JPH04231849A - Prediction of quality of product by analysis of basic factor of spectrum of reacting body - Google Patents

Prediction of quality of product by analysis of basic factor of spectrum of reacting body

Info

Publication number
JPH04231849A
JPH04231849A JP3107702A JP10770291A JPH04231849A JP H04231849 A JPH04231849 A JP H04231849A JP 3107702 A JP3107702 A JP 3107702A JP 10770291 A JP10770291 A JP 10770291A JP H04231849 A JPH04231849 A JP H04231849A
Authority
JP
Japan
Prior art keywords
product
analysis
value
test mixture
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3107702A
Other languages
Japanese (ja)
Inventor
Harold C Brashears
ハロルド シー.ブラシェアーズ
Jr Arthur Katzakian
アーサー カツァキアン,ジュニア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerojet Rocketdyne Inc
Original Assignee
Aerojet General Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerojet General Corp filed Critical Aerojet General Corp
Publication of JPH04231849A publication Critical patent/JPH04231849A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4625Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1738Optionally different kinds of measurements; Method being valid for different kinds of measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/129Using chemometrical methods

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE: To make it possible to predict the properties of reaction product by spectrally analyzing reactive material, and analyzing quantitative factor induced from the spectrum. CONSTITUTION: To confirm the individual values of a series of parameters varying together with the values of selected feature, test mixture is spectrally analyzed, and a series of quantitative factors corresponding to the confirmed value is induced. To induce the predicted value of the selected feature of the product, the regression coefficient of the quantitative factor is conducted by using the regression coefficient of the representative of the mutual relationship between the predetermined value of the selected feature of the product due to the preliminarily selected in a series of standard mixtures and the quantitative factor induced from the spectral analysis for the mixture. Thus, the properties of the product can be predicted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】本発明は、化学的方法の分野、特に因子分
析による品質調整の分野に関する。多くのタイプの化学
的方法において、反応生成物が規格を満たすかどうかを
前もって、原料をモニターすることによって決定するこ
とができる。当業者が既知のように、このタイプの前も
っての品質の調整は、時間、エネルギー使用及び原料の
費用における相当の節約をもたらすことができる。
The present invention relates to the field of chemical methods, in particular to the field of quality control by factor analysis. In many types of chemical processes, whether the reaction products meet specifications can be determined in advance by monitoring the raw materials. As those skilled in the art know, this type of pre-quality control can result in considerable savings in time, energy usage and raw material costs.

【0002】しかしながら、信頼でき、そして意味深い
情報は、それが原料又はサンプリングされる生成物のい
づれかにかかわらず、必要とされる。寄与する要因は、
サンプルがどのような代表物であるか、それがサンプリ
ングと分析との間で物理的又は化学的変化を受けるか又
は受けないか及びどれぐらいの頻度でサンプルが取られ
るかである。情報はまた有用であるべきであり、すなわ
ちそれは対象の性質の正しい表示を提供し、そしてさら
に小さなサンプルから得られるべきであり、そして分析
は、多くの反応が生じる前、改善的な作用を可能にする
ほど十分に早くあるべきである。原料分析に基づく予測
は、対象の性質が、初めに生成物を形成しないで実際予
測され得る性質であるべきである追加の必要条件を有す
る。
However, reliable and meaningful information is needed, whether it is the raw material or the product being sampled. The contributing factors are:
How representative the sample is, whether it undergoes or does not undergo physical or chemical changes between sampling and analysis, and how often the sample is taken. The information should also be useful, i.e. it should provide a correct indication of the nature of the object, and should even be obtained from small samples, and the analysis should allow for remedial action before many reactions occur. should be early enough to do so. Predictions based on raw material analysis have the additional requirement that the property of interest should be one that can actually be predicted without first forming the product.

【0003】反応生成物の実質的に無限の種々の性質が
原料に対して得られたスペクトルデータに基づく因子分
析により予測され得ることが発見された。スペクトル情
報の因子分析は、既知の技法であり、材料の反応生成物
の性能特徴の予測よりもむしろ、スペクトル分析が行な
われる材料の性能特徴を予測することが現在まで制限さ
れている。本発明に記載される新規で且つ驚くべき発見
は、その性質が予測される材料と分析される材料との間
に化学反応が存在するシステムにこの技法を都合良く適
用できることである。
It has been discovered that a virtually unlimited variety of properties of reaction products can be predicted by factor analysis based on spectral data obtained for the raw materials. Factor analysis of spectral information is a known technique, and to date has been limited to predicting the performance characteristics of the materials on which the spectral analysis is performed, rather than the performance characteristics of reaction products of the materials. The novel and surprising discovery described in this invention is that this technique can be advantageously applied to systems where there is a chemical reaction between the material whose properties are predicted and the material being analyzed.

【0004】本発明に対応する文献は、1983年1月
25日に発行されたアメリカ特許第 4,370,20
1号(Lowenhaupt, D.E.)及び198
7年10月20日に発行されたアメリカ特許第 4,7
01,838号(Swinkels, D.A.など)
並びに1984年11月22日にPatent Coo
perationTreaty, Publicati
on No.WO84/04594 として出版された
後者に対応する国際出願を包含する。Lowenhau
ptは、石炭のブレンドをモニターし、そして調節する
ために因子分析の使用を開示する。Swinkelsな
どは、ブレンドを調速するために因子分析を用いての種
々の材料の固体粒子の連続ブレンドのための調節された
ループを開示する。Swinkelsなどの例2は、石
炭から製造されるケークの微小強度指数を予測するため
に石炭に対しての因子分析を記載するが、しかしこれは
真の化学反応よりもむしろ結晶構造の変化に過ぎない。 FTIR因子分析に関する追加の文献は、Lowenh
auptのカバーページ上に列挙される引例及びSwi
nkelsなどの国際出願に関係する国際調査報告に見
出され得る。
A document corresponding to the present invention is US Pat. No. 4,370,20, issued on January 25, 1983.
No. 1 (Lowenhaupt, D.E.) and 198
U.S. Patent Nos. 4 and 7 issued on October 20, 2017
No. 01,838 (Swinkels, D.A., etc.)
and Patent Coo on November 22, 1984.
perationTreaty, Publicity
on No. The latter includes the corresponding international application published as WO 84/04594. Lowenhau
pt discloses the use of factor analysis to monitor and adjust coal blends. Swinkels et al. disclose a regulated loop for continuous blending of solid particles of various materials using factor analysis to regulate the blend. Example 2 of Swinkels et al. describes a factor analysis on coal to predict the microstrength index of cakes made from coal, but this is only a change in crystal structure rather than a true chemical reaction. do not have. Additional literature on FTIR factor analysis can be found in Lowenh
References listed on the cover page of aupt and Swi
can be found in international search reports relating to international applications such as NKELS.

【0005】発明の特定の記載本発明の分析は、反応混
合物から単離された少量の代表的なサンプル又は反応混
合物自体の一部のいづれかである試験混合物に対して行
なわれる。用語“反応混合物”とは、反応後、生成物に
転換されるまだ未反応の種を含む混合物を示すために用
いられる。本発明はまた、反応体の他に他の成分を含む
システム及び他の成分が、分析に続いて添加され、又は
除去される(たとえば溶媒)システムへの適用にも向け
られる。本発明の試験混合物は、単一相、たとえば液体
混合物、溶液又はエマルジョン又は種々の種の又は組成
物の固体粒子の混合物であり得る。また、液相及び固相
の両者を含む試験混合物、たとえばスラリー、懸濁液及
びペーストにも向けられる。生成物はまた、単一又は複
数の相から成ることもできる。
SPECIFIC DESCRIPTION OF THE INVENTION The analysis of the present invention is performed on a test mixture that is either a small representative sample isolated from the reaction mixture or a portion of the reaction mixture itself. The term "reaction mixture" is used to refer to a mixture containing unreacted species that is converted into products after reaction. The present invention is also directed to applications in systems that contain other components in addition to the reactants and in which other components are added or removed (eg, solvents) following analysis. The test mixture of the invention can be a single phase, for example a liquid mixture, solution or emulsion or a mixture of solid particles of different species or compositions. It is also directed to test mixtures containing both liquid and solid phases, such as slurries, suspensions and pastes. The product may also consist of single or multiple phases.

【0006】本発明は、試験混合物及び生成物がそれら
の相構成において異なるシステムにも適用され、そして
試験混合物が液相を含み、そして生成物が含まないシス
テム、特に反応体が液体であり、そして生成物が固体で
あるシステムに関しては特に興味の対象である。
The invention also applies to systems in which the test mixture and the products differ in their phase composition, and in which the test mixture contains a liquid phase and no product, especially systems in which the reactants are liquids and Of particular interest are systems in which the product is a solid.

【0007】試験混合物における反応体を生成物に転換
する反応は、その結晶相の点で単純に反応体と異なる反
応よりもむしろ化学構造において異なる生成物を生成せ
しめるために複数の反応体を包含する広範囲の種類の化
学反応のいづれかであり得る。その反応は、単一種であ
る生成物を生成する反応又は生成物の混合物を生成する
反応のいづれかであり得る。複数の反応体種から単一種
の生成物を生成する反応は、特に興味の対象であり、そ
して重合はさらに興味の対象である。特に興味ある重合
は、複数の化学的に異なるモノマーを含む共重合である
Reactions that convert reactants to products in a test mixture involve multiple reactants to produce products that differ in chemical structure, rather than reactions that simply differ from the reactants in their crystalline phase. It can be any of a wide variety of chemical reactions. The reaction can be either a reaction that produces a single species of product or a reaction that produces a mixture of products. Reactions that produce a single product from multiple reactant species are of particular interest, and polymerizations are of even more interest. Polymerizations of particular interest are copolymerizations involving multiple chemically different monomers.

【0008】分析は、広範囲の種類の生成物の品質、性
質、パラメーター及び特徴的な計数値(これは一般的に
これらの計数値が生成物が製造される出発材料に関係す
る必要条件によってのみ制限される)を予測するために
使用され得る。分析は、化学反応自体が、対象の生成物
の計数値に影響を及ぼすであろう追加の変数又は因子の
導入を回避する再生可能な標準化された態様で行なわれ
得るシステムに限定される。従って、反応は、生成物が
操作条件における変動により影響されない反応、又は反
応において生じる生成物の変動が操作条件を標準化する
ことによって排除され得る反応であり得る。
Analysis can be used to analyze the quality, properties, parameters and characteristic counts of a wide variety of products (this is generally because these counts are determined only by the requirements related to the starting materials from which the products are manufactured). limited) can be used to predict. The analysis is limited to systems in which the chemical reactions themselves can be performed in a reproducible and standardized manner, avoiding the introduction of additional variables or factors that would affect the counts of products of interest. Thus, a reaction can be one in which the products are not affected by variations in operating conditions, or one in which the variations in products that occur in the reaction can be eliminated by standardizing the operating conditions.

【0009】分析は、1又は複数のこれらの計数値にお
いて規格値を満たさない生成物をもたらすであろう試験
混合物における欠陥又は変動を検出するために行なわれ
る。そのような欠陥及び変動は、反応体の割合の偏差及
び1又は複数の反応体自体の品質又は特性における偏差
を包含することができる。たとえば、反応体が多官能基
及び/又は複数のタイプの官能基を含む場合、1つのバ
ッチから次のバッチ(生成物に変動を導びく)への偏差
及び変動が検出され得る。反応体が単一の明確な種より
もむしろ分子量分布を有するオリゴマー又はプレポリマ
ーである場合、分子量分布、たとえば平均分子量及びそ
の拡がりにおける偏差が検出され得る。高い不純性レベ
ル及び異常に低い又は高い活性を有する反応体がまた検
出され得る。
Analysis is performed to detect defects or variations in the test mixture that would result in a product that does not meet specifications in one or more of these counts. Such defects and variations can include deviations in the proportions of the reactants and in the quality or properties of the reactant or reactants themselves. For example, if the reactants contain polyfunctional groups and/or multiple types of functional groups, deviations and fluctuations from one batch to the next (leading to variations in the product) can be detected. If the reactants are oligomers or prepolymers with a molecular weight distribution rather than a single well-defined species, deviations in the molecular weight distribution, such as the average molecular weight and its spread, can be detected. Reactants with high impurity levels and unusually low or high activities can also be detected.

【0010】因子分析における因子及び因子負荷を開発
するために使用される標準は、まず試験混合物と同じ使
用されるスペクトル分析にゆだねられ、次に前記再生で
きる態様で化学反応を受けることによって生成物に転換
される反応混合物であり、そして次にその生成物は、規
格における計数値を確かめるために試験され又は測定さ
れる。最良の結果のためには、標準は、試験混合物の種
と同じ化学種、又は試験混合物を構成すると思われる種
又は試験混合物のために許容できると思われる種と少な
くとも同じ種の混合物であろう。
The standards used to develop factors and factor loadings in factor analysis are first subjected to the same spectral analysis as the test mixture and then subjected to chemical reactions in a reproducible manner to produce the products. and the product is then tested or measured to confirm the count in the specifications. For best results, the standard will be a mixture of the same chemical species as the species in the test mixture, or at least the same species as would be expected to constitute the test mixture or be acceptable for the test mixture. .

【0011】標準は、成分の割合又は量、官能価のタイ
プ及び含有率のような特徴又は生成物の計数値又は問題
の計数値における変動を付与するであろういづれか他の
特徴において、それら自体の間で変化するそのようない
くつかの混合物であろう。標準は、生成物の特徴の正確
な予測を提供するために十分に信頼でき且つ正確な因子
負荷を選定するために十分な範囲にわたって数及び変動
において十分であろう。標準の数が多いほど、より良好
な相互関係が存在する。しかしながら、最適な数は、シ
ステムの複雑性により変化するであろう。システム中の
成分の数が上昇するにつれて、一定の正確な相互関係を
確立するために必要とされる標準の数もまた上昇するで
あろう。最っとも典型的なシステムにおいては、使用さ
れる標準の数は、10〜60個、好ましくは20〜40
個の範囲であろう。
[0011] Standards may themselves be characterized in characteristics such as proportions or amounts of ingredients, type and content of functionality, or in any other characteristic that would confer variation in the product count or the count in question. There would be several such mixtures varying between. The standards will be sufficient in number and variation over a sufficient range to select factor loadings that are sufficiently reliable and accurate to provide accurate predictions of product characteristics. The greater the number of standards, the better correlation exists. However, the optimal number will vary depending on the complexity of the system. As the number of components in a system increases, the number of standards required to establish certain precise interrelationships will also increase. In most typical systems, the number of standards used is between 10 and 60, preferably between 20 and 40.
It would be within the range of individuals.

【0012】計数値自体は広く異なり、そして生成物に
依存するであろう。推進薬及び爆薬はこの種類の生成物
の1つの例である。この種類のための対象の計数値は、
物性、たとえば融点又は凍結点、密度、引張強さ、伸び
率及び弾性率;熱性質、たとえば示差熱分析;性能特性
、たとえば燃焼速度、デトネーション速度及び燃焼温度
;安全性特性、たとえば衝撃感度、摩擦感度;静電感度
、デトネーション感度;及び安定性特性、たとえば熱安
定性及び真空安定性を包含することができる。この分析
は、そのような1つの計数値又は複数の計数値を同時に
予測するために使用され得る。
The count itself will vary widely and will depend on the product. Propellants and explosives are one example of this type of product. The target count for this type is
Physical properties such as melting or freezing point, density, tensile strength, elongation and modulus; thermal properties such as differential thermal analysis; performance properties such as burning rate, detonation rate and combustion temperature; safety properties such as impact sensitivity, friction Sensitivity; electrostatic sensitivity, detonation sensitivity; and stability properties, such as thermal stability and vacuum stability. This analysis can be used to predict one such count value or multiple counts simultaneously.

【0013】分析はスペクトル分析、たとえば種々の形
の分光分析、分光測定及び分光測光である。典型的な例
は、原子吸光分光分析、火炎発光分光分析、質量分析、
赤外分光分析、レーダーRaman 分光分析、紫外分
光分析、可視分光分析、核磁気共鳴分光分析及び電子ス
ピン共鳴分光分析である。適切な選択は反応システム、
すなわち物質の化学的及び物理的性質及び反応のタイプ
並びに予測される性質に依存するであろう。好ましいス
ペクトル法は、赤外分光分析、レーザーRaman 分
光分析、紫外分光分析及び核磁気共鳴分光分析であり、
そして赤外分光分析が特に好ましい。これは、種々のタ
イプの赤外分光分析を包含し、いづれか特定のシステム
のための適切な選択はシステム自体の特徴に依存する。 例は、中央赤外、近赤外及び拡散反射赤外である。
The analysis is spectral analysis, such as various forms of spectrometry, spectrometry and spectrophotometry. Typical examples are atomic absorption spectroscopy, flame emission spectroscopy, mass spectrometry,
These are infrared spectroscopy, radar Raman spectroscopy, ultraviolet spectroscopy, visible spectroscopy, nuclear magnetic resonance spectroscopy, and electron spin resonance spectroscopy. The appropriate choice is the reaction system,
That is, it will depend on the chemical and physical properties of the substance and the type and expected properties of the reaction. Preferred spectral methods are infrared spectroscopy, laser Raman spectroscopy, ultraviolet spectroscopy and nuclear magnetic resonance spectroscopy;
And infrared spectroscopy is particularly preferred. This encompasses various types of infrared spectroscopy, and the appropriate choice for any particular system will depend on the characteristics of the system itself. Examples are central infrared, near infrared and diffuse infrared.

【0014】全範囲の周波数の同時使用が、それが感度
及び速度の点で提供する利点のために好ましい。従って
、フーリエ変換処置を包含する技法が好ましく、典型的
にはフーリエ変換赤外(FTIR)が好ましい。そのよ
うなスペクトルを得るためには従来の計測が使用され得
る。
[0014] Simultaneous use of the entire range of frequencies is preferred because of the advantages it offers in terms of sensitivity and speed. Therefore, techniques that involve Fourier transform procedures are preferred, typically Fourier transform infrared (FTIR). Conventional measurements can be used to obtain such spectra.

【0015】因子分析は、文献に開示され、そして石炭
、ピートモス、無機鉱石及び予備成形された推進剤混合
物のような材料の性能特徴のそれら材料自体の分析に基
づいての予測のために使用される既知の技法に従って行
なわれ得る。文献における多くのそのような開示の1つ
は、Swinkels, D.A.などのアメリカ特許
第 4,701,838号及びその対応する国際出願番
号WO84/04594 に見され、これらの両者は引
用により本明細書に組込まれる。
Factor analysis has been disclosed in the literature and used for the prediction of performance characteristics of materials such as coal, peat moss, mineral ores, and preformed propellant mixtures based on analysis of the materials themselves. This can be done according to known techniques. One of the many such disclosures in the literature is Swinkels, D.; A. No. 4,701,838 and its corresponding International Application No. WO 84/04594, both of which are incorporated herein by reference.

【0016】さらに既知技法によれば、一般的な方法は
、試験混合物のスペクトル分析の選択された特徴から試
験混合物のための因子負荷を誘導し、続いて生成物の特
徴のための予測された値を計算するために回帰分析する
ことを包含するであろう。回帰分析は好ましくは回帰線
分析、最っとも好ましくは複数の回帰線分析である。 分析はコンピューターにより容易に行なわれ、そして分
析のための十分な能力を有する広範囲の種類の市販のコ
ンピューターシステムが使用され得る。ミニコンピュー
ターが特に分析に十分適合される。その例として、HP
1000シリーズ(Hewlett Packard)
及びVAXシステム(Digital Equipme
nt Corporation)を挙げることができる
。次の例は、例示目的のためであって、本発明を限定す
るものではない。
In accordance with further known techniques, the general method is to derive factor loadings for a test mixture from selected features of the spectral analysis of the test mixture, followed by the predicted factor loadings for the product features. This would involve regression analysis to calculate the value. The regression analysis is preferably a regression line analysis, most preferably a multiple regression line analysis. The analysis is easily performed by computer, and a wide variety of commercially available computer systems with sufficient capacity for analysis can be used. Minicomputers are particularly well suited for analysis. As an example, HP
1000 series (Hewlett Packard)
and VAX system (Digital Equipme
nt Corporation). The following examples are for illustrative purposes and are not intended to limit the invention.

【0017】[0017]

【実施例】例1 アルミニウム粉末、過塩素酸アンモニウム(AP)及び
Fe2O3並びにポリブタジエン/アクリロニトリルコ
ポリマー結合剤に基づく固体ロケットエンジン用推進剤
を、18個の小さなプレミックスのバッチから成る検量
セットとして調製し、ここでAP、Fe2O3 及び結
合剤プレポリマーの量は、製造誤差及び変動性の典型的
な範囲をまねるためにバッチ間で異なった。FT−IR
スペクトルを個々のプレミックスバッチに対して取り、
そして次に固体推進剤としてその最終形に硬化し、次に
機械的及び物理的性質を決定した。同じようにこのセッ
トのために、スペクトルをプレミックスに対して取り、
そして硬化の後、生成物の性質を個々のバッチについて
決定した。
EXAMPLE 1 A solid rocket engine propellant based on aluminum powder, ammonium perchlorate (AP) and Fe2O3 and a polybutadiene/acrylonitrile copolymer binder was prepared as a calibration set of 18 small premix batches. , where the amounts of AP, Fe2O3 and binder prepolymer were varied between batches to mimic the typical range of manufacturing tolerances and variability. FT-IR
Spectra were taken for individual premix batches,
It was then cured into its final form as a solid propellant, and its mechanical and physical properties were then determined. Similarly for this set, take the spectrum for the premix and
After curing, the product properties were then determined for the individual batches.

【0018】すべてのサンプルのFT−IRスペクトル
をVAXコンピューターに送り、ここで検量セットに対
応するスペクトルを用いて、その検量セットにおけるサ
ンプルの数に等い因子の数についての因子負荷を誘導し
、そして確認セットを、これらの因子負荷に基づく因子
分析にゆだねた。その結果は、プレミックスの組成の一
連の予測された値及び硬化された推進剤の物理的及び化
学的性質の一連の予測値であった。これらの予測された
値は平均化され、そして平均化された実際の値と比較さ
れ、そして下記表に列挙され、これは、予測され、そし
て測定された値がひじょうに密接して相互関係すること
を示す。硬化後の推進剤の性質である表中の記入事項は
、密度、ショアー“A”硬度、引張強さ、伸び率及び弾
性率である。
sending the FT-IR spectra of all samples to a VAX computer, where the spectra corresponding to the calibration set are used to derive factor loadings for a number of factors equal to the number of samples in that calibration set; The validation set was then subjected to factor analysis based on these factor loadings. The result was a set of predicted values for the composition of the premix and a set of predicted values for the physical and chemical properties of the cured propellant. These predicted values are averaged and compared to the averaged actual values and listed in the table below, which shows that the predicted and measured values correlate very closely. shows. The entries in the table that are properties of the propellant after curing are density, Shore "A" hardness, tensile strength, elongation, and modulus.

【0019】[0019]

【表1】[Table 1]

【0020】例2 例1の方法に類似する方法を用いて、改良された固体ロ
ッケットエンジン用推進剤の一連のサンプルを調製した
。これらの18種のサンプルはそれらの結合剤、AP及
びFe2O3 の割合で異なり、そして従って、検量セ
ットとして使用された。結合剤、AP及びFe2O3 
の割合がまた異なる20種の追加のサンプルを、硬化の
後に得られる生成物の弾性率及び伸び率の測定された値
と予測された値とを比較するために試験サンプルとして
使用し、ここで予測値は硬化の前に取られたFT−IR
スペクトルに基づく。図1は弾性率(PSIで)の予測
された値対測定された値の代表的なグラフであり、そし
て図2は伸び率(PSIで)の予測された値対測定され
た値の代表的なグラフである。線は、相互関係の近似を
示すように個々の図で引かれた。
Example 2 A series of samples of an improved solid rocket engine propellant were prepared using a method similar to that of Example 1. These 18 samples differed in their binder, AP and Fe2O3 proportions and were therefore used as a calibration set. Binder, AP and Fe2O3
20 additional samples with also different proportions were used as test samples to compare the measured and predicted values of the modulus and elongation of the product obtained after curing, where Predicted values are FT-IR taken before curing
Based on spectrum. Figure 1 is a representative graph of predicted versus measured values of modulus of elasticity (in PSI), and Figure 2 is a representative graph of predicted versus measured values of modulus of elongation (in PSI). It is a graph. Lines were drawn in individual figures to show approximations of interrelationships.

【0021】例3 例2の方法に類似する方法を用いて、一連のピースキー
パー推進剤ANB−3600サンプルを調製した。この
推進剤のためのプレミックスの49種の未知のサンプル
を分析にゆだね、そして硬化された推進剤の弾性率(P
SIで)についての予測値対測定値の比較を図3にグラ
フで図示し、ここで線は相互関係の近似を示すように引
かれた。このグラフ上の個々の点は、個々のプレミック
スについての二重サンプルの平均を示す。この発明の好
ましい態様を詳細に示し、そして記載したが、これによ
ってこの発明の範囲を限定するものではない。
Example 3 A series of Peacekeeper propellant ANB-3600 samples were prepared using a method similar to that of Example 2. Forty-nine unknown samples of premix for this propellant were submitted to analysis and the cured propellant modulus (P
A comparison of predicted vs. measured values for (SI) is graphically illustrated in Figure 3, where lines have been drawn to indicate an approximation of the correlation. Each point on this graph represents the average of duplicate samples for each premix. Although the preferred embodiments of the invention have been shown and described in detail, the scope of the invention is not thereby limited.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】これは、本発明の推進剤プレミックスに対して
取られたスペクトルのFT−IR因子分析に基づいての
、改良された固体ロケット推進剤のサンプルについての
弾性率の予測値対測定値のプロットである。
FIG. 1 shows predicted versus measured elastic modulus for a sample of improved solid rocket propellant based on FT-IR factor analysis of spectra taken for the propellant premix of the present invention. This is a plot of values.

【図2】これは、同じサンプルについての伸び率の予測
値対測定値のプロットである。
FIG. 2 is a plot of predicted versus measured elongation for the same sample.

【図3】これは、図1のために使用された態様に類似す
る態様で取られたピースキーパー推進剤のサンプルにつ
いての弾性率の予測値対測定値のプロットである。
FIG. 3 is a plot of predicted versus measured modulus for a sample of Peacekeeper propellant taken in a manner similar to that used for FIG. 1;

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】  試験混合物に含まれる多くの反応体の
予備選択された反応の生成物の選択された特徴の値を予
測するための方法であって: (a)前記選択された特徴の値と共に変化する一連のス
ペクトルパラメーターの個々の値を確かめるために前記
試験混合物に対するスペクトル分析を行ない;(b)そ
のようにして確かめられた値から対応する一連の定量因
子を誘導し(そのようにして誘導された前記定量因子は
前記値の代表であるような態様で誘導される);そして (c)前記生成物の前記選択された特徴についての予測
される値を誘導するために回帰係数の使用により前記定
量因子に対する回帰分析を行なうことを含んで成り;こ
こで前記回帰係数は、(i)一連の標準混合物における
前記予備選択された反応に起因する生成物の前記選択さ
れた特徴の予定された値と(ii)前記標準混合物のそ
れぞれに対して行なわれたスペクトル分析から段階(b
)の態様で誘導された定量因子との間の相互関係の代表
であることを特徴とする方法。
1. A method for predicting the value of a selected characteristic of a product of a preselected reaction of a number of reactants in a test mixture, comprising: (a) the value of the selected characteristic; carrying out a spectral analysis on said test mixture in order to ascertain the individual values of a series of spectral parameters that vary with the (c) the use of regression coefficients to derive predicted values for the selected characteristics of the product; performing a regression analysis on the quantitative factor by (i) the regression coefficient being a predicted value of the selected characteristic of the product resulting from the preselected reaction in a series of standard mixtures; and (ii) the spectral analysis performed on each of said standard mixtures.
) is representative of the interrelationship between quantitative factors induced in the manner of:
【請求項2】  前記段階(a)のスペクトル分析が赤
外分光分析、レーザーRaman 分光分析、紫外分光
分析及び核磁気共鳴分光分析から成る群から選択された
分析である請求項1記載の方法。
2. The method of claim 1, wherein the spectral analysis of step (a) is an analysis selected from the group consisting of infrared spectroscopy, laser Raman spectroscopy, ultraviolet spectroscopy, and nuclear magnetic resonance spectroscopy.
【請求項3】  前記段階(a)のスペクトル分析が、
スペクトルの多くの周波数の同時使用及びそれらからも
たらされる発光の逆フーリエ変換の決定を含む請求項1
記載の方法。
3. The spectral analysis in step (a) comprises:
Claim 1 comprising the simultaneous use of many frequencies of the spectrum and the determination of the inverse Fourier transform of the emission resulting therefrom.
Method described.
【請求項4】  前記段階(c)の回帰分析が複数の回
帰線分析である請求項1記載の方法。
4. The method of claim 1, wherein the regression analysis of step (c) is a multiple regression line analysis.
【請求項5】  さらに、 (d)予備決定された標準からの前記試験混合物におけ
る偏差を検出する手段として段階(c)に由来する前記
予測された値と予備選択された値とを比較することを含
んで成る請求項1記載の方法。
5. Further, (d) comparing the predicted value from step (c) with the preselected value as a means of detecting deviations in the test mixture from a predetermined standard. 2. The method of claim 1, comprising:
【請求項6】  前記反応体が前記生成物と相において
異なる請求項1記載の方法。
6. The method of claim 1, wherein said reactant is different in phase from said product.
【請求項7】  前記反応体が液体であり、そして前記
生成物が固体である請求項1記載の方法。
7. The method of claim 1, wherein the reactants are liquids and the products are solids.
【請求項8】  前記試験混合物がスラリーであり、そ
して前記生成物が固体である請求項1記載の方法。
8. The method of claim 1, wherein the test mixture is a slurry and the product is a solid.
【請求項9】  前記予備選択された反応が重合反応で
ある請求項1記載の方法。
9. The method of claim 1, wherein the preselected reaction is a polymerization reaction.
【請求項10】  液相を含む試験混合物に含まれる多
くの反応体の予備選択された反応の生成物である固体物
質の選択された特徴の値を予測するための方法であって
:(a)前記選択された特徴の値と共に変化する一連の
スペクトルパラメーターの個々の値を確かめるために前
記試験混合物に対するフーリエ変換赤外分析を行ない;
(b)そのようにして確かめられた値から対応する一連
の定量因子を誘導し(そのようにして誘導された前記定
量因子は前記値の代表であるような態様で誘導される)
; (c)前記生成物の前記選択された特徴についての予測
される値を誘導するために回帰係数の使用により前記定
量因子に対する複数の回帰線分析を行なうことを含んで
成り、ここで前記回帰係数は、(i)一連の標準混合物
における前記予備選択された反応に起因する生成物の前
記選択された特徴の予定された値と(ii)前記既知混
合物のそれぞれに対して行なわれたスペクトル分析から
段階(b)の態様で誘導された定量因子との間の相互関
係の代表であり;及び (d)予備決定された標準からの前記試験混合物におけ
る偏差を検出する手段として段階(c)に由来する前記
予測された値と予備選択された値とを比較することを含
んで成る方法。
10. A method for predicting the value of selected characteristics of a solid material that is the product of a preselected reaction of a number of reactants contained in a test mixture comprising a liquid phase, comprising: ) performing a Fourier transform infrared analysis on the test mixture to ascertain the individual values of a set of spectral parameters that vary with the values of the selected features;
(b) deriving a corresponding set of quantitative factors from the values so ascertained, said quantitative factors so derived being derived in such a manner that they are representative of said values;
(c) performing a plurality of regression line analyzes on said quantitative factors by use of regression coefficients to derive predicted values for said selected characteristics of said product, wherein said regression The coefficients are based on (i) the predetermined value of the selected characteristic of the product resulting from the preselected reaction in a series of standard mixtures and (ii) the spectral analysis performed on each of the known mixtures. and (d) in step (c) as a means of detecting deviations in said test mixture from a predetermined standard. Comparing the derived predicted value and a preselected value.
JP3107702A 1990-05-18 1991-05-14 Prediction of quality of product by analysis of basic factor of spectrum of reacting body Pending JPH04231849A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52556790A 1990-05-18 1990-05-18
US525567 1990-05-18

Publications (1)

Publication Number Publication Date
JPH04231849A true JPH04231849A (en) 1992-08-20

Family

ID=24093768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107702A Pending JPH04231849A (en) 1990-05-18 1991-05-14 Prediction of quality of product by analysis of basic factor of spectrum of reacting body

Country Status (5)

Country Link
JP (1) JPH04231849A (en)
DE (1) DE4116027A1 (en)
FR (1) FR2662251A1 (en)
GB (1) GB2244131B (en)
IT (1) IT1248326B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181184A (en) * 2013-05-27 2014-12-03 湖北航天化学技术研究所 Determination method for reaction activity order of active hydrogen-containing components and curing agent in propellant

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1001696C2 (en) * 1995-11-20 1997-05-21 Tno Spectroscopic determination of coating and paint mixture compositions
FR2768518B1 (en) 1997-09-12 1999-12-03 Onduline Sa METHOD FOR OPTIMIZING A BITUMEN / POLYMER MIXTURE
CN106370689B (en) * 2016-08-23 2017-11-24 西安近代化学研究所 The detection method of the molten modeling degree changing rule of nitrocotton in high solids content propellant powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764805A (en) * 1967-07-06 1973-10-09 Us Army Control of propellant compositions by x-ray fluorescence analysis
WO1984004594A1 (en) * 1983-05-12 1984-11-22 Broken Hill Pty Co Ltd Characterizing and handling multi-component substances
CA1277110C (en) * 1986-05-07 1990-12-04 Rudolf Patt Method for cooking control of lignocelluloses by ftir spectroscopy
FR2626579B1 (en) * 1988-02-01 1990-06-15 Bp Chimie Sa METHOD AND APPARATUS FOR MANUFACTURING CONTROLLED POLYOXYALCOYLENE USING A REGULATION SYSTEM INCLUDING AN INFRARED SPECTROPHOTOMETER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181184A (en) * 2013-05-27 2014-12-03 湖北航天化学技术研究所 Determination method for reaction activity order of active hydrogen-containing components and curing agent in propellant
CN104181184B (en) * 2013-05-27 2016-04-27 湖北航天化学技术研究所 The reactivity sequential determination method of active hydrogen component and hardening agent is contained in propellant

Also Published As

Publication number Publication date
GB2244131B (en) 1993-12-15
ITRM910339A1 (en) 1992-11-17
FR2662251A1 (en) 1991-11-22
GB9110468D0 (en) 1991-07-03
ITRM910339A0 (en) 1991-05-17
IT1248326B (en) 1995-01-05
DE4116027A1 (en) 1991-11-21
GB2244131A (en) 1991-11-20

Similar Documents

Publication Publication Date Title
CA1210154A (en) Characterizing and handling multi-component substances
Doherty et al. Relationship between RDX properties and sensitivity
Košir et al. Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of chaptalisation and geographical origin of wines (the example of Slovenian wines)
EP0561789B1 (en) Determination of aromatics in hydrocarbons by near infrared spectroscopy
CN110530817A (en) A kind of β-HMX crystal form purity detection method of the spectral technology that diffuses infrared based in
Floudas et al. Solvent and polymer dynamics in concentrated polystyrene/toluene solutions
Bortz et al. Quantitative, FFT-based, Kramers-Krönig analysis for reflectance data
Otsuka et al. Comparative determination of polymorphs of indomethacin in powders and tablets by chemometrical near-infrared spectroscopy and X-ray powder diffractometry
JPH04231849A (en) Prediction of quality of product by analysis of basic factor of spectrum of reacting body
Malinovsky et al. Light scattering by fractons in polymers
Tipples et al. " Baking Strength Index" and the relation of protein content to loaf volume
US7167246B1 (en) Method of color matching metallic paints
CA1115549A (en) Method of determining characteristic rheological quantities of viscoelastic materials
US5211932A (en) Carbon black process control system
Miller et al. Analysis of reaction‐injection‐molded polyurethanes by near‐infrared diffuse reflectance spectroscopy
Castleden et al. Determination of moisture in single-cell protein utilising photoacoustic spectroscopy in the near-infrared region
Fredericks et al. Rapid analysis of coal blends by diffuse reflectance FT-ir spectrometry
Volk et al. Determination of the Decomposition Behavior of Double‐Base Propellants at Low Temperatures
CN106872395A (en) A kind of physical detection methods of novel corn transgene component
JP4026794B2 (en) Analysis method of physical properties of hydrocarbons by near infrared spectroscopy
Fusina et al. The fundamental bands in the infrared spectrum of stibine (SbH3)
Wancheck et al. Quantitative analysis of styrene monomer in styrene/butadiene latexes using Raman spectroscopy
Rietjens et al. Characterization of plastic‐bonded explosives by pyrolysis gas chromatography and multivariate data analysis. Part I: Setup of the method
Smith et al. LTE conditions within the central channel of the plasma
CA2011931A1 (en) Method of predetermining amounts of reactants for a desired product