JPH0422893B2 - - Google Patents

Info

Publication number
JPH0422893B2
JPH0422893B2 JP61012649A JP1264986A JPH0422893B2 JP H0422893 B2 JPH0422893 B2 JP H0422893B2 JP 61012649 A JP61012649 A JP 61012649A JP 1264986 A JP1264986 A JP 1264986A JP H0422893 B2 JPH0422893 B2 JP H0422893B2
Authority
JP
Japan
Prior art keywords
citral
binap
ruthenium
diethylamine
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61012649A
Other languages
Japanese (ja)
Other versions
JPS62169741A (en
Inventor
Noboru Sayo
Hidenori Kumobayashi
Susumu Akutagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago Perfumery Industry Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Perfumery Industry Co filed Critical Takasago Perfumery Industry Co
Priority to JP61012649A priority Critical patent/JPS62169741A/en
Publication of JPS62169741A publication Critical patent/JPS62169741A/en
Publication of JPH0422893B2 publication Critical patent/JPH0422893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ゲラニルアミン誘導体またはネリル
アミン誘導体を水素受容体の存在下にルテニウム
−ホスフイン錯体を触媒として反応せしめシトラ
ールエナミン(3,7−ジメチル−1,3,6−
オクタトリエニリルアミン誘導体)となし、これ
を加水分解してシトラールを製造する方法に関す
る。 〔従来の技術〕 シトラールは食品香料、石けん香料、コロン用
香料のほか、ヨノン、メチルヨノン、ビタミン
A、Eの合成原料として重要である。シトラール
はゲラニアール(トランス型)とネラール(シス
型)の二つの立体異性体があるが、香料としての
目的に対しては、これら異性体を区別することな
く、混合物をシトラールとして取扱つている。本
明細書において、シトラールとなる語はこれら異
性体並びに混合物を意味するものとして用いる。 シトラールの給源はレモングラス油であつた
が、最近はテレピン油からのゲラニオールを空気
酸化して製造されている。すなわち、α−ピネン
を水添してピナンとし、これを空気酸化してハイ
ドロパーオキサイドとし、次いでピナロールと
し、これを熱分解してリナロールとし、異性化し
てゲラニオール及びネロールとし、これを脱水素
してシトラールを得ている。また、特開昭57−
102831号によれば、N,N−ジエチルネリルアミ
ンの酸化によつて得られるアミンオキサイドを原
料として、これに酸無水物、例えば無水酢酸或は
無水プロピオン酸を反応せしめ、アミンオキサイ
ドに対し収率51.4〜53.7%でシトラールを得る方
法が開示されている。 〔発明が解決しようとする問題点〕 しかしながら、上記方法は、工程数が長いと
か、収率が低いなどの欠点があり、満足し得るも
のではなかつた。従つて、簡単な操作で収率よく
シトラールを得ることができる方法の開発が望ま
れていた。 〔問題点を解決するための手段〕 斯かる実状において、本発明者はゲラニルアミ
ン誘導体及びネリルアミン誘導体の異性化反応に
ついて研究を行つていたところ、触媒としてルテ
ニウム−ホスフイン錯体を使用すれば効率よくシ
トラールエナミンが得られ、これを加水分解すれ
ば簡単な操作で収率よくシトラールが得られるこ
とを見出し、本発明を完成した。 すなわち、本発明は、式()または()、 (式中、R1、R2は低級アルキル基を表わすか、
またはR1及びR2が隣接する窒素原子と一緒にな
つて炭素数4〜5の環式基またはモルホリノ基を
形成することを表わす) で表わされるゲラニルアミン誘導体またはネリル
アミン誘導体を水素受容体の存在下にルテニウム
−ホスフイン錯体を触媒として反応せしめてシト
ラールエナミンとなし、これを加水分解すること
を特徴とするシトラールの製造方法を提供するも
のである。 本発明を実施するには、まず原料ゲラニルアミ
ン誘導体またはネリルアミン誘導体1モルに対し
て、0.005〜0.02モルのルテニウム−ホスフイン
錯体、1〜3モルの水素受容体を加え、溶媒の存
在下に、100〜120℃にて10〜20時間反応させる。 溶媒としては、ジメチルホルムアミド、1,3
−ジメチル−2−イミダゾリジノン、N−メチル
ピロリドン、ジエチレングリコールジメチルエー
テル、テトラヒドロフラン、ジメチルスルホキシ
ド等の非プロトン性極性溶媒を用いることができ
また非プロトン性無極性溶媒としてトルエン等を
用いることができる。溶媒の使用量は原料アミン
の1〜5倍量(容量)が好ましい。 反応終了後減圧下で溶媒を回収する。かくして
得られたシトラールエナミンを反応液から分離す
ることなく反応終了後に直接、硫酸、塩酸、酢酸
等の希溶液を加えれば、容易に加水分解されてシ
トラールが生成する。これを溶媒抽出、蒸留等に
より精製すれば95%以上の純度のシトラールが収
得される。 本発明に用いる上記式()及び()で表わ
されるゲラニルアミン誘導体またはネリルアミン
誘導体は、ゲラニオール、ネロールに五塩化燐を
作用させて得られるゲラニルクロライド又はネリ
ルクロライドに、アミン化合物とn−ブチルリチ
ウムより得られるアミンリチウム化合物を作用さ
せることにより容易に製造される。また他の方法
としては、アルカリ金属化合物を用いるイソプレ
ンあるいはミルセンの第2級アミンによるテロメ
リゼーシヨンによる方法が挙げられる〔K.
Takabeら:Tetrahedron Lett.,4009(1972)〕
〔S.Watanabeら:Chem.Ibd.,231(1973)〕。ここ
で使用するアミン化合物としては、ジメチルアミ
ン、ジエチルアミン、ジ−n−プロピルアミン、
ジ−イソプロピルアミン、ジ−n−ブチルアミ
ン、ピロリジン、ピペリジン、モルホリン等が挙
げられる。 水素受容体としては、ホロン、メシチルオキシ
ド、1−オクテン、シクロヘキセン、リモネン、
シクロオクタ−1,5−ジエン、スチレン等が用
いられ、このうちα,β−不飽和ケトン類が能力
的に高いが、その中でもメシチルオキシドが好適
である。水素受容体の使用量は基質とほぼ当量用
いるのが良く、例えば、3倍量以上を用いると、
デイールス−アルダー生成物と推定される副生物
が著るしく増加する。 本発明に用いるルテニウム−ホスフイン錯体
は、ルテニウムに二座ホスフイン配位子を配位し
た錯体であつて、次の式()で表わされる。 RunXoLpAq () (式中、Xは水素原子、塩素原子、塩化水素
を、Lは配位子を、Aは第三級アミンを表わし、
mは1または2、nは1〜4、pは2〜4、qは
0または1を表わす) このようなルテニウム−ホスフイン錯体として
は次のものが例示される。 Ru2Cl4(BINAP)2Et3N RuHCl(BINAP)2 RuH2(BINAP)2 Ru2Cl4(T−BINAP)2Et3N RuHCl(T−BINAP)2 RuH2(T−BINAP)2 Ru2Cl4(t−Bu−BINAP)2Et3N RuHCl(t−Bu−BINAP)2 RuH2(t−Bu−BINAP)2 Ru2Cl4(1,4−Diphos)2Et3N RuHCl(1,4−Diphos)2 上記化合物中、Etはエチル基を、Phはフエニ
ル基を、BINAPは2,2′−ビス(ジフエニルホ
スフイノ)−1,1′−ビナフチルを、T−BINAP
は2,2′−ビス(ジーパラトリルホスフイノ)−
1,1′−ビナフチルを、t−Bu−BINAPは2,
2′−ビス(ジ−パラーターシヤル−ブチルフエニ
ルホスフイノ)−1,1′−ビナフチルを、1,4
−DiPhosは、1,4−ビス(ジフエニルホスフ
イノブタンを表わす。斯かるルテニウム−ホスフ
イン錯体は、例えば文献〔Y.Ishiiら:
Tetrahedron Lett.,24,2677(1983)〕〔Y.Ishii
ら:Chem Lett.,1179(1982)〕〔T.Ikariyaら:
J.Chem.Soc.Chem.Commun.,922(1985)〕等に
記載の方法により容易に得ることが出来る。例え
ばRu2Cl4(BINAP)2Et3Nを作る一例を挙げれば、
先づルテニウムクロライドとシクロオクタ−1,
5−ジエン(CODと略す)をエタノール溶液中
で反応させて〔RuCl2(COD)〕oを得る〔M.A.
Bennetら:Chemistry and Ibd.,1516,
(1959)〕。ついで、〔RuCl2(COD)〕o1モルと
BINAP1.2モルとトリエチルアミン4モルを、ト
ルエンなどの溶媒中で加熱反応せしめた後、結晶
を別し、溶媒にて再結晶して精製する。ルテニ
ウム−ホスフイン錯体は、結晶として単離された
ものを使用することも、またいわゆる“in situ”
でルテニウム錯体を調製しそのまま反応に使用す
ることができる。 本発明においては、エナミンを加水分解してシ
トラールを得た時に分離した水層を苛性ソーダ等
によりアルカリ性にし、トルエン等の溶媒で抽出
を行い、これを蒸留することにより、反応しなか
つた原料のゲラニルアミン誘導体またはネリルア
ミン誘導体またはネリルアミン誘導体を容易に回
収することが出来る。また、反応の過程において
分解して生じたところの、ゲラニルアミン誘導体
またはネリルアミン誘導体のアミンを95%以上の
回収率で回収することが出来る。 〔実施例〕 次に実施例により本発明を説明する。 実施例 1 ゲラニルジエチルアミン10.5g(50ミリモル)、
Ru2Cl4(BINAP)2Et3N0.423g(0.5ミリモル)、
ジメチルホルムアミド26ml、メシチルオキシド6
ml(60ミリモル)を封管中に入れ、120℃で12時
間反応させた。反応終了後、一部を取出し、内部
標準試薬としてトランス−スチルベンを加えて
GLC分析を行い、ゲラニルジエチルアミンより
シトラールエナミンに至る反応の変換率、選択率
を求めた。変換率は43.3%、選択率は73.7%であ
つた。ついで、ジメチルホルムアミドを留去し、
水50ml、エチルエーテル50mlを加え、0℃に冷却
し、これに10%醋酸70mlをゆつくり滴下し、PH4
〜5に調整し2時間撹拌した。水層と油層にわか
れるので、水層の部分をエチルエーテルで抽出
し、これを油層と合わせて、5%塩酸及び10%炭
酸ソーダ水溶液で洗浄し、硫酸マグネシウムを用
いて乾燥した。溶媒を留去後、蒸留を行い80〜85
℃/1mmHgの留分のシトラール2.34g(理論収
率71%)を得た。このものはGLC分析によれば
ネラールとゲラニアールの25:75の混合物であつ
た。上記工程において、加水分解後のエーテル抽
出して分離した水層を、氷水で冷却し、50%苛性
ソーダ水溶液を加えてアルカリ性とし、トルエン
にて抽出し、蒸留することによつてジエチルアミ
ン1.51g(回収率95%)及び、未反応ゲラニルジ
エチルアミン5.35g(回収率90%)を回収した。 実施例 2 ネリルジエチルアミン10.5g(50ミリモル)、
Ru2Cl4(BINAP)2Et3N0.423g(0.5ミリモル)、
ジメチルホルムアミド26ml、メシチルオキシド17
ml(150ミリモル)を封管中に入れ、100℃で20時
間反応させた。反応終了後、実施例1と同様に
GLC分析を行つたところ変換率36.0%、選択率
58.1%であつた。ついで、ジメチルホルムアミド
を留去し、水50ml、エチルエーテル50mlを加え、
0℃に冷却し、これに10%醋酸70mlをゆつくり滴
下し、PH4〜5に調整し2時間撹拌した。水層と
油層を分離し、水層の部分をエチルエーテルで抽
出し、油層と合わせて5%塩酸及び10%炭酸ソー
ダ水溶液で洗浄し、硫酸マグネシウムを用いて乾
燥した。溶媒を留去後、蒸留を行い80〜85℃/1
mmHgの留分のシトラール1.43g(理論収率52.3
%)を得た。このものはGLC分析によればネラ
ールとゲラニアールの33:67の混合物であつた。
また、実施例1と同様にしてジエチルアミン1.25
g(回収率95%)及びネリルジエチルアミン6.05
g(回収率90%)を回収した。 実施例 3 ゲラニルジエチルアミン2.1g(10ミリモル)、
〔RuCl2(COD)〕o28mg(0.1ミリモル)、BINAP66
mg(10ミリモル)、ジメチルホルムアミド5.2ml、
メシチルオキシド1.2ml(12ミリモル)を封管中
に入れ、120℃で12時間反応させた。実施例1と
同様にしてGLC分析を行いシトラールエナミン
に至る反応の変換率及び選択率を求めたところ、
変換率は73.7%、選択率は54.0%であつた。つい
で実施例1と同様に処理することにより沸点80〜
85℃/1mmHgのシトラール0.59g(理論収率52.5
%)を得た。このものはGLC分析によればネラ
ールとゲラニアールの27:73の混合物であつた。 実施例 4〜12 実施例1において使用したRu2Cl4
(BINAP)2Et3Nのかわりに、それぞれのルテニ
ウム−ホスフイン錯体を使用し、実施例1と同様
な操作によりゲラニルジエチルアミンよりシトラ
ールを得た。結果を第1表に示す。
[Industrial Application Field] The present invention relates to the reaction of geranylamine derivatives or nerylamine derivatives in the presence of a hydrogen acceptor using a ruthenium-phosphine complex as a catalyst to produce citral enamine (3,7-dimethyl-1,3,6-
octatrienylylamine derivative) and a method for producing citral by hydrolyzing it. [Prior Art] Citral is important as a raw material for the synthesis of ionone, methylionone, vitamins A and E, as well as food fragrances, soap fragrances, and cologne fragrances. Citral has two stereoisomers, geranial (trans type) and neral (cis type), but for the purpose of perfumery, the mixture is treated as citral without distinguishing between these isomers. In this specification, the term citral is used to mean these isomers and mixtures. The source of citral was lemongrass oil, but recently it has been produced by air oxidation of geraniol from turpentine. That is, α-pinene is hydrogenated to form pinane, which is air oxidized to form hydroperoxide, then pinarol is formed, which is thermally decomposed to form linalool, isomerized to form geraniol and nerol, and this is dehydrogenated. You're getting citral. Also, JP-A-57-
According to No. 102831, amine oxide obtained by oxidation of N,N-diethylnerylamine is used as a raw material, and it is reacted with an acid anhydride, such as acetic anhydride or propionic anhydride, to increase the yield relative to the amine oxide. A method for obtaining citral at 51.4-53.7% is disclosed. [Problems to be Solved by the Invention] However, the above method has disadvantages such as a long number of steps and a low yield, and is not satisfactory. Therefore, it has been desired to develop a method by which citral can be obtained in good yield with simple operations. [Means for Solving the Problem] Under such circumstances, the present inventor was conducting research on the isomerization reaction of geranylamine derivatives and nerylamine derivatives, and found that the use of a ruthenium-phosphine complex as a catalyst would lead to an efficient reaction. The present invention was completed based on the discovery that citral enamine was obtained and that citral could be obtained in good yield with simple operations by hydrolyzing this. That is, the present invention provides the formula () or (), (In the formula, R 1 and R 2 represent lower alkyl groups,
or R 1 and R 2 are combined with adjacent nitrogen atoms to form a cyclic group or morpholino group having 4 to 5 carbon atoms) in the presence of a hydrogen acceptor. The present invention provides a method for producing citral, which comprises reacting with a ruthenium-phosphine complex as a catalyst to produce citral enamine, which is then hydrolyzed. To carry out the present invention, first, 0.005 to 0.02 mol of ruthenium-phosphine complex and 1 to 3 mol of hydrogen acceptor are added to 1 mol of raw material geranylamine derivative or nerylamine derivative, and 100 mol of hydrogen acceptor is added in the presence of a solvent. React at ~120°C for 10-20 hours. As a solvent, dimethylformamide, 1,3
Aprotic polar solvents such as -dimethyl-2-imidazolidinone, N-methylpyrrolidone, diethylene glycol dimethyl ether, tetrahydrofuran, and dimethyl sulfoxide can be used, and toluene and the like can be used as the aprotic nonpolar solvent. The amount of solvent used is preferably 1 to 5 times the amount (volume) of the raw material amine. After the reaction is completed, the solvent is recovered under reduced pressure. If a dilute solution of sulfuric acid, hydrochloric acid, acetic acid, etc. is added directly after the reaction without separating the citral enamine thus obtained from the reaction solution, it is easily hydrolyzed to produce citral. If this is purified by solvent extraction, distillation, etc., citral with a purity of 95% or more can be obtained. The geranylamine derivative or nerylamine derivative represented by the above formulas () and () used in the present invention is obtained by adding an amine compound and n-butyllithium to geranyl chloride or neryl chloride obtained by reacting geraniol or nerol with phosphorus pentachloride. It is easily produced by reacting the obtained amine lithium compound. Another method is telomerization using a secondary amine such as isoprene or myrcene using an alkali metal compound [K.
Takabe et al.: Tetrahedron Lett., 4009 (1972)]
[S. Watanabe et al.: Chem. Ibd., 231 (1973)]. The amine compounds used here include dimethylamine, diethylamine, di-n-propylamine,
Examples include di-isopropylamine, di-n-butylamine, pyrrolidine, piperidine, and morpholine. Hydrogen acceptors include holon, mesityl oxide, 1-octene, cyclohexene, limonene,
Cycloocta-1,5-diene, styrene, etc. are used, and among these, α,β-unsaturated ketones have high potency, and among them, mesityl oxide is preferred. The amount of hydrogen acceptor to be used is preferably approximately equivalent to that of the substrate; for example, if more than three times the amount is used,
There is a significant increase in by-products presumed to be Diels-Alder products. The ruthenium-phosphine complex used in the present invention is a complex in which a bidentate phosphine ligand is coordinated to ruthenium, and is represented by the following formula (). Run X o L p A q () (where,
(m represents 1 or 2, n represents 1 to 4, p represents 2 to 4, and q represents 0 or 1) Examples of such ruthenium-phosphine complexes include the following. Ru 2 Cl 4 (BINAP) 2 Et 3 N RuHCl (BINAP) 2 RuH 2 (BINAP) 2 Ru 2 Cl 4 (T-BINAP) 2 Et 3 N RuHCl (T-BINAP) 2 RuH 2 (T-BINAP) 2 Ru 2 Cl 4 (t-Bu-BINAP) 2 Et 3 N RuHCl (t-Bu-BINAP) 2 RuH 2 (t-Bu-BINAP) 2 Ru 2 Cl 4 (1,4-Diphos) 2 Et 3 N RuHCl (1,4-Diphos) 2 In the above compound, Et is an ethyl group, Ph is a phenyl group, BINAP is 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl, T-BINAP is
is 2,2'-bis(di-paratolylphosphino)-
1,1'-binaphthyl, t-Bu-BINAP is 2,
2'-bis(di-paratertial-butylphenylphosphino)-1,1'-binaphthyl,
-DiPhos represents 1,4-bis(diphenylphosphinebutane. Such ruthenium-phosphine complexes are described, for example, in the literature [Y. Ishii et al.:
Tetrahedron Lett., 24 , 2677 (1983)] [Y.Ishii
et al.: Chem Lett., 1179 (1982)] [T. Ikariya et al.:
J.Chem.Soc.Chem.Commun., 922 (1985)]. For example, to give an example of making Ru 2 Cl 4 (BINAP) 2 Et 3 N,
First, ruthenium chloride and cycloocta-1,
5-Diene (abbreviated as COD) is reacted in ethanol solution to obtain [RuCl 2 (COD)] o [MA
Bennet et al.: Chemistry and Ibd., 1516,
(1959)]. Then, [RuCl 2 (COD)] o 1 mol
After 1.2 moles of BINAP and 4 moles of triethylamine are heated and reacted in a solvent such as toluene, the crystals are separated and purified by recrystallization in a solvent. Ruthenium-phosphine complexes can be used isolated as crystals or so-called “in situ”.
A ruthenium complex can be prepared and used directly in the reaction. In the present invention, when enamine is hydrolyzed to obtain citral, the aqueous layer separated is made alkaline with caustic soda etc., extracted with a solvent such as toluene, and then distilled to produce geranyl, an unreacted raw material. Amine derivatives or nerylamine derivatives or nerylamine derivatives can be easily recovered. Further, the amine of the geranylamine derivative or the nerylamine derivative, which is generated by decomposition during the reaction process, can be recovered with a recovery rate of 95% or more. [Example] Next, the present invention will be explained with reference to an example. Example 1 10.5 g (50 mmol) of geranyl diethylamine,
Ru 2 Cl 4 (BINAP) 2 Et 3 N0.423g (0.5 mmol),
26ml dimethylformamide, 6ml mesityl oxide
ml (60 mmol) was placed in a sealed tube and reacted at 120°C for 12 hours. After the reaction, a portion was taken out and trans-stilbene was added as an internal standard reagent.
GLC analysis was performed to determine the conversion rate and selectivity of the reaction from geranyl diethylamine to citral enamine. The conversion rate was 43.3% and the selection rate was 73.7%. Then, dimethylformamide was distilled off,
Add 50 ml of water and 50 ml of ethyl ether, cool to 0℃, slowly add 70 ml of 10% acetic acid dropwise, and add 50 ml of ethyl ether.
-5 and stirred for 2 hours. The mixture was separated into an aqueous layer and an oil layer, so the aqueous layer was extracted with ethyl ether, combined with the oil layer, washed with 5% hydrochloric acid and 10% aqueous sodium carbonate solution, and dried over magnesium sulfate. After distilling off the solvent, distill it to 80-85
2.34 g of citral (theoretical yield 71%) was obtained as a fraction of °C/1 mmHg. According to GLC analysis, this product was a 25:75 mixture of neral and geranial. In the above step, the aqueous layer separated by ether extraction after hydrolysis was cooled with ice water, made alkaline by adding 50% caustic soda aqueous solution, extracted with toluene, and distilled to obtain 1.51 g of diethylamine (recovered). (95% recovery rate) and 5.35 g (90% recovery rate) of unreacted geranyl diethylamine were recovered. Example 2 neryl diethylamine 10.5 g (50 mmol),
Ru 2 Cl 4 (BINAP) 2 Et 3 N0.423g (0.5 mmol),
26ml dimethylformamide, 17ml mesityl oxide
ml (150 mmol) was placed in a sealed tube and reacted at 100°C for 20 hours. After the reaction was completed, the same procedure as in Example 1 was carried out.
GLC analysis showed conversion rate of 36.0% and selectivity.
It was 58.1%. Then, dimethylformamide was distilled off, and 50 ml of water and 50 ml of ethyl ether were added.
The mixture was cooled to 0° C., and 70 ml of 10% acetic acid was slowly added dropwise thereto, the pH was adjusted to 4 to 5, and the mixture was stirred for 2 hours. The aqueous layer and the oil layer were separated, and the aqueous layer was extracted with ethyl ether, washed together with the oil layer with 5% hydrochloric acid and 10% aqueous sodium carbonate solution, and dried using magnesium sulfate. After distilling off the solvent, perform distillation at 80-85℃/1
mmHg fraction of citral 1.43 g (theoretical yield 52.3
%) was obtained. According to GLC analysis, this product was a 33:67 mixture of neral and geranial.
Also, in the same manner as in Example 1, 1.25 diethylamine
g (95% recovery) and neryl diethylamine 6.05
g (recovery rate 90%). Example 3 2.1 g (10 mmol) of geranyl diethylamine,
[RuCl 2 (COD)] o 28 mg (0.1 mmol), BINAP66
mg (10 mmol), dimethylformamide 5.2 ml,
1.2 ml (12 mmol) of mesityl oxide was placed in a sealed tube and reacted at 120°C for 12 hours. GLC analysis was performed in the same manner as in Example 1 to determine the conversion rate and selectivity of the reaction leading to citral enamine.
The conversion rate was 73.7% and the selection rate was 54.0%. Then, by treating in the same manner as in Example 1, the boiling point is 80~
0.59 g of citral at 85℃/1 mmHg (theoretical yield 52.5
%) was obtained. According to GLC analysis, this product was a 27:73 mixture of neral and geranial. Examples 4 to 12 Ru 2 Cl 4 used in Example 1
(BINAP) Citral was obtained from geranyl diethylamine in the same manner as in Example 1, using each ruthenium-phosphine complex instead of 2 Et 3 N. The results are shown in Table 1.

【表】【table】

【表】 実施例 12〜15 実施例1において使用したゲラニルジエチルア
ミンにかえて、それぞれのゲラニルアミン誘導体
を使用し、実施例1と同様な操作によりシトラー
ルを得た。結果を第2表に示す。
[Table] Examples 12 to 15 Citral was obtained in the same manner as in Example 1 except that each geranylamine derivative was used in place of the geranyl diethylamine used in Example 1. The results are shown in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明は、有用なシトラールを、容易に入手出
来るゲラニルアミン誘導体及びネリルアミン誘導
体を原料とし、比較的短い工程と、好収率で得る
ことの出来る工業的価値の高い製造方法である。
The present invention is a highly industrially valuable production method capable of producing useful citral using readily available geranylamine derivatives and nerylamine derivatives as raw materials in relatively short steps and in good yield.

Claims (1)

【特許請求の範囲】 1 式()または() (式中、R1、R2は低級アルキル基を表わすか、
またはR1及びR2が隣接する窒素原子と一緒にな
つて炭素数4〜5の環式基またはモルホリノ基を
形成することを表わす) で表わされるゲラニルアミン誘導体またはネリル
アミン誘導体を水素受容体の存在下にルテニウム
−ホスフイン錯体を触媒として反応せしめてシト
ラールエナミンとなし、これを加水分解すること
を特徴とするシトラールの製造方法。
[Claims] 1 Formula () or () (In the formula, R 1 and R 2 represent lower alkyl groups,
or R 1 and R 2 are combined with adjacent nitrogen atoms to form a cyclic group or morpholino group having 4 to 5 carbon atoms) in the presence of a hydrogen acceptor. 1. A method for producing citral, which comprises reacting with a ruthenium-phosphine complex as a catalyst to produce citral enamine, which is then hydrolyzed.
JP61012649A 1986-01-23 1986-01-23 Production of citral Granted JPS62169741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012649A JPS62169741A (en) 1986-01-23 1986-01-23 Production of citral

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012649A JPS62169741A (en) 1986-01-23 1986-01-23 Production of citral

Publications (2)

Publication Number Publication Date
JPS62169741A JPS62169741A (en) 1987-07-25
JPH0422893B2 true JPH0422893B2 (en) 1992-04-20

Family

ID=11811213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012649A Granted JPS62169741A (en) 1986-01-23 1986-01-23 Production of citral

Country Status (1)

Country Link
JP (1) JPS62169741A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849197C1 (en) * 1998-10-26 2000-02-24 Metallgesellschaft Ag Selective, high yield lithiation of 5-membered heterocycle in presence of hydrogen acceptor, giving product useful as intermediate for plant protectants or drugs
JP4519255B2 (en) * 2000-04-07 2010-08-04 高砂香料工業株式会社 Process for producing optically active 3,7-dimethyl-6-octenol
DE102008042421A1 (en) * 2008-09-26 2010-04-01 Symrise Gmbh & Co. Kg Geranylamine derivatives of oxalic acid

Also Published As

Publication number Publication date
JPS62169741A (en) 1987-07-25

Similar Documents

Publication Publication Date Title
US3847993A (en) Allylic oxidation of bicyclic hydrocarbons to alcohols and ketones
JP2001261667A (en) Method for preparing allylfuran compound
JPS6251945B2 (en)
JPS6113449B2 (en)
Haruta et al. An effective and selective conjugate propargylation reaction of stannylallenes to. alpha.,. beta.-unsaturated carbonyl compounds and. alpha.-nitro olefins
JPH0360808B2 (en)
US7470822B2 (en) C10 dialdehyde, synthetic method thereof, and synthetic method of beta-carotene using the same
JPH0422893B2 (en)
US4266087A (en) Process for preparing a myrcenol, cis-ocimenol mixture substantially free of trans-ocimenol
Botteghi et al. Rhodium catalyzed hydroformylation of 1, 1-bis (p-fluorophenyl) allyl or propargyl alcohol: a key step in the synthesis of Fluspirilen and Penfluridol
JP2950696B2 (en) Method for producing optically active muscone
US4306082A (en) Optically active tertiary phosphine oxides and tertiary phosphines and processes for their preparation
EP1142859B1 (en) Process for producing optically active 3,7-dimethyl-6-octenol and process for producing intermediate therefore
JP7298088B2 (en) Process for producing 2-methyl-4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-butenal
CA2091615C (en) Process for producing vitamin a acid
JP4418048B2 (en) Process for producing 13-cis-retinoic acid
JP4087329B2 (en) Muscon manufacturing method
EP0209905B1 (en) 1,1-(3-ethylphenyl)phenylethylene and method for its preparation
JP3918120B2 (en) Method for producing 3,7-dimethyl-2,6-octadiene-4-olide
JPS6042775B2 (en) 1,7-octadien-3-one and its manufacturing method
JPH11319576A (en) Catalyst for hydration reaction of 1-alkyne
JPS6287555A (en) Production of cis-2-alkyl-3-alkoxycarbonylmethylcyclopentanone
JP2001335529A (en) Method for producing 2-(1-hydroxyalkyl)cycloalkanone
JPH0457659B2 (en)
JP2007161676A (en) Method for producing e, z-1,3,5-alkatriene

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees