JPH0422999Y2 - - Google Patents

Info

Publication number
JPH0422999Y2
JPH0422999Y2 JP15493484U JP15493484U JPH0422999Y2 JP H0422999 Y2 JPH0422999 Y2 JP H0422999Y2 JP 15493484 U JP15493484 U JP 15493484U JP 15493484 U JP15493484 U JP 15493484U JP H0422999 Y2 JPH0422999 Y2 JP H0422999Y2
Authority
JP
Japan
Prior art keywords
layer
synthetic resin
glass
layers
grain pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15493484U
Other languages
Japanese (ja)
Other versions
JPS6170028U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15493484U priority Critical patent/JPH0422999Y2/ja
Publication of JPS6170028U publication Critical patent/JPS6170028U/ja
Application granted granted Critical
Publication of JPH0422999Y2 publication Critical patent/JPH0422999Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、船舶、住宅、その他一般産業用に用
いられる断熱構造部材に好適な、軽量にして断熱
性、耐食性、機械的強度に優れた繊維補強合成樹
脂発泡体に関する。 (従来の技術) 硬質合成樹脂発泡体を繊維材料で補強するに当
り、最外層にコンテイニアストランドマツト補強
層を、内側層に一方向に引き揃えられたガラスロ
ービング補強層を、中心の芯材層にペーパー又は
プラスチツク製ハニカムを配設し、ポリウレタン
樹脂又はフエノール樹脂のような熱硬化性樹脂の
発泡体で一体化させる技術は実公昭58−54999号
や、特公昭59−35340号にて公知である。しかし
ながら、この方法では剛性の高いハニカム材を芯
材層に用いるため、繊維補強材のかさ密度を大き
くして表面層の強度を高めたい場合、発泡性合成
樹脂の発泡圧だけでは合成樹脂の繊維補強層への
含浸が不均一になり易く、含浸を助けるために上
面側から加圧しても、ハニカム材の空洞部では圧
縮力が加わらず、表面強度の均一な向上が困難な
欠点がある上、成形と同時に木目模様を形成させ
ることはできなかつた。 又、綿状集合体や連続気泡性発泡体の両側に、
加熱発泡性の熱硬化性樹脂層を介在させ、金属又
はプラスチツク或は布のようなシート状物を積層
し、部分的に圧縮した状態で加熱することによ
り、熱硬化性樹脂を発泡硬化させて、圧縮部分に
て熱硬化性樹脂層同志を結合させ、吸湿性の小さ
い断熱性に優れた複合体を得る方法が特公昭59−
27709号にて公知であるが、金型を用いてバツチ
式に複合体を成形するのであるから生産性に劣る
上、成形体表面に木目模様を形成させるために
は、予め表面層を構成するシート状物に木目模様
をプリントするか、プリントされた化粧層を更に
貼合わせることが必要となる難点があつた。 (考案が解決しようとする問題点) この考案は、一方向に引き揃えられたガラスロ
ービング補強層を上下最外層に平行配列させるこ
とによつて、合成樹脂発泡体の発泡圧による柾目
状の模様が現出でき、且つガラスロービングの番
手や平行配列させる間隔を適宜調整するだけで、
好みの柾目状の木目模様を連続的に形成させるこ
とができる。又、中心の芯材層には圧縮に対する
復元力が大きく、且つ発泡性合成樹脂が含浸し易
い連続気孔を有する柔軟性の板状体を配設するこ
とにより、板状体の連続供給が容易で、ニツプロ
ール等による圧縮により発泡性合成樹脂の均一含
浸が容易となり、更に板状体の厚みを調整するこ
とによつて、ガラスロービング補強材を上下の外
面層に明確に分離配設させることが極めて簡単に
制御可能となり、弾性板状対の上下にガラス繊維
補強層がいわばサンドイツチ状に配設された構造
となつて、曲げ強度に優れた複合構造体を得るこ
とに成功したのである。 (考案の目的) 上述したように、本考案は従来技術の難点であ
つたガラス繊維補強層への発泡性合成樹脂の均一
含浸とガラス繊維補強層の上下表面層への明確な
分離配設により表面強度及び曲げ強度の向上、並
びに表面に木目調の模様の形成が容易な複合構造
体を得ることにある。 (考案の構成) この考案の構成要素及び構造について図面に基
づいて説明する。 最外層1に用いる一方向に引き揃えられたガラ
ス繊維としては、市販のガラスロービングが用い
られる。使用する番手(1000m当りの重量)には
特に制約はないが一般に、番手の小さいガラスロ
ービングを、それぞれの間隔を密に平行配列させ
ると細かい木目模様が得られ、番手の大きいガラ
スロービングを間隔を大きくして平行配列させれ
ば粗い木目模様が得られる傾向を示すので、用途
に応じ又要求される表面強度によつて適宜選択す
ればよい。高強度を得た場合1000m当りの重量が
2310〜4630gのものが用いられる。 ガラスロービング補強層1の内面側に使用され
るガラス繊維布状補強層2は、最外面層のガラス
ロービング補強層が一方向に引き揃えられたもの
であるため、幅方向に対する曲げ強度を更に向上
させる目的で用いているが、この層は特に高い曲
げ強度を要求される場合以外は省くことができ
る。尚、ガラスロービング補強層1のみで強度を
上げる場合にはガラスロービング層を二層以上積
層することもできる。 中心層に用いる連続気孔性の板状体3として
は、圧縮した時の厚み復元率が大きく、比較的粘
稠な合成樹脂発泡性原液の含浸が容易な粗い気孔
のものであればすべて使用可能である。材質的に
は連続気孔性の軟質ポリウレタンフオームやポリ
塩化ビニールフオーム、合成繊維のマツト状体等
が適当であるが、特に軟質ポリウレタンフオーム
が好適である。軟質ポリウレタンフオームを用い
る場合JISK6402に規定されたセル数が25mm間で
40以下望ましくは5〜20、JISK6401に規定され
ている圧縮残留ひずみが10%以下、望ましくは3
〜7%のものを用いるのがよい。連続気孔性の板
状体3の厚みは、最終成形体Fの厚みや複数層で
使用するガラス繊維強化層の厚みによつて決めら
れるが、一般的には最終成形体Fの厚みの15〜50
%の範囲が好ましい。 本願で使用される硬質の合成樹脂発泡体4とし
ては、原料が液状のポリウレタンフオーム又はフ
エノールフオームが好適で、その他エポキシ樹脂
や不飽和ポリエステル樹脂のような熱硬化性樹脂
を用いる事もできる。 本考案の木目模様を有する複合体を製造する方
法としては、連続生産の可能な公知のコンベヤー
方式によるのが最も効率的であるが、必要に応じ
金型を用いてバツチ式で製造することもできる。
金型発泡方式により最外層のガラスロービングと
して旭フアイバーグラス社製のER−4630(1000m
当り4630gのもの)を6mm間隔に平行配列し内層
側補強層として旭フアイバーグラス社製ロービン
グクロスRH600AA(平織、密度経6.3本、緯6.3
本、1m2当りの重量600g)を用い、中心層にセ
ル数10、圧縮残留ひずみ7%、の軟質ポリエステ
ルウレタンフオームを3mm厚みで用い、フリー発
泡密度200Kg/m3、クリームタイム90秒、ライズ
タイム5分の硬質ウレタンフオーム原液で成形品
厚み15mm、成形品密度500Kg/m3の木目模様を有
する複合成形体を得た。この複合成形体の物性を
測定し、市販類似品の物性値と比較すると第1表
に示した通り、特に幅方向の強度に優れた複合成
形体であることがわかる。
(Field of Industrial Application) The present invention relates to a fiber-reinforced synthetic resin foam that is lightweight, has excellent heat insulation properties, corrosion resistance, and mechanical strength, and is suitable for heat-insulating structural members used in ships, houses, and other general industries. . (Prior art) When reinforcing a hard synthetic resin foam with a fiber material, the outermost layer is a continuous strand mat reinforcing layer, the inner layer is a glass roving reinforcing layer aligned in one direction, and the central core material is a reinforced layer of glass roving drawn in one direction. The technique of arranging paper or plastic honeycomb layers and integrating them with a thermosetting resin foam such as polyurethane resin or phenol resin is known in Utility Model Publication No. 58-54999 and Japanese Patent Publication No. 59-35340. It is. However, in this method, a highly rigid honeycomb material is used for the core material layer, so if you want to increase the bulk density of the fiber reinforcement material to increase the strength of the surface layer, the foaming pressure of the foamable synthetic resin alone cannot be enough. Impregnation into the reinforcing layer tends to be uneven, and even if pressure is applied from the top side to aid impregnation, compressive force is not applied to the hollow parts of the honeycomb material, making it difficult to improve the surface strength uniformly. However, it was not possible to form a wood grain pattern at the same time as molding. In addition, on both sides of the cotton-like aggregate or open-cell foam,
A heat-foamable thermosetting resin layer is interposed, sheet materials such as metal, plastic, or cloth are laminated, and the thermosetting resin is foamed and hardened by heating in a partially compressed state. A method of bonding thermosetting resin layers together at the compressed part to obtain a composite with low hygroscopicity and excellent heat insulation was published in 1983.
Although it is known from No. 27709, productivity is poor because the composite is molded in batches using a mold, and in order to form a wood grain pattern on the surface of the molded product, a surface layer must be formed in advance. There was a drawback that it was necessary to print a wood grain pattern on the sheet-like material or to further bond the printed decorative layer. (Problem to be solved by the invention) This invention creates a straight-grained pattern by the foaming pressure of the synthetic resin foam by arranging glass roving reinforcing layers aligned in one direction in parallel on the upper and lower outermost layers. can appear, and by simply adjusting the number of glass rovings and the spacing between parallel arrays,
A desired straight-grained wood grain pattern can be formed continuously. In addition, continuous supply of the plate-like material is facilitated by providing the central core material layer with a flexible plate-like material that has a large restoring force against compression and has open pores that are easily impregnated with the foamable synthetic resin. By compressing with Nitprol, etc., uniform impregnation of the foamable synthetic resin becomes easy, and by adjusting the thickness of the plate, it is possible to clearly separate the glass roving reinforcing material into the upper and lower outer layers. They were able to control this structure extremely easily, and succeeded in obtaining a composite structure with excellent bending strength by forming a structure in which glass fiber reinforcing layers were arranged above and below a pair of elastic plates in a so-called sandwich-like structure. (Purpose of the invention) As mentioned above, the present invention solves the problems of the conventional technology by uniformly impregnating the glass fiber reinforced layer with the foamable synthetic resin and by clearly disposing the glass fiber reinforced layer into the upper and lower surface layers. The object of the present invention is to obtain a composite structure with improved surface strength and bending strength, and with which a wood grain pattern can be easily formed on the surface. (Structure of the invention) The constituent elements and structure of this invention will be explained based on the drawings. As the glass fibers aligned in one direction used for the outermost layer 1, commercially available glass rovings are used. There is no particular restriction on the count (weight per 1000m) to be used, but in general, a fine grain pattern can be obtained by arranging glass rovings with a small count closely spaced parallel to each other; If they are made larger and arranged in parallel, a coarse grain pattern tends to be obtained, so they may be selected appropriately depending on the application and the required surface strength. When high strength is obtained, the weight per 1000m is
2310-4630g is used. The glass fiber cloth reinforcement layer 2 used on the inner surface of the glass roving reinforcement layer 1 has the outermost glass roving reinforcement layer aligned in one direction, further improving the bending strength in the width direction. However, this layer can be omitted unless particularly high bending strength is required. In addition, when increasing the strength only with the glass roving reinforcing layer 1, two or more glass roving layers can be laminated. As the open-pored plate-like material 3 used for the center layer, any material with coarse pores that has a high thickness recovery rate when compressed and can be easily impregnated with a relatively viscous synthetic resin foaming stock solution can be used. It is. Suitable materials include open-pore soft polyurethane foam, polyvinyl chloride foam, and mat-shaped synthetic fibers, with soft polyurethane foam being particularly suitable. When using soft polyurethane foam, the number of cells specified in JISK6402 is between 25 mm.
40 or less, preferably 5 to 20, compressive residual strain specified in JISK6401 is 10% or less, preferably 3
It is preferable to use 7%. The thickness of the continuous porous plate-like body 3 is determined by the thickness of the final molded body F and the thickness of the glass fiber reinforced layer used in multiple layers, but is generally 15 to 15 times the thickness of the final molded body F. 50
A range of % is preferred. As the hard synthetic resin foam 4 used in the present application, liquid polyurethane foam or phenol foam is suitable as a raw material, and thermosetting resins such as epoxy resins and unsaturated polyester resins can also be used. The most efficient method for manufacturing the composite body with the wood grain pattern of the present invention is to use a known conveyor system that allows for continuous production, but it is also possible to manufacture it in batches using molds if necessary. can.
As the outermost layer of glass roving, ER-4630 manufactured by Asahi Fiberglass Co., Ltd. (1000 m
Roving cloth RH600AA made by Asahi Fiberglass Co., Ltd. (plain weave, density 6.3 threads, weft 6.3
A soft polyester urethane foam with a thickness of 3 mm and a cell count of 10 and a compressive residual strain of 7% was used for the center layer, a free foaming density of 200 Kg/m 3 , a cream time of 90 seconds, and a rise time of 90 seconds. A composite molded product having a wood grain pattern with a molded product thickness of 15 mm and a molded product density of 500 kg/m 3 was obtained using a hard urethane foam stock solution for 5 minutes. The physical properties of this composite molded product were measured and compared with the physical property values of commercially available similar products, and as shown in Table 1, it was found that the composite molded product had particularly excellent strength in the width direction.

【表】 (考案の効果) (1) 最外層に一方向に引き揃えられたガラスロー
ビング補強層を設けたことにより、ガラスロー
ビングの平行配列が発泡圧によつて流れ模様と
なり成形構造体表面にそのまま現出されて柾目
調の木目模様を形成することができる。従つて
ガラスロービングの番手や平行配列間隔を調整
するだけで、好みの木目模様が簡単に得られる
と共に、長手方向の曲げ弾性の向上効果が得ら
れる。 (2) ガラスロービング補強層の内層側に方向性の
ないガラスクロス補強層を少くとも一層併用す
ることにより、幅方向の強度と、成形体として
の強度の向上が図れる。 (3) 中心層に圧縮複元性に優れた連続気孔性の板
状体を用いるので、合成樹脂発泡性原液を注入
後、直ちにガラス繊維補強層を積層し系全体を
高度に圧縮する操作を行うだけで、発泡性原液
は系全域に拡散滲透し、均一な複合発泡成形体
が得られる。又連続気孔性板状体が中心層に存
在するので、上下に配設されたガラス繊維補強
層が明確に分離されて上下各表面層に位置する
ようになり、曲げ弾性率の向上に寄与するもの
と考えられる。以上のような効果を奏するの
で、本願考案によつて得られる複合構造材は建
築用や船舶用或は土木用断熱構造部材として極
めて有用なものということができる。
[Table] (Effects of the invention) (1) By providing a reinforcing layer of glass rovings aligned in one direction as the outermost layer, the parallel arrangement of glass rovings becomes a flow pattern due to the foaming pressure on the surface of the molded structure. It can be exposed as is to form a straight-grained wood grain pattern. Therefore, by simply adjusting the glass roving count and the parallel arrangement interval, a desired wood grain pattern can be easily obtained, and the bending elasticity in the longitudinal direction can be improved. (2) By simultaneously using at least one non-directional glass cloth reinforcing layer on the inner layer side of the glass roving reinforcing layer, the strength in the width direction and the strength of the molded product can be improved. (3) Since an open-pored plate with excellent compression properties is used for the center layer, immediately after injecting the synthetic resin foaming stock solution, a glass fiber reinforced layer is laminated and the entire system is highly compressed. By simply carrying out this process, the foamable stock solution will diffuse and permeate throughout the system, and a uniform composite foam molded article will be obtained. In addition, since the continuous porous plate-like material exists in the center layer, the glass fiber reinforcement layers arranged above and below are clearly separated and are located on the upper and lower surface layers, which contributes to improving the flexural modulus. considered to be a thing. Because of the above-mentioned effects, the composite structural material obtained by the present invention can be said to be extremely useful as a heat-insulating structural member for buildings, ships, and civil engineering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願考案の複合構造材の構成を示す斜
視図である。 F……複合構造成形体、1……ガラスロービン
グ補強層、2……ガラス繊維布状補強層、3……
連続気孔性板状体、4……硬質合成樹脂発泡体。
FIG. 1 is a perspective view showing the structure of the composite structural material of the present invention. F...Composite structure molded product, 1...Glass roving reinforcement layer, 2...Glass fiber cloth reinforcement layer, 3...
Open-pore plate-like body, 4...Hard synthetic resin foam.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数層からなるガラス繊維補強層を有する発泡
合成樹脂構造体において、少くとも上下最外層は
一方向に引き揃えられたガラスロービング補強層
を、中心層には圧縮復元性を有する連続気孔性の
板状体を設け、発泡合成樹脂にて含浸一体化した
ことを特徴とする木目模様を有する複合構造体。
In a foamed synthetic resin structure having a glass fiber reinforced layer consisting of multiple layers, at least the upper and lower outermost layers have glass roving reinforcing layers aligned in one direction, and the center layer is a continuous porous plate having compression recovery properties. 1. A composite structure having a wood grain pattern, which is characterized by providing a shaped body and integrally impregnating it with a foamed synthetic resin.
JP15493484U 1984-10-12 1984-10-12 Expired JPH0422999Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15493484U JPH0422999Y2 (en) 1984-10-12 1984-10-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15493484U JPH0422999Y2 (en) 1984-10-12 1984-10-12

Publications (2)

Publication Number Publication Date
JPS6170028U JPS6170028U (en) 1986-05-13
JPH0422999Y2 true JPH0422999Y2 (en) 1992-05-27

Family

ID=30712931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15493484U Expired JPH0422999Y2 (en) 1984-10-12 1984-10-12

Country Status (1)

Country Link
JP (1) JPH0422999Y2 (en)

Also Published As

Publication number Publication date
JPS6170028U (en) 1986-05-13

Similar Documents

Publication Publication Date Title
KR920003060B1 (en) Moulded fibre reinforced plastics articles
US6998359B2 (en) Article and process for maintaining orientation of a fiber reinforced matt layer in a sandwiched urethane construction
US4196251A (en) Rigidized resinous foam core sandwich structure
US4042746A (en) Composite material and method of forming
KR101410646B1 (en) Composite sheet
US3382302A (en) Method for the manufacture of reinforced plastic foams
US3791912A (en) Construction member
KR0123475B1 (en) Ceiling material for vehicles and production process thereof
CA1249912A (en) Lightweight constructions of increased strength and dimensional stability
EP0822062A1 (en) Composite substrate for plastic reinforcement, and fiber-reinforced plastic using such composite substrate
US3920871A (en) Woven structural element, method of manufacture thereof, and method of making a boat hull therefrom
KR101672722B1 (en) Method for producing sandwich composition article
US4756955A (en) High density composite based on discontinuous mineral fibers
JPH0422999Y2 (en)
EP0329200A2 (en) Moulded fibre reinforced plastics articles
JPH07103244B2 (en) Stamping molding material
US5569420A (en) Method of forming a foam core comprising a plurality of arcuate rows
JPH0128695B2 (en)
JPH11207843A (en) Manufacture of honeycomb composite body
JPH082606B2 (en) Fiber-reinforced phenolic resin foam and method for producing the same
JPH1044321A (en) Glass fiber reinforced resin composite
JPH0342217A (en) Preparation of plate-shaped press molded product
KR20010081471A (en) Sandwich panel
JP2513625Y2 (en) Composite structure
JPS5854999Y2 (en) Lightweight plate-like synthetic material