが高まってきている。このようなサブミクロ
ン領域の微小寸法の測定には、非接触計測が可能な光学
的な測定が多く用いられている。
[Background Art] With the recent progress in precision processing technology, micromachining in the submicron region of 1 micrometer or less has become possible, and the need for precise measurement of dimensions, shapes, etc. of workpieces has increased. It's increasing. Optical measurement, which allows non-contact measurement, is often used to measure minute dimensions in the submicron region.

【0003】光学的な寸法測定で最も多く用いられるの
は半値幅検出法と呼ばれる方法で、白色光源で被測定物
を照明してイメ−ジセンサ−で反射光を検出し、反射光
強度が50%となるときのパタ−ン幅(半値幅)を検出
する方法である。図2に従来の半値幅検出法を示す。図
2(イ)は寸法が測定される被測定物12の形状を示す
もので、21は寸法が測定される寸法部で、エッジ20
0、210があり、そのエッジ間の寸法がGである。2
2は基材部で、寸法部21の両側に存在する。ここで、
被測定物12が磁気ヘッドの場合、寸法部21がガラス
で構成されるギャップ、基材部22がフェライトで構成
されるトラックである。以上の構成の被測定物において
、寸法部21と基材部22とは反射率が異なり、寸法部
21の反射率をRm、基材部22の反射率をRsとする
。以下の説明では、Rm〈Rsと仮定する。また、寸法
部21と基材部22の表面は実質的に段差がなく、照明
光の焦点深度内にあるものと仮定する。
The method most often used in optical dimension measurement is the half-width detection method, in which the object to be measured is illuminated with a white light source and the reflected light is detected by an image sensor. %, the pattern width (half width) is detected. FIG. 2 shows a conventional half-width detection method. FIG. 2(a) shows the shape of the object to be measured 12 whose dimensions are measured, and 21 is the dimension part where the dimensions are measured, and the edge 20
0, 210, and the dimension between the edges is G. 2
Reference numeral 2 denotes a base material portion, which is present on both sides of the dimension portion 21. here,
When the object to be measured 12 is a magnetic head, the dimension portion 21 is a gap made of glass, and the base material portion 22 is a track made of ferrite. In the object to be measured having the above configuration, the dimensional portion 21 and the base material portion 22 have different reflectances, and the reflectance of the dimensional portion 21 is Rm, and the reflectance of the base material portion 22 is Rs. In the following description, it is assumed that Rm<Rs. Further, it is assumed that the surfaces of the dimension portion 21 and the base material portion 22 have substantially no level difference and are within the depth of focus of the illumination light.

【0004】図2(ロ)の波形23は、白色光源で照明
された被測定物12からの反射光をイメ−ジセンサ−で
検出したときのビデオ信号で、V形状のパタ−ンとなる
。グラフの横軸はイメ−ジセンサ−の画素のアドレス、
縦軸は反射光強度である。線24は波形23を2値化す
るためのスライスレベルである。スライスレベルは一般
には50%の強度値(最大強度と最小強度の中間の強度
)が利用されている。図2(ハ)の波形25はビデオ信
号波形23が2値化されたときの2値化波形である。線
24の強度レベルよりも高い強度は2値化されたときに
1のレベル、逆に低い強度は0のレベルとなる。 2値化波形25の立ち下がり部26と立ち上がり部27
の画素アドレスを検出し、その間に含まれている画素数
を算出する。この画素数が半値幅と呼ばれるもので、半
値幅を寸法に変換している。
A waveform 23 in FIG. 2(b) is a video signal obtained when the image sensor detects the reflected light from the object 12 illuminated with a white light source, and has a V-shaped pattern. The horizontal axis of the graph is the pixel address of the image sensor,
The vertical axis is the reflected light intensity. A line 24 is a slice level for binarizing the waveform 23. Generally, an intensity value of 50% (intermediate intensity between the maximum intensity and the minimum intensity) is used as the slice level. A waveform 25 in FIG. 2(c) is a binarized waveform when the video signal waveform 23 is binarized. Intensities higher than the intensity level of the line 24 have a level of 1 when binarized, and conversely, intensities lower than the level of the line 24 have a level of 0. Falling portion 26 and rising portion 27 of the binarized waveform 25
Detects the pixel addresses of , and calculates the number of pixels included between them. This number of pixels is called the half-width, and the half-width is converted into dimensions.

【0005】また、微小なスポット径に集光したレ−ザ
光の光偏向を用いた寸法測定方法も本願発明者により提
案されていて、特願昭62−51617号公報に詳細に
述べられている。これは、微小なスポット径に集光した
レ−ザ光を被測定物12に照射し、音響光学偏向素子で
レ−ザ光を被測定物12の面上で偏向させ、偏向の一周
期における反射光強度パタ−ンを検出し、反射光強度パ
タ−ンの最小強度レベルから寸法を測定するものである
[0005] The inventor of the present invention has also proposed a dimension measurement method using optical deflection of a laser beam condensed to a minute spot diameter, and this method is described in detail in Japanese Patent Application No. 1983-51617. There is. This is done by irradiating the object to be measured 12 with a laser beam condensed to a minute spot diameter, deflecting the laser beam onto the surface of the object to be measured 12 using an acousto-optic deflection element, and The reflected light intensity pattern is detected and the dimensions are measured from the minimum intensity level of the reflected light intensity pattern.

【0006】図3にレ−ザ光の光偏向による従来の寸法
測定方法を示す。図3(イ)の波形31は、前述の被測
定物12の面上でレ−ザ光を偏向させたときに検出され
る反射光強度パタ−ンで、V型のパタ−ンとなる。反射
光強度パタ−ンは、被測定物面上の偏向位置とその点に
おける反射光強度の関係を表すもので、グラフの横軸は
レ−ザ光の偏向位置、縦軸は反射光強度で、反射光強度
33は最大強度Vm、反射光強度32は最小強度Vnで
ある。このとき、最小強度Vnと最大強度Vmの比の値
であるVn/Vmを算出する。寸法が小さい場合は最小
強度Vnと最大強度Vmの差が少なく、寸法が大きい場
合は逆に差が大きくなる。図3(ロ)は寸法Gと反射光
強度比Vn/Vmとの関係を示すグラフで、横軸は寸法
、縦軸は強度比である。図示のごとく、特定の寸法範囲
では両者は比例関係にあり、強度比Vn/Vmから寸法
を測定することができる。
FIG. 3 shows a conventional method for measuring dimensions using optical deflection of a laser beam. A waveform 31 in FIG. 3A is a reflected light intensity pattern detected when the laser beam is deflected on the surface of the object to be measured 12, and is a V-shaped pattern. The reflected light intensity pattern represents the relationship between the deflection position on the surface of the object to be measured and the reflected light intensity at that point.The horizontal axis of the graph is the deflection position of the laser beam, and the vertical axis is the reflected light intensity. , the reflected light intensity 33 is the maximum intensity Vm, and the reflected light intensity 32 is the minimum intensity Vn. At this time, Vn/Vm, which is the ratio of the minimum intensity Vn to the maximum intensity Vm, is calculated. When the dimensions are small, the difference between the minimum strength Vn and the maximum strength Vm is small, and when the dimensions are large, the difference becomes large. FIG. 3B is a graph showing the relationship between the dimension G and the reflected light intensity ratio Vn/Vm, where the horizontal axis is the dimension and the vertical axis is the intensity ratio. As shown in the figure, the two are in a proportional relationship in a specific size range, and the size can be measured from the intensity ratio Vn/Vm.

【0007】[0007]

【発明が解決しようとする課題】従来の半値幅検出方法
では、被測定物の寸法が小さくなるとビデオ信号23の
立ち下がり及び立ち上がり部分の強度変化がブロ−ドに
なる。50%強度のスライスレベルを設定して2値化を
行う場合、スライスレベルのわずかの変動でも2値化画
素数が大きく変動するため、寸法測定の信頼性が低下す
る。更には、寸法が小さくなると、寸法の変化に対する
半値幅の変化が小さくなり、測定の感度が低下するとい
う問題点もある。また、レ−ザ光の光偏向による方法で
は、被測定物の反射率が変動した場合に正確な寸法測定
が出来なくなる。これは、特に寸法部21の反射率が変
化したときに最小強度Vnが変化するためである。本発
明の目的は上記の問題点を解決し、サブミクロンのオ−
ダの寸法を被測定物の反射率の変動に影響されることな
く、正確に測定する方法を提供することにある。
In the conventional half-width detection method, as the dimensions of the object to be measured become smaller, the intensity changes at the falling and rising portions of the video signal 23 become broader. When performing binarization by setting a slice level of 50% intensity, even a slight variation in the slice level causes a large variation in the number of binarized pixels, reducing the reliability of dimension measurement. Furthermore, as the dimensions become smaller, the change in the half-width with respect to the change in dimensions becomes smaller, resulting in a problem that the measurement sensitivity decreases. Further, in the method using optical deflection of a laser beam, accurate dimension measurement cannot be performed when the reflectance of the object to be measured changes. This is because the minimum intensity Vn changes particularly when the reflectance of the dimensional portion 21 changes. The purpose of the present invention is to solve the above problems and to
It is an object of the present invention to provide a method for accurately measuring the dimensions of an object without being affected by changes in reflectance of an object to be measured.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は以下に示す方法から成る。微小なスポット径
に集光したレ−ザ光を、エッジを有し、そのエッジ間の
寸法が測定される被測定物面上に照射して光偏向せしめ
、前記被測定物からの反射光を検出して前記被測定物の
寸法を測定する微小寸法の測定方法において、光偏向の
一周期において検出された被測定物上の偏向位置と反射
光強度の関係を表す反射光強度パタ−ンに対して、予め
設定された強度レベルにおけるパタ−ン幅を検出し、該
パタ−ン幅から前記被測定物の概略の寸法を算出し、該
寸法に対応する前記被測定物の概略のエッジ位置におけ
る反射光強度Veを設定せしめ、該反射光強度Veを中
心とし、Ve強度よりも強度レベルの高い領域と、Ve
強度よりも強度レベルの低い領域の各々に対して強度範
囲を設定せしめ、該強度範囲内にある前記反射光強度パ
タ−ンの強度デ−タを第一と第二の直線で近似せしめ、
該第一と第二の直線の交点を演算して前記被測定物の正
確なエッジ位置を決定せしめ、該エッジ間を光偏向した
偏向量から前記被測定物の寸法を測定するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises the method shown below. A laser beam focused on a minute spot diameter is irradiated onto the surface of an object to be measured that has edges and whose dimensions between the edges are to be measured, and the light is deflected to reflect light from the object. In a method of measuring minute dimensions in which the dimensions of the object to be measured are measured by detection, a reflected light intensity pattern representing the relationship between the deflection position on the object to be measured detected in one cycle of light deflection and the intensity of reflected light is used. In contrast, the pattern width at a preset intensity level is detected, the approximate dimensions of the object to be measured are calculated from the pattern width, and the approximate edge positions of the object to be measured corresponding to the dimensions are calculated. The reflected light intensity Ve is set at
setting an intensity range for each region with an intensity level lower than the intensity, and approximating the intensity data of the reflected light intensity pattern within the intensity range with first and second straight lines;
The intersection point of the first and second straight lines is calculated to determine an accurate edge position of the object to be measured, and the dimensions of the object to be measured are measured from the amount of light deflected between the edges.

【0009】[0009]

【作用】レ−ザ光の各偏向位置毎に、寸法が測定される
被測定物からの反射光強度を検出し、偏向の一周期につ
いて反射光強度パタ−ンを作成する。予め設定された強
度レベルを有するスライスレベルにより、反射光強度パ
タ−ンを2値化してパタ−ン幅を算出する。このパタ−
ン幅の情報から被測定物の寸法を算出するとき、パタ−
ン幅からの寸法への変換は変換感度が低いため、得られ
る寸法の精度はあまり高くなく概略の寸法である。この
概略寸法から被測定物の概略のエッジ位置に対応する反
射光強度Veを算出し、強度Veを基準にして正確なエ
ッジ位置を解析的に算出する。エッジ位置を検出するた
めに、レ−ザ光の強度ピ−ク位置がエッジに照射されて
いる状態を検出する。レ−ザ光はガウス型の強度分布を
有するため、その強度ピ−ク点がエッジに照射されてい
る状態の前後で反射光の強度変化率が変調される。従っ
て、反射光強度パタ−ンの強度の変化率が変調される特
徴点を検出すれば正確なエッジ位置を決定することがで
きる。このため、強度Veを中心として強度の大きい領
域と小さい領域を設定し、各々の領域にある反射光強度
デ−タを直線で近似する。この2つの直線は傾きが異な
るため交点が存在し、その交点位置がレ−ザ光の強度ピ
−ク点がエッジに照射されている状態である。このよう
にして概略のエッジ位置の情報から解析的に正確なエッ
ジ位置を決定し、エッジ間を偏向した偏向量から寸法を
計測する。
[Operation] At each deflection position of the laser beam, the intensity of reflected light from the object whose dimensions are to be measured is detected, and a reflected light intensity pattern is created for one period of deflection. The reflected light intensity pattern is binarized using a slice level having a preset intensity level, and the pattern width is calculated. This putter
When calculating the dimensions of the workpiece from the information on the width of the pattern,
Since the conversion sensitivity from the width of the ring to dimensions is low, the accuracy of the dimensions obtained is not very high and is only an approximate dimension. The reflected light intensity Ve corresponding to the approximate edge position of the object to be measured is calculated from this approximate dimension, and the accurate edge position is analytically calculated based on the intensity Ve. In order to detect the edge position, the state in which the edge is irradiated with the intensity peak position of the laser beam is detected. Since the laser beam has a Gaussian intensity distribution, the intensity change rate of the reflected light is modulated before and after the edge is irradiated with the intensity peak point. Therefore, by detecting feature points where the rate of change in intensity of the reflected light intensity pattern is modulated, accurate edge positions can be determined. For this reason, a region of high intensity and a region of low intensity are set around the intensity Ve, and the reflected light intensity data in each region is approximated by a straight line. Since these two straight lines have different slopes, there is an intersection point, and the edge is irradiated with the intensity peak point of the laser beam at the intersection point. In this way, accurate edge positions are analytically determined from information on approximate edge positions, and dimensions are measured from the amount of deflection between the edges.

【0010】0010

【実施例】以下に図面を用いて本発明の実施例を説明す
る。図1(イ)は本発明の微小寸法測定を行うときのシ
ステムブロック図、図1(ロ)は本発明による反射光強
度パタ−ンのデ−タ処理の方法を説明するフロ−チャ−
ト図である。図4はレ−ザ光の偏向によって検出される
反射光強度パタ−ンを説明する図で、グラフの横軸は被
測定物上の偏向位置、縦軸は反射光強度である。図1と
図4により寸法測定法を説明する。図1(イ)において
10はレ−ザ光源で、例えば、He−Neレ−ザ管、ま
たは半導体レ−ザから成りレ−ザ光100を放射する。 11はレ−ザ光100の光偏向(走査)を行わせる偏向
光学系で、音響光学偏向素子(以下にAOと略記する)
105、ビ−ムスプリッタ−110、レ−ザ光を微小な
スポット径に集光する対物レンズ115、及び図示して
いないが他のレンズ、ミラ−等の光学素子から構成され
る。120は偏向制御部で、偏向制御信号125により
AO105の偏向動作を制御する。偏向制御信号125
は電圧が連続的に変化するランプ波信号で、電圧に応じ
た位置にレ−ザ光を偏向する。12は寸法が測定される
被測定物で、図2に(イ)に示したものである。微小な
スポット径に集光されて被測定物12の面上を偏向され
るレ−ザ光130は反射され、対物レンズ115を透過
し、ビ−ムスプリッタ−110で反射されて反射光13
5として受光部140で検出される。受光部140はP
INフォトダイオ−ド、電流−電圧変換部、及びA/D
変換部から成り、偏向制御電圧125に同期して各偏向
位置毎での反射光強度を検出する。13は反射光強度パ
タ−ン作成部で、メモリ−から構成され、受光部140
で検出された各偏向位置の反射光強度をメモリ−回路で
記憶し、偏向の一周期における反射光強度のデ−タを記
憶する。150はデ−タ処理部でCPUで構成され、検
出された反射光強度パタ−ンのデ−タ処理を行い、寸法
を算出する。
Embodiments Examples of the present invention will be described below with reference to the drawings. FIG. 1(a) is a system block diagram when performing minute dimension measurement according to the present invention, and FIG. 1(b) is a flowchart explaining the method of data processing of reflected light intensity patterns according to the present invention.
This is a diagram. FIG. 4 is a diagram illustrating a reflected light intensity pattern detected by deflection of a laser beam, in which the horizontal axis of the graph represents the deflection position on the object to be measured, and the vertical axis represents the reflected light intensity. The dimension measurement method will be explained with reference to FIGS. 1 and 4. In FIG. 1A, 10 is a laser light source, which is made of, for example, a He--Ne laser tube or a semiconductor laser, and emits a laser beam 100. 11 is a deflection optical system that performs optical deflection (scanning) of the laser beam 100, and includes an acousto-optic deflection element (hereinafter abbreviated as AO).
105, a beam splitter 110, an objective lens 115 that focuses the laser beam into a minute spot diameter, and other optical elements such as lenses and mirrors (not shown). A deflection control unit 120 controls the deflection operation of the AO 105 using a deflection control signal 125. Deflection control signal 125
is a ramp wave signal whose voltage changes continuously, and deflects the laser beam to a position according to the voltage. Reference numeral 12 denotes an object whose dimensions are to be measured, as shown in (a) in FIG. Laser light 130 that is focused into a minute spot diameter and deflected onto the surface of the object to be measured 12 is reflected, passes through the objective lens 115, is reflected by the beam splitter 110, and becomes reflected light 13.
5 and is detected by the light receiving unit 140. The light receiving section 140 is P
IN photodiode, current-voltage converter, and A/D
It consists of a converter and detects the intensity of reflected light at each deflection position in synchronization with the deflection control voltage 125. Reference numeral 13 denotes a reflected light intensity pattern creation section, which is composed of a memory, and a light receiving section 140.
The reflected light intensity at each deflection position detected in the above is stored in a memory circuit, and the data of the reflected light intensity in one period of deflection is stored. Reference numeral 150 denotes a data processing section which is composed of a CPU and processes data of the detected reflected light intensity pattern to calculate dimensions.

【0011】次に、図1(ロ)に示したデ−タ処理のフ
ロ−チャ−ト図を用いてデ−タ処理の方法を説明する。 なお、以下に述べるデ−タ処理はマイクロプロセッサ−
による数値演算である。図4の波形41が反射光強度パ
タ−ンで、図3に示した波形31と同様のものでV字形
のパタ−ンである。図1(ロ)の14はパタ−ン幅検出
で、反射光強度パタ−ンの予め設定されたスライス強度
レベルでのパタ−ン幅を検出する。図4の線42がパタ
−ン幅Phである。このとき設定するスライスレベルは
50%強度レベルである。パタ−ン幅Phは被測定物1
2の直接の寸法ではなく、寸法よりも大きな値であり、
パタ−ン幅Phを寸法変換係数を用いて寸法へ変換する
。このとき算出される寸法は正確な寸法ではなく、一般
に誤差が含まれている。それは、寸法が小さくなったと
きは、寸法の変化に対してパタ−ン幅Phの変化が小さ
くなり、変換感度が低下するためである。従ってパタ−
ン幅Phからは概略の寸法しか得られない。しかし、こ
のパタ−ン幅Phは被測定物の反射率に依存しないで、
照射されるビ−ムスポット径が一定であれば寸法に固有
の値を持つ。
Next, a data processing method will be explained using the data processing flowchart shown in FIG. 1(b). The data processing described below is performed using a microprocessor.
This is a numerical calculation based on A waveform 41 in FIG. 4 is a reflected light intensity pattern, which is similar to the waveform 31 shown in FIG. 3 and is a V-shaped pattern. Reference numeral 14 in FIG. 1B indicates pattern width detection, which detects the pattern width of the reflected light intensity pattern at a preset slice intensity level. A line 42 in FIG. 4 is the pattern width Ph. The slice level set at this time is the 50% intensity level. The pattern width Ph is the object to be measured 1
It is not a direct dimension of 2, but a value larger than the dimension,
The pattern width Ph is converted into a dimension using a dimension conversion coefficient. The dimensions calculated at this time are not exact dimensions and generally include errors. This is because when the dimensions become smaller, the change in pattern width Ph becomes smaller with respect to the change in dimensions, and the conversion sensitivity decreases. Therefore, the putter
Only approximate dimensions can be obtained from the ring width Ph. However, this pattern width Ph does not depend on the reflectance of the object to be measured;
If the diameter of the irradiated beam spot is constant, it has a value specific to the dimension.

【0012】15はエッジ強度設定で、パタ−ン幅Ph
から求められた概略の寸法に対応する概略のエッジ位置
における反射光強度レベルを設定する。図4の線43は
概略の寸法に対応するパタ−ン幅Peで、そのときの反
射光強度レベルVeを算出する。偏向光学系11により
単位の偏向制御電圧当りの偏向量が決っているため、概
略の寸法値から前述のパタ−ン幅Peは容易に決定する
ことができる。44は一方(左側)のエッジに対応する
強度、45は他方(右側)のエッジに対応する強度で、
一般に2つの強度は等しい。この強度Veを基準にして
正確なエッジを決定し、正確な寸法を測定する。16は
強度範囲設定で、正確なエッジを決定するための各種の
計算を行うための計算範囲を設定する。図4の範囲46
は左側のエッジ位置を決定するためのVe強度よりも強
度の高い領域、範囲47は同じく強度の低い領域である
。範囲48は右側のエッジ位置を決定するためのVe強
度よりも強度の高い領域、範囲49は同じく強度の低い
領域で、以上の4つの領域を設定する。なお、反射光強
度パタ−ンが最小強度位置に関して左右対称であれば、
いずれか一方の側について強度範囲を設定しても良い。
15 is edge strength setting, pattern width Ph
The reflected light intensity level at the approximate edge position corresponding to the approximate dimension determined from is set. A line 43 in FIG. 4 is a pattern width Pe corresponding to the approximate dimension, and the reflected light intensity level Ve at that time is calculated. Since the amount of deflection per unit deflection control voltage is determined by the deflection optical system 11, the above-mentioned pattern width Pe can be easily determined from approximate dimensional values. 44 is the intensity corresponding to one (left) edge, 45 is the intensity corresponding to the other (right) edge,
Generally the two strengths are equal. An accurate edge is determined based on this strength Ve, and accurate dimensions are measured. 16 is an intensity range setting, which sets a calculation range for performing various calculations to determine accurate edges. Range 46 in Figure 4
is a region where the intensity is higher than the Ve intensity for determining the left edge position, and the range 47 is a region where the intensity is also lower. The range 48 is a region with a higher intensity than the Ve intensity for determining the right edge position, and the range 49 is a region with a lower intensity, and the above four regions are set. Note that if the reflected light intensity pattern is symmetrical with respect to the minimum intensity position,
An intensity range may be set for either side.

【0013】図1(ロ)の17は直線化演算で、強度範
囲設定16で設定された前述の強度範囲46、47、4
8、49にある反射光強度パタ−ンの強度デ−タを直線
近似する。このとき、直線化には最小自乗法を用いる。 反射光強度Veよりも高い強度範囲における直線を第一
の直線と呼び、反射光強度Veよりも低い強度範囲にお
ける直線を第二の直線と呼ぶ。反射光強度パタ−ンのV
e強度付近の特定の強度範囲では、強度変化は十分に直
線と見なすことができる。このとき一方のエッジ(左側
)、他方(右側)のエッジについて二本ずつの直線が設
定できる。18は交点算出で、直線化演算17で決定さ
れた第一の直線と第二の直線の交点を決定する。第一の
直線の傾きは第二の直線の傾きよりも大きいため、二つ
の直線には交点が存在する。この交点位置は被測定物1
2の正確なエッジ位置になる。このエッジ位置はレ−ザ
光の偏向制御信号125の電圧値で与えられる。19は
寸法算出で、交点算出18で決定された二つのエッジ位
置に対応するレ−ザ光の偏向制御電圧の差の電圧を寸法
変換係数を用いて実際の寸法に変換する。
Reference numeral 17 in FIG. 1(b) is a linearization calculation, in which the above-mentioned intensity ranges 46, 47, 4 set in the intensity range setting 16 are
The intensity data of the reflected light intensity pattern in 8 and 49 is linearly approximated. At this time, the least squares method is used for linearization. A straight line in an intensity range higher than the reflected light intensity Ve is called a first straight line, and a straight line in an intensity range lower than the reflected light intensity Ve is called a second straight line. Reflected light intensity pattern V
In a certain intensity range around the e intensity, the intensity change can be considered sufficiently linear. At this time, two straight lines can be set for one edge (left side) and the other edge (right side). 18 is an intersection calculation, which determines the intersection of the first straight line and the second straight line determined in the linearization operation 17. Since the slope of the first straight line is greater than the slope of the second straight line, there is an intersection between the two straight lines. This intersection position is measured object 1
2 accurate edge position. This edge position is given by the voltage value of the laser beam deflection control signal 125. 19 is a dimension calculation, in which the voltage difference between the deflection control voltages of the laser beams corresponding to the two edge positions determined in the intersection point calculation 18 is converted into an actual dimension using a dimension conversion coefficient.

【0014】次に、本発明による反射光強度パタ−ンの
具体的な演算の方法を説明する。図5(イ)に被測定物
12の面上でのレ−ザ光の偏向の状態を示し、図5(ロ
)に反射光強度パタ−ンの各偏向位置における強度の関
係を示し、図5(ハ)に50%強度レベルにおけるパタ
−ン幅と寸法との関係を示す。図5(イ)において、被
測定物は図2に示した磁気ヘッドで、50は磁性体から
成るトラック部、51はガラスから成るギャップで、エ
ッジ53、54を有し、エッジ間寸法を測定する。52
は照射するレ−ザ光で、その強度分布はガウス型で、ピ
−ク強度520を中心として対称な分布を持つ。ここで
、レ−ザ光52をA点からB点まで偏向する。レ−ザ光
52のビ−ムスポットの直径をピ−ク強度値の13.5
%の強度点で定義すると、〜1.5μmであるが、ギャ
ップ寸法Gが〜0.5μmであるため、ギャップ51に
レ−ザ光52が照射されているとき、その一部のみが照
射されることになる。
Next, a specific method of calculating a reflected light intensity pattern according to the present invention will be explained. FIG. 5(a) shows the state of deflection of the laser beam on the surface of the object to be measured 12, and FIG. 5(b) shows the relationship between the intensity at each deflection position of the reflected light intensity pattern. 5(c) shows the relationship between the pattern width and dimensions at the 50% intensity level. In FIG. 5(A), the object to be measured is the magnetic head shown in FIG. 2, 50 is a track portion made of a magnetic material, 51 is a gap made of glass, and has edges 53 and 54, and the dimension between the edges is measured. do. 52
is a laser beam to be irradiated, and its intensity distribution is Gaussian, and has a symmetrical distribution with a peak intensity of 520 as the center. Here, the laser beam 52 is deflected from point A to point B. The diameter of the beam spot of the laser beam 52 is 13.5 of the peak intensity value.
% intensity point, it is ~1.5 μm, but since the gap dimension G is ~0.5 μm, when the gap 51 is irradiated with the laser beam 52, only a part of it is irradiated. That will happen.

【0015】S1状態はレ−ザ光52の右端部がエッジ
53の直前に照射された状態で、反射光はトラック50
からの反射になり、反射光強度は最大である。S1状態
から偏向が進みS2状態になると、レ−ザ光52のピ−
ク強度位置がエッジ53に一致する。S3状態はレ−ザ
光52のピ−ク強度位置がギャップ51の中心部に照射
された状態、S4状態はS2状態と同じくレ−ザ光52
のピ−ク強度位置がエッジ54に照射された状態、S5
状態はS1状態と同じくレ−ザ光52の左端部がエッジ
54の直後に照射された状態である。図では偏向の代表
的な状態を示したが、実際の偏向はもっと細かいステッ
プ、例えばレ−ザ光52のビ−ム直径の1/100以下
の0.01μm程度で行う。トラック部50の反射率R
sとギャップ部51の反射率Rmは異なり、Rs>Rm
であるため偏向の一周期で検出される反射光強度パタ−
ンは図5(ロ)に示したようなV形状の波形41を有す
るパタ−ンになるが、S3状態で反射光強度が最小にな
る。S2状態及びS4状態では、その前後の偏向状態で
反射光強度の変化率が変調される。本発明による寸法測
定方法は反射光強度パタ−ンからS2状態とS4状態を
解析的に検出するもので、S2状態からS4状態への偏
向量から寸法を求める。
In the S1 state, the right end of the laser beam 52 is irradiated just before the edge 53, and the reflected light is on the track 50.
The intensity of the reflected light is maximum. When the deflection progresses from the S1 state to the S2 state, the peak of the laser beam 52
The dark strength position coincides with the edge 53. The S3 state is a state in which the peak intensity position of the laser beam 52 is irradiated to the center of the gap 51, and the S4 state is a state in which the laser beam 52 is irradiated as in the S2 state.
The state where the peak intensity position of is irradiated on the edge 54, S5
This state is the same as the S1 state, in which the left end portion of the laser beam 52 is irradiated immediately after the edge 54. Although the figure shows a typical state of deflection, the actual deflection is performed in finer steps, for example, about 0.01 .mu.m, which is less than 1/100 of the beam diameter of the laser beam 52. Reflectance R of track portion 50
s and the reflectance Rm of the gap portion 51 are different, and Rs>Rm
Therefore, the reflected light intensity pattern detected in one period of deflection is
Although the pattern has a V-shaped waveform 41 as shown in FIG. 5(b), the reflected light intensity becomes minimum in the S3 state. In the S2 state and the S4 state, the rate of change of the reflected light intensity is modulated depending on the polarization state before and after the S2 state and the S4 state. The dimension measuring method according to the present invention analytically detects the S2 state and the S4 state from the reflected light intensity pattern, and determines the dimension from the amount of deflection from the S2 state to the S4 state.

【0016】S2状態及びS4状態は反射光強度が特徴
的に変化する状態である。S2状態の場合は、レ−ザ光
52のピ−ク強度位置を中心として左側と右側の強度差
は最大になり、S2状態からS3状態の方向に偏向が進
と、左側の部分(トラックに照射されている部分)は強
度が大きく低下し、右側の部分(ギャップに照射されて
いる部分)は強度がわずかに増加する。従ってS2状態
を境にして、その前後では反射光強度の変化率が異なる
。S4状態ではS2状態と逆になる。この変化率はあま
り大きくなく、反射光強度パタ−ンだけから直接にエッ
ジ位置53及び54を決定できないため、本発明では予
め反射光強度パタ−ンのパタ−ン幅情報から概略のエッ
ジ位置を決定し、その位置を基準としてエッジ位置53
、54を決定する。
The S2 state and the S4 state are states in which the reflected light intensity changes characteristically. In the case of the S2 state, the intensity difference between the left and right sides of the laser beam 52 at its peak intensity position is maximum, and as the deflection progresses from the S2 state to the S3 state, the left part (on the track) The part on the right (the part that is illuminated by the gap) has a large decrease in intensity, and the part on the right (the part that is illuminated in the gap) has a slight increase in intensity. Therefore, the rate of change in reflected light intensity differs before and after the S2 state. The S4 state is the opposite of the S2 state. This rate of change is not very large, and the edge positions 53 and 54 cannot be determined directly from the reflected light intensity pattern alone. Therefore, in the present invention, the approximate edge positions are determined in advance from the pattern width information of the reflected light intensity pattern. The edge position 53 is determined based on that position.
, 54 are determined.

【0017】図5(ハ)に反射光強度パタ−ン波形41
の50%強度レベルにおけるパタ−ン幅Phと寸法Gの
関係例を示す。グラフの横軸は寸法、縦軸はパタ−ン幅
で、偏向を制御する電圧で示している。図から明かなご
とく、寸法が小さくなるとパタ−ン幅Phの変化が小さ
くなる。寸法が0.5μm程度では、パタ−ン幅Phは
寸法の変化の30%しか変化しないため、正確な寸法を
直接に算出することが困難になってくる。このとき、図
5(ハ)に示した関係の変換係数を予め求めておき、パ
タ−ン幅Phから概略の寸法Gnを算出する。次に、概
略寸法Gnに対応するパタ−ン幅を求めて概略エッジ位
置を算出する。このときのパタ−ン幅を図5(ロ)の5
7に示す。このようにして概略のエッジ位置58及び5
9が決定できる。このときの概略エッジ位置における反
射光強度がVeである。
FIG. 5(c) shows a reflected light intensity pattern waveform 41.
An example of the relationship between the pattern width Ph and the dimension G at the 50% intensity level is shown. The horizontal axis of the graph is the dimension, the vertical axis is the pattern width, and the voltage used to control the deflection is shown. As is clear from the figure, as the dimensions become smaller, the change in pattern width Ph becomes smaller. When the dimension is about 0.5 μm, the pattern width Ph changes by only 30% of the change in dimension, so it becomes difficult to directly calculate the exact dimension. At this time, the conversion coefficient of the relationship shown in FIG. 5(c) is determined in advance, and the approximate dimension Gn is calculated from the pattern width Ph. Next, the pattern width corresponding to the approximate dimension Gn is determined to calculate the approximate edge position. The pattern width at this time is 5 in Figure 5 (b).
7. In this way, the approximate edge positions 58 and 5
9 can be determined. The reflected light intensity at the approximate edge position at this time is Ve.

【0018】次に概略エッジ位置の情報から正確なエッ
ジ位置を決定する方法について説明する。図6(イ)に
寸法Gとエッジ位置53、54における反射光強度の関
係を示し、図6(ロ)に直線近似法によるエッジ位置の
算出を示す。図6(イ)において、グラフの横軸は寸法
G、縦軸はエッジ位置での反射光強度Vtで、反射光強
度パタ−ンの最大強度を1、最小強度を0に規格化した
ときの規格化強度で示している。図から明かなごとく、
反射光強度Vtは寸法Gに比例して変化し、例えば0.
5μmの寸法では約15%のVt強度となる。但し、同
一寸法でもVt強度は照射するレ−ザ光のビ−ム径によ
って異なる。以上に示した正確なエッジ位置に対応する
強度Vtに対して、測定で得られた概略のエッジ位置に
対応する強度Veは一般に異なる。前述したごとく、強
度Veは誤差を含むために真の強度Vtに対して数%程
度のバラツキがある。このバラツキを吸収して正確なエ
ッジ位置を決定するために反射光強度デ−タを以下に示
す直線化近似の処理を行う。
Next, a method for determining accurate edge positions from information on approximate edge positions will be explained. FIG. 6(a) shows the relationship between the dimension G and the intensity of reflected light at the edge positions 53 and 54, and FIG. 6(b) shows calculation of the edge position by the linear approximation method. In Fig. 6 (a), the horizontal axis of the graph is the dimension G, and the vertical axis is the reflected light intensity Vt at the edge position, when the maximum intensity of the reflected light intensity pattern is normalized to 1 and the minimum intensity to 0. Shown as normalized strength. As is clear from the diagram,
The reflected light intensity Vt changes in proportion to the dimension G, for example 0.
A dimension of 5 μm results in a Vt intensity of about 15%. However, even if the dimensions are the same, the Vt intensity varies depending on the beam diameter of the irradiated laser beam. The intensity Ve corresponding to the approximate edge position obtained by measurement is generally different from the intensity Vt corresponding to the exact edge position shown above. As described above, the intensity Ve includes errors and therefore varies by several percent with respect to the true intensity Vt. In order to absorb this variation and determine accurate edge positions, the reflected light intensity data is subjected to the following linearization approximation process.

【0019】図6(ロ)においては左側エッジについて
の解析法を示す。右側エッジについても同様である。範
囲46及び47については図4で説明したが、Ve強度
よりも高い強度範囲46と低い強度範囲47を設定する
。Vt強度が15%であるとき、Ve強度として13%
が得られたとする。このとき、範囲46は16%から3
0%までの強度範囲に設定し、範囲47は10%から5
%までの範囲に設定しておく。但し前述の強度範囲は寸
法によって異なる。以上の各々の強度範囲では反射光強
度はほぼ直線的に変化しているため、範囲46について
は線62に示した第一の直線を、範囲47については線
64に示した第二の直線を決定する。このときの直線化
演算は最小自乗法を用いる。第一の直線64のほうが第
二の直線64よりも傾きが大きく、点66において二つ
の直線が交わる。この交点はS2状態で反射光強度の変
化の特徴点であり、正確なエッジ位置に対応する。右側
のエッジについても同様な方法で交点68を算出し、交
点66と交点68の間を偏向させたときの偏向制御電圧
から寸法Gを算出する。
FIG. 6B shows an analysis method for the left edge. The same applies to the right edge. Although the ranges 46 and 47 have been explained with reference to FIG. 4, an intensity range 46 higher than the Ve intensity and an intensity range 47 lower than the Ve intensity are set. When Vt intensity is 15%, Ve intensity is 13%
Suppose that we obtain At this time, the range 46 is from 16% to 3
Set the intensity range to 0%, range 47 is from 10% to 5
Set it in the range up to %. However, the aforementioned strength range varies depending on the size. Since the reflected light intensity changes almost linearly in each of the above intensity ranges, the first straight line shown by line 62 is used for range 46, and the second straight line shown by line 64 is used for range 47. decide. The linearization calculation at this time uses the least squares method. The first straight line 64 has a greater slope than the second straight line 64, and the two straight lines intersect at a point 66. This intersection is a characteristic point of the change in reflected light intensity in the S2 state and corresponds to an accurate edge position. For the right edge, the intersection 68 is calculated in the same manner, and the dimension G is calculated from the deflection control voltage when deflecting between the intersection 66 and the intersection 68.

【0020】以上の説明において、正確なエッジ位置を
検出するためにはレ−ザ光を微小なステップ距離で偏向
することが必要である。そのために安定な偏向が可能な
AO105を用いる。本発明による寸法測定を行うため
に、1.5μmの直径に集光したレ−ザ光を0.01μ
mのステップで偏向させる。このときに用いる偏向光学
系は、従来の技術の項に述べた本願発明者による特許出
願公報に詳述されているため本願では省略する。また、
上記説明では反射光強度を直線で近似する例を述べたが
、2次、3次、4次等の多項式で近似を行い、その多項
式の交点を算出しても良い。
In the above description, in order to accurately detect the edge position, it is necessary to deflect the laser beam by a minute step distance. For this purpose, AO105, which is capable of stable deflection, is used. In order to measure dimensions according to the present invention, a laser beam focused to a diameter of 1.5 μm is
Deflect in m steps. The deflection optical system used at this time is described in detail in the patent application publication by the inventor mentioned in the prior art section, so it will be omitted in this application. Also,
In the above description, an example was described in which the reflected light intensity is approximated by a straight line, but the approximation may be performed using a quadratic, tertiary, or quartic polynomial, and the intersection of the polynomials may be calculated.

【0021】[0021]

【発明の効果】上記のごとく本発明によれば、寸法変換
感度の余り良くない半値幅情報による概略の寸法値を基
にして、反射光強度を解析して正確なエッジを検出する
ことが可能であり、特別なハ−ドウエア−を用いること
なく、簡素なソフトウエア−で被測定物の反射率の変動
に影響されないで、0.01μm精度での正確なサブミ
クロン寸法計測を行うことができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to accurately detect edges by analyzing reflected light intensity based on approximate dimension values based on half-width information whose dimension conversion sensitivity is not very good. It is possible to perform accurate submicron dimension measurements with an accuracy of 0.01 μm without using special hardware and with simple software, without being affected by changes in the reflectance of the measured object. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の寸法測定方法を説明するブロック図で
、図1(イ)は全体の構成を示し、図1(ロ)は寸法測
定のデ−タ処理のフロ−チャ−トを示す図である。
FIG. 1 is a block diagram illustrating the dimension measurement method of the present invention; FIG. 1 (A) shows the overall configuration, and FIG. 1 (B) shows a flowchart of data processing for dimension measurement. It is a diagram.

【図2】半値幅検出法による従来技術を説明する図であ
る。
FIG. 2 is a diagram illustrating a conventional technique using a half-width detection method.

【図3】レ−ザ光の偏向による反射光強度パタ−ンの強
度から寸法を算出する従来技術を説明する図である。
FIG. 3 is a diagram illustrating a conventional technique for calculating dimensions from the intensity of a reflected light intensity pattern caused by deflection of laser light.

【図4】本発明による反射光強度パタ−ンの処理方法を
説明する図である。
FIG. 4 is a diagram illustrating a method for processing a reflected light intensity pattern according to the present invention.

【図5】本発明によるレ−ザ光の光偏向と反射光強度パ
タ−ンの関係を説明する図で、図5(イ)はレ−ザ光の
偏向の状態図、図5(ロ)は反射光強度パタ−ンの半値
幅と概略のエッジの関係を説明する図、図5(ハ)は寸
法と半値幅の関係を説明する図である。
FIG. 5 is a diagram explaining the relationship between the optical deflection of a laser beam and the reflected light intensity pattern according to the present invention, FIG. 5(a) is a state diagram of the deflection of the laser beam, and FIG. 5(b) 5 is a diagram illustrating the relationship between the half-width of the reflected light intensity pattern and the approximate edge, and FIG. 5C is a diagram illustrating the relationship between the dimension and the half-width.

【図6】本発明によるエッジ位置を決定する方法を説明
する図で、図6(イ)は寸法とエッジ位置における反射
光強度の関係を説明する図、図6(ロ)は直線近似によ
るエッジ位置を決定する方法を説明する図である。
FIG. 6 is a diagram illustrating a method for determining an edge position according to the present invention; FIG. 6(a) is a diagram illustrating the relationship between dimensions and reflected light intensity at an edge position; FIG. 6(b) is an edge diagram by linear approximation It is a figure explaining the method of determining a position.

【符号の説明】[Explanation of symbols]

10  レ−ザ光源 13  反射光強度パタ−ン作成部 14  パタ−ン幅検出 15  エッジ強度設定 16  強度範囲設定 17  直線化演算 18  交点算出 19  寸法算出 41  反射光強度パタ−ン 62  第一の直線 64  第二の直線 10 Laser light source 13 Reflected light intensity pattern creation section 14 Pattern width detection 15 Edge strength setting 16 Intensity range setting 17 Linearization operation 18 Intersection calculation 19 Dimension calculation 41 Reflected light intensity pattern 62 First straight line 64 Second straight line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  微小なスポット径に集光したレ−ザ光
を、エッジを有し、そのエッジ間の寸法が測定される被
測定物面上に照射して光偏向せしめ、前記被測定物から
の反射光を検出して前記被測定物の寸法を測定する微小
寸法の測定方法において、光偏向の一周期において検出
された被測定物上の偏向位置と反射光強度の関係を表す
反射光強度パタ−ンに対して、予め設定された強度レベ
ルにおけるパタ−ン幅を検出し、該パタ−ン幅から前記
被測定物の概略の寸法を算出し、該寸法に対応する前記
被測定物の概略のエッジ位置における反射光強度Veを
設定せしめ、該反射光強度Veを中心とし、Ve強度よ
りも強度レベルの高い領域と、Ve強度よりも強度レベ
ルの低い領域の各々に対し強度範囲を設定せしめ、該強
度範囲内にある前記反射光強度パタ−ンの強度デ−タを
第一と第二の直線で近似せしめ、該第一と第二の直線の
交点を演算して前記被測定物の正確なエッジ位置を決定
せしめ、該エッジ間を光偏向した偏向量から前記被測定
物の寸法を測定することを特徴とする微小寸法の測定方
法。
1. A laser beam condensed into a minute spot diameter is irradiated onto the surface of an object to be measured which has edges and whose dimensions between the edges are to be measured, and the light is deflected. In a micro-dimension measurement method in which the dimensions of the object to be measured are measured by detecting the reflected light from For the intensity pattern, the pattern width at a preset intensity level is detected, the approximate dimensions of the object to be measured are calculated from the pattern width, and the approximate dimensions of the object to be measured corresponding to the dimensions are determined. Set the reflected light intensity Ve at the approximate edge position of the intensity data of the reflected light intensity pattern within the intensity range is approximated by first and second straight lines, and the intersection point of the first and second straight lines is calculated to determine the intensity data of the reflected light intensity pattern within the intensity range. 1. A method for measuring minute dimensions, comprising: determining accurate edge positions of the object; and measuring the dimensions of the object from the amount of light deflected between the edges.
JP41533890A 1990-12-28 1990-12-28 Measuring method for micro-size Pending JPH04232802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41533890A JPH04232802A (en) 1990-12-28 1990-12-28 Measuring method for micro-size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41533890A JPH04232802A (en) 1990-12-28 1990-12-28 Measuring method for micro-size

Publications (1)

Publication Number Publication Date
JPH04232802A true JPH04232802A (en) 1992-08-21

Family

ID=18523712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41533890A Pending JPH04232802A (en) 1990-12-28 1990-12-28 Measuring method for micro-size

Country Status (1)

Country Link
JP (1) JPH04232802A (en)

Similar Documents

Publication Publication Date Title
US20020125449A1 (en) Surface defect tester
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
US4906097A (en) Imaging and inspection apparatus and method
JPH04232802A (en) Measuring method for micro-size
JPH0448204A (en) Height measurement system
JP2859359B2 (en) Micro Dimension Measurement Method
KR980011955A (en) Position detection method by the reflected scattered light of the laser beam irradiated to the position detection object
JP4411373B2 (en) Surface inspection apparatus and method
JPS59184804A (en) Optical distance sensor
JPH07190735A (en) Optical measuring device and its measuring method
JPH07225195A (en) Flaw measuring method for minute pattern
KR0181993B1 (en) Apparatus and method for measuring visual size of material
JPH04240507A (en) Measuring method of minute dimension
JPH05231848A (en) Optical displacement sensor
JP2582107B2 (en) Micro-dimension measuring device using laser light
JP3013647B2 (en) Measuring device for discontinuous structures
JP2520431B2 (en) Minute dimension measurement method using laser light
JPS6367508A (en) Method and instrument for measuring coordinates of tape end
JPH04232801A (en) Measuring method for micro-size
JPH0413907A (en) Measuring method of minute dimension
JPS5826325Y2 (en) position detection device
JPS62192610A (en) Noncontact displacement measuring instrument
JPH0333603A (en) Measuring method of micro dimension
JPS63180804A (en) Method for measuring minute dimension
JPH02300617A (en) Shape measuring instrument