JPH04231453A - Thermal spray material and sprayed heat-resistant and corrosion-resistant member - Google Patents

Thermal spray material and sprayed heat-resistant and corrosion-resistant member

Info

Publication number
JPH04231453A
JPH04231453A JP2408614A JP40861490A JPH04231453A JP H04231453 A JPH04231453 A JP H04231453A JP 2408614 A JP2408614 A JP 2408614A JP 40861490 A JP40861490 A JP 40861490A JP H04231453 A JPH04231453 A JP H04231453A
Authority
JP
Japan
Prior art keywords
thermal spray
sio2
thermal
resistant
2cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2408614A
Other languages
Japanese (ja)
Inventor
Hatsuo Taira
初雄 平
Hiroshi Imawaka
寛 今若
Yoshio Harada
良夫 原田
Noriyuki Mifune
三船 法行
Norifumi Nagata
憲史 永田
Takayuki Yogoro
余頃 孝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Taiheiyo Cement Corp
Nippon Steel Corp
Original Assignee
Tocalo Co Ltd
Nippon Steel Corp
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd, Nippon Steel Corp, Onoda Cement Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2408614A priority Critical patent/JPH04231453A/en
Publication of JPH04231453A publication Critical patent/JPH04231453A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To manufacture a thermal spray material excellent in heat resistance, thermal impact resistance and corrosion resistance by blending 2CaO.SiO2 with MgO.4ZrO2 in a specified ratio. CONSTITUTION:A thermal spray material of 2CaO.SiO2-MgO.4ZrO2 series oxide constituted of, by weight, 50<=2CaO.SiO2<=90 and 10<=MgO.4ZrO2<=50 as well as 2CaO.SiO2+MgO.4ZrO2=100 is prepd. Furthermore, the grain size of the above oxide material is regulated to 5 to 500mum, and its average grain size is preferably regulated to 0.1 to 100mum in particular. In this way, a thermal spray material excellent in heat resistance, thermal impact resistance and corrosion resistance is obtd., and by applying plasma spraying to the surface of a substrate, a member having excellent thermal shielding effect and corrosion resistance can be manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はセラミックスや金属等の
表面改善のための溶射被覆用として用いられる、耐熱性
が付与された断熱性に優れる溶射被覆用材料、及び、耐
熱性部品の高温耐久性向上技術のうちで、特にガスター
ビン等の部品として、これらの溶射被覆用材料を最適な
プラズマ溶射法により被覆した耐熱耐食部材に関する。
[Industrial Application Field] The present invention relates to a thermal spray coating material with heat resistance and excellent heat insulating properties, which is used for thermal spray coating to improve the surface of ceramics, metals, etc., and high temperature durability of heat resistant parts. In particular, the present invention relates to heat-resistant and corrosion-resistant parts coated with these thermal spray coating materials by an optimal plasma spraying method, particularly as parts of gas turbines and the like.

【0002】0002

【従来の技術】耐熱、耐熱衝撃部材に要求される高温特
性は、年々過酷さを増している。中でもガスタービンは
、高温で稼動されるほど高い効率を発揮するので、その
稼動温度の上昇を絶えず要求されている。その為、それ
に対応できる耐熱性と耐熱衝撃性をかねている材料とし
てSiC、Si3 N4 等のファインセラミックスが
検討されているが、現時点では衝撃強度的に問題がある
ためガスタービン部品は金属材料を基本に製造されてい
る。
2. Description of the Related Art The high-temperature characteristics required for heat-resistant and thermal shock-resistant members are becoming more severe year by year. Among them, gas turbines exhibit higher efficiency as they are operated at higher temperatures, so there is a constant demand for higher operating temperatures. For this reason, fine ceramics such as SiC and Si3N4 are being considered as materials that have both heat resistance and thermal shock resistance, but at present gas turbine parts are basically made of metal materials due to problems with impact strength. Manufactured in

【0003】しかし、Ni基、Co基などの耐熱金属材
料は、その使用を1000℃以下に限定される。それ故
それらがガスタービン部品に適用されるにあたっては、
冷却あるいは熱遮蔽する方法が種々検討されてきた。熱
遮蔽とはガスタービン等の高温耐熱部品の金属(以下母
材と称する)の表面にセラミック層を形成し母材温度を
下げることであり、以前から熱伝導率が低くかつ耐衝撃
性及び輻射率が高いセラミック粉末が被覆用材料として
用いられている。
However, use of heat-resistant metal materials such as Ni-based and Co-based materials is limited to temperatures below 1000°C. Therefore, when they are applied to gas turbine parts,
Various methods of cooling or heat shielding have been investigated. Heat shielding is the process of forming a ceramic layer on the surface of the metal (hereinafter referred to as base material) of high-temperature heat-resistant parts such as gas turbines to lower the base material temperature. Ceramic powders with high efficiencies are used as coating materials.

【0004】これまで上記用途に使用している材料とし
て例えばY2 O3 等の希土類酸化物を安定化剤とし
て添加したZrO2 等があげられる。しかしながら、
現在最良とされているこの溶射材料を使用して得られる
溶射被覆でも急冷、急熱の激しい熱サイクルを加えられ
るガスタービンでは被覆層は母材から剥離しその機能を
失う。 また、これらの材料は高価な希土類酸化物を使用してい
るため、製造された溶射材料も非常に高価なものとなり
、工業用等の構造材料部材に多量に使用することはコス
ト的にかなり問題がある。
[0004] Examples of materials that have been used for the above-mentioned purposes include, for example, ZrO2 to which a rare earth oxide such as Y2 O3 is added as a stabilizer. however,
Even with thermal spray coatings obtained using this currently best thermal spray material, the coating layer peels off from the base material and loses its function in gas turbines that are subjected to intense thermal cycles of rapid cooling and rapid heating. In addition, since these materials use expensive rare earth oxides, the manufactured thermal spray materials are also very expensive, and using large quantities for structural material components for industrial purposes is quite problematic in terms of cost. There is.

【0005】一般に急熱、急冷の激しい熱サイクル下で
溶射被覆材料を使用すると母材と被膜との間に熱的歪が
生じ、母材の熱膨張に追随できず亀裂や剥離が生じ、十
分な耐用性を得ることができない。これゆえに、単に熱
伝導率が低いだけでなく、膨張係数も母材のそれに近い
値を有する溶射材料の開発が種々行われている。また、
剥離の主因である金属とセラミック層との中間に両者を
混合ないしは複合してなる層を設け(例えば特開昭55
−113880等)た部品、あるいはセラミック層に、
高温、長時間の熱処理によって微細な割れを形成させ(
例えば特開昭56−54905等)た部品や、セラミッ
ク層形成後急冷することで層内に微細な割れを形成させ
(例えば特開昭58−87273等)た部品等、種々の
提案もなされている。
Generally, when thermal spray coating materials are used under intense thermal cycles of rapid heating and cooling, thermal distortion occurs between the base material and the coating, which cannot follow the thermal expansion of the base material, resulting in cracks and peeling. It is not possible to obtain sufficient durability. For this reason, various efforts have been made to develop thermal spray materials that not only have low thermal conductivity but also have an expansion coefficient close to that of the base material. Also,
A layer made of a mixture or composite of the metal and ceramic layers, which is the main cause of peeling, is provided (for example, in Japanese Patent Laid-Open No. 55
-113880 etc.) or ceramic layer.
Fine cracks are formed by high temperature and long heat treatment (
Various proposals have also been made, such as parts with a ceramic layer formed and then rapidly cooled to form fine cracks in the layer (for example, JP 58-87273, etc.). There is.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
従来の手段でそれぞれ改善はされているものの、熱サイ
クル試験等の成績からその効果は限定されていた。本発
明は、こうした現況を考慮し、ZrO2 −Y2 O3
 等に比べ非常に安価で製品収率がよく経済的で、かつ
延長された寿命を有する耐熱、耐熱衝撃、耐食性を有す
る溶射被覆用材料、及びこれを施されたガスタービン部
品の如き溶射被覆耐熱耐食部材を提供することを目的と
している。
[Problems to be Solved by the Invention] However, although each of the above-mentioned conventional means has been improved, their effects have been limited based on the results of thermal cycle tests and the like. Taking these current circumstances into consideration, the present invention provides ZrO2 -Y2 O3
A material for thermal spray coating that has heat resistance, thermal shock resistance, and corrosion resistance, and has a very low cost, high product yield, economical, and extended life compared to other materials, and thermal spray coating heat resistant materials such as gas turbine parts that are coated with this material. The purpose is to provide corrosion-resistant members.

【0007】[0007]

【課題を解決するための手段】発明者らは耐熱性、耐熱
衝撃性及び耐食性を具備するような材料を見出だすべく
、鋭意研究を重ねてきた。この結果、天然資源としても
存在する珪酸カルシウム系を出発原料とすることで希土
類酸化物を使用しない安価なまったく新しい耐熱性、耐
熱衝撃性及び耐食性を有する溶射材料となることを見出
した。すなわち、本発明は、 1.  2CaO・SiO2 −MgO・4ZrO2 
系酸化物で、組成は重量%表示で50≦2CaO・Si
O2 ≦90、10≦MgO・4ZrO2 ≦50、か
つ2CaO・SiO2 +MgO・4ZrO2 =10
0からなることを特徴とする溶射被覆用材料。 2.耐熱金属材料で構成された部品において、該部品は
その表面に設けられた前記耐熱材料と同等もしくはより
高温耐食性に富む金属被覆層を有し、さらに該金属被覆
層上に請求項第1項記載の溶射被覆用材料を溶射したこ
とを特徴とする溶射被覆耐熱耐食部材。 3.上記第1項記載の各系酸化物材料が化合物、複合物
、または混合物の粒子であることを特徴とする溶射被覆
用材料。 4.上記第1項記載の酸化物材料の粒径が5〜500μ
m に調整され、特に平均粒子径が10〜100μm 
であることを特徴とする溶射被覆用材料。 5.上記第2項記載の溶射被覆用材料が、上記第3項記
載の溶射被覆用材料であることを特徴とする溶射被覆耐
熱耐食部材。である。
[Means for Solving the Problems] The inventors have conducted extensive research in order to find a material that has heat resistance, thermal shock resistance, and corrosion resistance. As a result, we have discovered that by using calcium silicate, which is also a natural resource, as a starting material, we can create a completely new thermal spraying material that does not use rare earth oxides and is inexpensive and has heat resistance, thermal shock resistance, and corrosion resistance. That is, the present invention has the following features: 1. 2CaO・SiO2 -MgO・4ZrO2
system oxide, the composition is 50≦2CaO・Si in weight%
O2 ≦90, 10≦MgO・4ZrO2 ≦50, and 2CaO・SiO2 +MgO・4ZrO2 =10
A material for thermal spray coating, characterized in that it consists of 0. 2. In a component made of a heat-resistant metal material, the component has a metal coating layer provided on its surface that is equivalent to or has higher high-temperature corrosion resistance than the heat-resistant material, and is further provided on the metal coating layer according to claim 1. A thermal spray-coated heat-resistant and corrosion-resistant member characterized by being thermally sprayed with a thermal spray coating material. 3. A material for thermal spray coating, wherein each of the oxide materials described in item 1 above is particles of a compound, a composite, or a mixture. 4. The particle size of the oxide material described in item 1 above is 5 to 500μ.
m, especially when the average particle diameter is 10 to 100 μm.
A thermal spray coating material characterized by: 5. A thermal spray-coated heat-resistant and corrosion-resistant member, characterized in that the thermal spray coating material described in item 2 above is the thermal spray coating material described in item 3 above. It is.

【0008】以下に本発明について具体的に説明する。 高温安定性があり耐熱効果が高く、かつ比較的熱膨張率
が大きく、そのうえ安価で製造することができるセラミ
ック材料、すなわち珪酸カルシウム系を出発原料とした
溶射材料の開発を試みた。珪酸カルシウムには「CaO
・SiO2 」「2CaO・SiO2 」「3CaO・
SiO2 」「3CaO・2SiO2 」等が知られて
いる。これら珪酸カルシウム溶射材料について種々検討
を行った結果、2CaO・SiO2 が優れることを見
出した。CaO・SiO2 は含有SiO2 量が高く
溶射により被膜中に多量のガラス相を生成し、熱衝撃性
が著しく低下する。3CaO・SiO2 は溶射により
CaOが被膜中に生成し吸湿作用によりダスティング現
象を引き起こす。 また、被膜の断熱、耐熱衝撃性性の相乗効果の向上をね
らって、MgO・ZrO2 系の中での検討の結果、M
gO・4ZrO2 を選びだし、本発明溶射被覆材料は
これらを複数で用いた。これら耐熱、断熱効果を有する
材料を複数で用いることは従来の断熱材料と比較してよ
りすぐれた耐熱、断熱性を発現し、信頼性の高い被覆層
形成が期待できるからである。2CaO・SiO2 は
種々の結晶系があり、いずれにも使用に差支えないが特
にスレーキング性等を考慮してγ型2CaO・SiO2
 が好ましい。
The present invention will be explained in detail below. We attempted to develop a ceramic material that is stable at high temperatures, has a high heat resistance effect, has a relatively large coefficient of thermal expansion, and can be manufactured at low cost, that is, a thermal spray material using calcium silicate as a starting material. Calcium silicate contains “CaO
・SiO2” “2CaO・SiO2” “3CaO・
"SiO2", "3CaO.2SiO2", etc. are known. As a result of conducting various studies on these calcium silicate thermal spray materials, it was found that 2CaO.SiO2 is superior. CaO.SiO2 contains a high amount of SiO2, and when thermally sprayed, a large amount of glass phase is generated in the coating, resulting in a significant decrease in thermal shock resistance. With 3CaO.SiO2, CaO is generated in the coating by thermal spraying and causes a dusting phenomenon due to moisture absorption. In addition, with the aim of improving the synergistic effect of heat insulation and thermal shock resistance of the coating, as a result of studies in the MgO/ZrO2 system, we found that
gO.4ZrO2 was selected and a plurality of these were used in the thermal spray coating material of the present invention. This is because using a plurality of these heat-resistant and heat-insulating materials exhibits better heat-resistance and heat-insulating properties than conventional heat-insulating materials, and can be expected to form a highly reliable coating layer. 2CaO・SiO2 has various crystal systems, and any of them can be used, but considering the slaking property, etc., we use γ-type 2CaO・SiO2.
is preferred.

【0009】また、2CaO・SiO2 とMgO・4
ZrO2 とは、両者の粉末を混合しただけで本発明の
溶射材料としてもよい。この場合の粉末度は、平均粒径
10〜100μm とするのが好ましい。また、粉末混
合物をさらに造粒複合して本発明の溶射材料としてもよ
い。この造粒複合物を得るには、2CaO・SiO2 
とMgO・4ZrO2 を、例えばボールミルで平均粒
径1〜3μm に粉砕し、これにバインダーとしてポリ
ビニルアルコールを2〜5重量%加え、スプレードライ
ヤーで、平均粒径10〜100μm に造粒する。また
、2CaO・SiO2 とMgO・4ZrO2 とは、
これを電融化合物として、本発明の溶射材料とすること
もできる。電融化合物とするには、例えば電気炉で14
00〜1600℃で溶融しその後これを冷却し、この冷
却物を平均粒径10〜100μmに粉砕して本発明の溶
射材料とする。
[0009] Also, 2CaO.SiO2 and MgO.4
ZrO2 may be used as the thermal spray material of the present invention by simply mixing the powders of both. In this case, the fineness is preferably set to an average particle size of 10 to 100 μm. Alternatively, the powder mixture may be further granulated and composited to form the thermal spray material of the present invention. To obtain this granulated composite, 2CaO・SiO2
and MgO.4ZrO2 are ground to an average particle size of 1 to 3 μm using a ball mill, for example, and 2 to 5% by weight of polyvinyl alcohol is added as a binder, and granulated to an average particle size of 10 to 100 μm using a spray dryer. Also, 2CaO・SiO2 and MgO・4ZrO2 are
This can also be used as a thermal spraying material of the present invention as an electrofusion compound. For example, in order to make an electric fusion compound, 14
The thermal spray material of the present invention is obtained by melting at a temperature of 00 to 1,600°C, then cooling it, and pulverizing the cooled material to an average particle size of 10 to 100 μm.

【0010】以上の如く、本発明の溶射材料は、混合物
、造粒複合物および電融化合物の3種があるるが、この
中で造粒複合物が最も好ましく、ついで混合物、電融化
合物の順に耐熱衝撃性の点で優れている。また、本発明
の溶射材料は粒径5〜500μm に調整されたもの、
特に平均粒径が10〜100μm に調整されたものが
好ましい。
As described above, there are three types of thermal spray materials of the present invention: a mixture, a granulated composite, and an electrofused compound. Among these, the granulated composite is the most preferred, followed by a mixture and an electrofused compound. In turn, they are excellent in terms of thermal shock resistance. Further, the thermal spraying material of the present invention has a particle size adjusted to 5 to 500 μm,
Particularly preferred is one whose average particle size is adjusted to 10 to 100 μm.

【0011】また、本発明の溶射材料の組成範囲を上記
のように限定したものは以下の理由による。2CaO・
SiO2 が90重量%より多い場合は高温安定作用の
低下が起こり、好ましくない。MgO・4ZrO2 が
50重量%より多い場合は熱膨張率が小さく母材の熱膨
張率に追随できず亀裂、剥離を生ずる。本発明材料の粒
径が5μm より小さい場合は溶射ガンへ供給される粉
の流れが悪く良好な被膜にならないばかりでなく、溶射
歩留りも低下する。一方、500μm より大きい場合
は未溶融粒子が被膜を形成し溶射被膜の付着力及び機能
の低下を招く。
Furthermore, the composition range of the thermal spray material of the present invention is limited as described above for the following reasons. 2CaO・
If the SiO2 content is more than 90% by weight, the high temperature stabilization effect will decrease, which is not preferable. When MgO.4ZrO2 is more than 50% by weight, the coefficient of thermal expansion is so small that it cannot follow the coefficient of thermal expansion of the base material, resulting in cracking and peeling. If the particle size of the material of the present invention is smaller than 5 .mu.m, the flow of the powder supplied to the thermal spray gun will be poor and not only will a good coating not be obtained, but the thermal spraying yield will also decrease. On the other hand, if the particle size is larger than 500 μm, unmelted particles will form a film, resulting in a decrease in adhesion and function of the sprayed film.

【0012】本発明の溶射材料は2種類の材料を種々の
割合で化合、複合、もしくは混合することに特徴がある
。これにより耐用性が図られる。すなわちこれを溶射し
た被膜は優れた耐熱性、断熱性を有するばかりでなく、
母材と類似の熱間膨張挙動を示すため、被膜の剥離損傷
をを大幅に抑制できる。また、また溶射被膜は、V化合
物等の腐食性ガス成分を吸収し母材への拡散を抑制する
とともに、CaOがV化合物と反応してこれを高融点化
合物(例えばV2 O5 の融点は690℃、3CaO
・V2 O5 は1016℃)に変化させてその腐食性
を低下させる機能も有している。これらの特徴を持つ本
溶射材料及び溶射部材の工業的意義は大きい。
The thermal spray material of the present invention is characterized in that two types of materials are combined, composited, or mixed in various proportions. This ensures durability. In other words, the coating sprayed with this material not only has excellent heat resistance and heat insulation properties, but also
Since it exhibits hot expansion behavior similar to that of the base material, peeling damage to the coating can be significantly suppressed. In addition, the thermal spray coating absorbs corrosive gas components such as V compounds and suppresses their diffusion into the base material, and CaO reacts with the V compounds to convert them into high melting point compounds (for example, the melting point of V2 O5 is 690°C). ,3CaO
・V2 O5 also has the function of lowering its corrosivity by changing the temperature to 1016°C. The present thermal sprayed material and thermal sprayed member having these characteristics have great industrial significance.

【0013】以下に本発明の種々の実施例について説明
する。寿命低下の主因であるセラミック層の剥離は、金
属とセラミックの膨張係数の相違に基づく熱応力に起因
するため、これを緩和するために比較的熱膨張係数の大
きなセラミックを種々選択して熱衝撃試験を実施した。 基材は50×50×5mmのNi基合金(IN939:
Ni−Co−Cr−W系合金)を用い、アルミナ粉末で
ブラスト処理した後、まず高温耐食性に富む金属として
CoCrAIY合金を100μm 減圧プラズマ溶射し
、さらにその上に表1に示す各種セラミックスをスプレ
ードライヤーで噴霧造粒し、平均粒子径約30μm に
調整した溶射材料をプラズマ溶射した。得られた試験片
は1200℃で15分間加熱、室温で15分間冷却を1
サイクルとする熱衝撃試験に供し、亀裂発生までの熱サ
イクル回数を調査した。結果を表1に示す。本試験結果
より、No.9の2CaO・SiO2 −10wt%M
gO・4ZrO2 〜No.15の2CaO・SiO2
 −50wt%MgO・4ZrO2 が耐熱衝撃10回
以上の耐用性を示し良好な耐熱衝撃性を有することが判
明した。
Various embodiments of the present invention will be described below. Peeling of the ceramic layer, which is the main cause of reduced service life, is caused by thermal stress due to the difference in coefficient of expansion between metal and ceramic. To alleviate this, various ceramics with relatively large coefficients of thermal expansion are selected and subjected to thermal shock. A test was conducted. The base material is a Ni-based alloy (IN939:
After blasting with alumina powder using a Ni-Co-Cr-W alloy, CoCrAIY alloy, which is a metal with excellent high-temperature corrosion resistance, is first applied by low-pressure plasma spraying to a thickness of 100 μm, and then various ceramics shown in Table 1 are sprayed on top using a spray dryer. The spray material was sprayed and granulated to have an average particle diameter of about 30 μm, and then plasma sprayed. The obtained test piece was heated at 1200°C for 15 minutes and cooled at room temperature for 15 minutes.
The material was subjected to a cyclic thermal shock test, and the number of thermal cycles until cracking was investigated. The results are shown in Table 1. From this test result, No. 9-2CaO・SiO2 -10wt%M
gO・4ZrO2 ~No. 15 2CaO・SiO2
-50 wt% MgO.4ZrO2 was found to have good thermal shock resistance, showing durability over 10 thermal shocks.

【0014】[0014]

【表1】[Table 1]

【0015】なお、2CaO・SiO2 −MgO・4
ZrO2 系原料に関しては、複合物が最も良好で、次
いで混合物、化合物の順で耐熱衝撃性に優れていること
が本試験で判明した。良好な耐熱衝撃性を示したNo.
10の2CaO・SiO2 −25wt%MgO・4Z
rO2 を代表例として被膜の断面観察を行った。結果
を図1に示す。被膜内に微細な垂直亀裂が多数存在して
いるのが確認できた。この垂直亀裂により耐熱衝撃性が
向上したものと推定される。
[0015] Furthermore, 2CaO.SiO2 -MgO.4
Regarding ZrO2-based raw materials, it was found in this test that composites had the best thermal shock resistance, followed by mixtures and compounds in that order. No. 1 showed good thermal shock resistance.
10 2CaO・SiO2 -25wt%MgO・4Z
The cross section of the film was observed using rO2 as a representative example. The results are shown in Figure 1. It was confirmed that there were many fine vertical cracks within the coating. It is presumed that this vertical crack improved the thermal shock resistance.

【0016】次に耐食性試験を実施した。試料の作成は
耐熱衝撃性試験の場合と同様の手順で作成した。耐食性
試験は、溶射試料に腐食媒体として85%V2 O5 
−15%Na2 SO4 を40mg塗布し、1100
℃×4時間焼成後炉内より試料をとりだし、被膜の剥離
の有無、反応層の厚みを調査した。結果を表2に示す。 No.1のZrO2 −8wt%Y2 O3 、No.
2の2CaO・SiO2 、No.3のMgO・4Zr
O2 、No.7の2CaO・SiO2 −60wt%
MgO・4ZrO2 、No.8の2CaO・SiO2
 −75wt%MgO・4ZrO2 は腐食媒体との反
応により溶射被膜の剥離が発生し、実用に供しえない。 またNo.4の2CaO・SiO2 −3wt%MgO
・4ZrO2 、No.5の2CaO・SiO2 −5
wt%MgO・4ZrO2 、No.6の2CaO・S
iO2 55wt%MgO・4ZrO2 は他材料に比
べて反応層厚くなっていた。
Next, a corrosion resistance test was conducted. Samples were prepared using the same procedure as in the thermal shock resistance test. Corrosion resistance tests were carried out using 85% V2O5 as the corrosive medium on thermally sprayed samples.
-Apply 40mg of 15% Na2SO4 and
After firing at ℃ for 4 hours, a sample was taken out from the furnace and the presence or absence of peeling of the coating and the thickness of the reaction layer were investigated. The results are shown in Table 2. No. 1 ZrO2 -8wt% Y2O3, No.
2 of 2CaO・SiO2, No. 3 MgO・4Zr
O2, No. 7-2CaO・SiO2 -60wt%
MgO・4ZrO2, No. 8-2CaO・SiO2
-75wt%MgO.4ZrO2 causes peeling of the sprayed coating due to reaction with corrosive media, and cannot be put to practical use. Also No. 4-2CaO・SiO2 -3wt%MgO
・4ZrO2, No. 5-2CaO・SiO2 -5
wt%MgO・4ZrO2, No. 6-2CaO・S
iO2 55wt%MgO.4ZrO2 had a thicker reaction layer than other materials.

【0017】[0017]

【表2】[Table 2]

【0018】以上の結果より、MgO・4ZrO2 が
10〜50wt%、残部が2CaO・SiO2 からな
る酸化物原料を溶射被覆したことを特徴とする耐熱耐食
部材は、高耐用性を有することが判明した。
From the above results, it was found that a heat-resistant and corrosion-resistant member characterized by being thermally sprayed coated with an oxide raw material consisting of 10 to 50 wt% MgO.4ZrO2 and the balance 2CaO.SiO2 has high durability. .

【0019】[0019]

【実施例】実施例1 腐食成分として硫黄を1〜2%、V:10〜18ppm
 、Na:3〜10ppm を含む燃料を使用している
発電用ガスタービン1段、2段静翼にCoCrAIYを
0.1mm減圧溶射し、さらにその上に平均粒径30μ
mに調整された本発明溶射被覆用材料、2CaO・Si
O2 −25wt%MgO・4ZrO2 (複合原料)
、2CaO・SiO2 −40wt%MgO・4ZrO
2 (複合原料)をそれぞれ0.2mm溶射し、タービ
ン入口温度1100℃で約1年間使用したが、本発明被
膜の亀裂、剥離などなく良好に推移している。
[Example] Example 1 1 to 2% sulfur as a corrosive component, V: 10 to 18 ppm
CoCrAIY was sprayed under reduced pressure to a thickness of 0.1 mm on the first and second stage stator blades of power generation gas turbines that use fuel containing Na: 3 to 10 ppm.
The thermal spray coating material of the present invention, 2CaO・Si adjusted to m
O2 -25wt%MgO・4ZrO2 (composite raw material)
, 2CaO・SiO2 -40wt%MgO・4ZrO
2 (composite raw material) was thermally sprayed to a thickness of 0.2 mm each and used at a turbine inlet temperature of 1,100° C. for about one year, but the coating of the present invention remained in good condition with no cracks or peeling.

【0020】実施例2 実施例1の発電用ガスタービンの燃焼器内面に、下盛層
としてCoCrAlYを0.15mm減圧溶射し、その
上に表1で示す試験片No.2の2CaO・SiO2 
、No.3のMgO・4ZrO2 及びNo.10の2
CaO・SiO2 −25wt%MgO・4ZrO2 
を大気中で各々0.3mmプラズマ溶射した燃焼器内筒
を燃焼室温度1150〜1300℃で1年間使用したが
本発明のNo.10の被膜はいずれも健全であり良好に
推移している。なお、本実施例で比較材料としたNo.
2、No.3の被膜はいずれも3〜6カ月以内で亀甲状
亀裂や剥離を起こし、耐用性はみられなかった。
Example 2 CoCrAlY was sprayed under reduced pressure to a thickness of 0.15 mm on the inner surface of the combustor of the power generation gas turbine of Example 1 as an underlay layer, and test piece No. 1 shown in Table 1 was coated thereon. 2-2CaO・SiO2
, No. No. 3 MgO・4ZrO2 and No. 2 of 10
CaO・SiO2 -25wt%MgO・4ZrO2
The combustor inner cylinders each having a thickness of 0.3 mm plasma sprayed in the atmosphere were used for one year at a combustion chamber temperature of 1150 to 1300°C. All of the coatings in No. 10 were healthy and progressing well. In addition, No. 1 was used as a comparative material in this example.
2.No. All of the coatings No. 3 developed hexagonal cracks and peeling within 3 to 6 months, and no durability was observed.

【0021】[0021]

【発明の効果】上記の結果から明らかなごとく、本発明
の溶射被覆用材料は耐熱性、耐熱衝撃性に対する抵抗性
が大きく耐食性にも優れている。本発明品の被覆溶射層
を用いれば、優れた熱遮蔽効果と耐熱性を有するととも
に信頼性の高い効率的なタービン翼を得ることができ、
かつ希土類酸化物を使用しないことからコスト低減に大
きく貢献できるなどの効果を奏する。
As is clear from the above results, the thermal spray coating material of the present invention has high resistance to heat and thermal shock, and is also excellent in corrosion resistance. By using the coating sprayed layer of the present invention, it is possible to obtain a highly reliable and efficient turbine blade that has excellent heat shielding effect and heat resistance, and
In addition, since rare earth oxides are not used, it has the effect of greatly contributing to cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、2CaO・SiO2 −25wt%M
gO・4ZrO2 (複合原料)溶射被膜の結晶構造を
示す断面写真である。
[Figure 1] Figure 1 shows 2CaO・SiO2 -25wt%M
It is a cross-sectional photograph showing the crystal structure of gO.4ZrO2 (composite raw material) thermal spray coating.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  2CaO・SiO2 −MgO・4Z
rO2 系酸化物で、組成は重量%表示で50≦2Ca
O・SiO2 ≦90、10≦MgO・4ZrO2 ≦
50、かつ2CaO・SiO2 +MgO・4ZrO2
 =100から成ることを特徴とする溶射被覆用材料。
[Claim 1] 2CaO.SiO2 -MgO.4Z
An rO2-based oxide, the composition is 50≦2Ca in weight%.
O・SiO2 ≦90, 10≦MgO・4ZrO2 ≦
50, and 2CaO・SiO2 +MgO・4ZrO2
=100.
【請求項2】  耐熱金属材料で構成された部品におい
て、該部品はその表面に設けられた前記耐熱材料と同等
もしくはより高温耐食性に富む金属被覆層を有し、さら
に該金属被覆層上に請求項第1項記載の溶射被覆用材料
を溶射したことを特徴とする溶射被覆用耐熱耐食部材。
2. A component made of a heat-resistant metal material, the component having a metal coating layer provided on its surface that is equivalent to or has higher high-temperature corrosion resistance than the heat-resistant material, and further comprising a metal coating layer on the metal coating layer. A heat-resistant and corrosion-resistant member for thermal spray coating, characterized in that the material for thermal spray coating according to item 1 is thermally sprayed.
【請求項3】  請求項第1項記載の各系酸化物材料が
化合物、複合物、または混合物の粒子であることを特徴
とする溶射被覆用材料。
3. A material for thermal spray coating, wherein each oxide material according to claim 1 is a particle of a compound, a composite, or a mixture.
【請求項4】  請求項第1項記載の酸化物材料の粒径
が5〜500μm に調整され、特に平均粒子径が10
〜100μm であることを特徴とする溶射被覆用材料
4. The particle size of the oxide material according to claim 1 is adjusted to 5 to 500 μm, particularly, the average particle size is 10 μm.
A material for thermal spray coating, characterized in that the particle diameter is 100 μm.
【請求項5】  請求項第2項記載の溶射被覆用材料が
、請求項第3項記載の溶射被覆用材料であることを特徴
とする溶射被覆耐熱耐食部材。
5. A thermal spray-coated heat-resistant and corrosion-resistant member, characterized in that the thermal spray coating material according to claim 2 is the thermal spray coating material according to claim 3.
JP2408614A 1990-12-28 1990-12-28 Thermal spray material and sprayed heat-resistant and corrosion-resistant member Withdrawn JPH04231453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408614A JPH04231453A (en) 1990-12-28 1990-12-28 Thermal spray material and sprayed heat-resistant and corrosion-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408614A JPH04231453A (en) 1990-12-28 1990-12-28 Thermal spray material and sprayed heat-resistant and corrosion-resistant member

Publications (1)

Publication Number Publication Date
JPH04231453A true JPH04231453A (en) 1992-08-20

Family

ID=18518046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408614A Withdrawn JPH04231453A (en) 1990-12-28 1990-12-28 Thermal spray material and sprayed heat-resistant and corrosion-resistant member

Country Status (1)

Country Link
JP (1) JPH04231453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049420A (en) * 1999-06-23 2001-02-20 Sulzer Metco Us Inc Thermal spraying powder of dicalcium silicate, its coating and its production
US8307590B2 (en) 2005-11-09 2012-11-13 REACH Manufacturing, Inc. Rooftop access system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049420A (en) * 1999-06-23 2001-02-20 Sulzer Metco Us Inc Thermal spraying powder of dicalcium silicate, its coating and its production
US8307590B2 (en) 2005-11-09 2012-11-13 REACH Manufacturing, Inc. Rooftop access system

Similar Documents

Publication Publication Date Title
Zhou et al. Thermophysical properties and cyclic lifetime of plasma sprayed SrAl12O19 for thermal barrier coating applications
US20210261465A1 (en) Ceramic material for high temperature service
JP5292284B2 (en) High purity powders and coatings prepared therefrom
US4599270A (en) Zirconium oxide powder containing cerium oxide and yttrium oxide
US5391404A (en) Plasma sprayed mullite coatings on silicon-base ceramics
WO2002103074A1 (en) Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine
CN101328569A (en) Thermal sprayed protective layer for metallic substrates
US20110203281A1 (en) Article for high temperature service
CN109468568A (en) A kind of the rare earth silicate environment barrier coating and preparation method of resistance to crack extension
JP2010235415A (en) Material for thermal barrier coating, thermal barrier coating, turbine member, and gas turbine and method for producing material for thermal barrier coating
CN104193173A (en) Heat-insulating coating material for firing enamel on surface of titanium alloy and preparation method thereof
US5082741A (en) Thermal spray material and thermal sprayed member using the same
JPH0559195B2 (en)
Xu et al. Infrared radiation and thermal cyclic performance of a high-entropy rare-earth hexaaluminate coating prepared by atmospheric plasma spraying
US4478275A (en) Abrasion resistant heat pipe
JPH04231453A (en) Thermal spray material and sprayed heat-resistant and corrosion-resistant member
JPH04231451A (en) Thermal spray material and sprayed heat-resistant member
CN115368134B (en) High-entropy oxide ceramic material resistant to molten salt corrosion and preparation method thereof
JPH0436454A (en) Thermal spraying material and thermally sprayed heat resisting member
JPH0436453A (en) Thermal spraying material and thermally sprayed heat resisting member
Jansen et al. Performance of dicalcium silicate coatings in hot-corrosive environment
JPH04231452A (en) Thermal spray material and sprayed heat-resistant member
US5032557A (en) Thermal spray material and and thermal sprayed member using the same
CN114368969A (en) TiSi2Gd-doped2Zr2O7Ceramic material, preparation method and thermal barrier coating
Zhang et al. Hot corrosion behavior of Yb2SiO5 coating in NaVO3 molten salt

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312