JPH0422859B2 - - Google Patents

Info

Publication number
JPH0422859B2
JPH0422859B2 JP8155584A JP8155584A JPH0422859B2 JP H0422859 B2 JPH0422859 B2 JP H0422859B2 JP 8155584 A JP8155584 A JP 8155584A JP 8155584 A JP8155584 A JP 8155584A JP H0422859 B2 JPH0422859 B2 JP H0422859B2
Authority
JP
Japan
Prior art keywords
glass powder
glass
mold
granules
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8155584A
Other languages
Japanese (ja)
Other versions
JPS60226417A (en
Inventor
Noryasu Akaishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP8155584A priority Critical patent/JPS60226417A/en
Publication of JPS60226417A publication Critical patent/JPS60226417A/en
Publication of JPH0422859B2 publication Critical patent/JPH0422859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は花崗岩や大理石等の天然石模様を有
し、建築物の壁装材等に用いられるガラス体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a glass body having a natural stone pattern such as granite or marble and used as a wall covering material for buildings.

〔従来の技術〕[Conventional technology]

本願発明者は特願昭59−6126号において、ガラ
ス粉を原料とした天然模様を有する人造石及びそ
の製造方法を提案した。前記先願における人造石
はガラス粉末を原料として加圧しながら焼成する
ので低加圧力ながら光沢と硬度と不然性を有する
とともにガラス粉末粒子間の気孔が封じ込めら
れ、微細で均一に分布した気泡となるので光が散
乱され、シツクで落着いた外観を呈す。しかしな
がらガラス粉末の型中での充填が不十分な場合に
は加圧しながらの焼結であつてもそこに大粒の孔
や気泡が残り、外観を害ねたり強度低下の原因と
なることがある。
In Japanese Patent Application No. 59-6126, the present inventor proposed an artificial stone with a natural pattern made from glass powder and a method for manufacturing the same. The artificial stone in the earlier application uses glass powder as a raw material and is fired under pressure, so it has gloss, hardness, and unnaturalness despite low pressure, and the pores between the glass powder particles are sealed, resulting in fine and uniformly distributed air bubbles. As a result, light is scattered, creating a stylish and calm appearance. However, if the glass powder is not sufficiently filled in the mold, large pores and bubbles may remain even when sintering under pressure, which may impair the appearance or cause a decrease in strength. .

また従来から知られているガラス粉末の焼結に
おいては単に加圧成形してから焼結するので、加
圧成形時にガラス粉末の流動が悪く大粒の気孔を
残すと、それが大粒の気泡となつて欠点となるこ
とがある。
In addition, in conventional sintering of glass powder, the glass powder is simply pressure-formed and then sintered, so if the glass powder does not flow well during pressure-forming and leaves large pores, they may turn into large air bubbles. This can be a drawback.

〔解決しようとする問題点〕[Problem to be solved]

本発明は前記したガラス粉末を加圧成形すると
きに生じ易い大粒の気孔の残存を無からしめ、大
粒の泡の無いガラス体を製造する方法を提供する
ことを目的とする。
An object of the present invention is to provide a method for producing a glass body free of large bubbles by eliminating the residual large pores that tend to occur when the above-mentioned glass powder is pressure-molded.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するため、本発明においては
ガラス粉末を成形型中で液体の存在下で振動を加
えながら加圧して成形した後焼結することを特徴
とする。
In order to solve the above-mentioned problems, the present invention is characterized in that glass powder is pressed and molded in a mold while applying vibration in the presence of a liquid, and then sintered.

〔作 用〕[Effect]

例えば水分を適用当量混じたガラス粉末は、静
置下では水分がガラス粉末表面に吸着され、ガラ
ス粉末の集合体はゲル状態となり、比較的大きい
変形抵抗を有するので流動性が悪く、この状態で
加圧してもなかなか最密充填にはならない。しか
しこの状態のガラス粉末に振動を付与すると水分
が遊離し、ゾル状態となつて非常に流動性が良く
なり、僅かの加圧力で最密充填状態が得られる。
本発明はこの揺変性を応用したものである。ガラ
ス粉末が乾燥状態の場合には比較的流動性はある
が本発明の程度には到らず、例えばガラス粉末に
粒状物を混合しておいて成形する場合などは粒状
物と粒状物の隙間を完全にガラス粉末で充填する
事は難かしい。またこの場合にはバインダー作用
を果す液体が無いので、焼結前に型から外すこと
が出来ず、大量生産する場合には多数の型を用意
しなければならない。
For example, when a glass powder mixed with an appropriate amount of water is left standing, the water is adsorbed on the surface of the glass powder, and the aggregate of the glass powder becomes a gel state, which has relatively high deformation resistance and has poor fluidity. Even when pressurized, it is difficult to achieve close packing. However, when vibrations are applied to the glass powder in this state, water is liberated and the glass powder becomes a sol with very good fluidity, and a close-packed state can be obtained with a small amount of pressure.
The present invention applies this thixotropy. When glass powder is in a dry state, it has relatively fluidity, but it does not reach the level of the present invention. For example, when granules are mixed with glass powder and molded, the gaps between the granules It is difficult to completely fill the glass powder with glass powder. Furthermore, in this case, since there is no liquid that acts as a binder, it is impossible to remove the mold from the mold before sintering, and a large number of molds must be prepared for mass production.

本発明の方法に用いるガラス粉末は揺変性を利
用する観点からなるべく微細なものが好ましく、
具体的には粒径200μm以下のものが20重量%以上
含んでいることが好ましい。また、焼結前のハン
ドリングの点からは極力微細で均一な粒度が良い
が、製品外観を与える点では種々の粒度に分布し
ているのが良い。
The glass powder used in the method of the present invention is preferably as fine as possible from the viewpoint of utilizing thixotropy.
Specifically, it is preferable that particles with a particle size of 200 μm or less contain 20% by weight or more. Furthermore, from the point of view of handling before sintering, it is better to have as fine and uniform a particle size as possible, but from the point of view of giving the product a good appearance, it is better to have a distribution of various particle sizes.

またガラス粉末を液体を含んだ状態であらかじ
め造粒しておき、造粒物を型中で振動を付与しな
がら加圧すると造粒物が流動変形して最密充填す
ることができる。この場合でも造粒物同志が完全
に混り合うことはなく、それぞれが変形して最密
充填状態となるだけなので造粒物同志が接する境
界線が残り製品外観に変化を与える。この効果を
利用すると、例えばガラス粉末に白、赤、黒を発
色させる顔料を混じたそれぞれの造粒物を用意
し、この3種の造粒物を型中で混在させて振動加
圧を加えて成形した後焼成すると白、赤、黒が点
在した大理石調のガラス体が得られる。
Further, if the glass powder is granulated in advance in a state containing a liquid, and the granules are pressurized while being vibrated in a mold, the granules flow and deform, allowing close packing. Even in this case, the granules do not completely mix with each other, but only deform and form a close-packed state, so that a boundary line where the granules touch each other remains, which changes the appearance of the product. Using this effect, for example, you can prepare granules of glass powder mixed with pigments that produce white, red, and black colors, mix these three types of granules in a mold, and apply vibration pressure. After molding and firing, a marble-like glass body dotted with white, red, and black is obtained.

ガラス粉末に混じられる液体としては、水もし
くは苛性ソーダ、水ガラス、メチルセルローズ、
ポリビニルアルコール等の水溶液又はエチルシリ
ケートなどの有機珪酸化合物が普通に用いられ
る。水単独でもガラス粉末のバインダーとしての
効果があるが、焼成前の成形物強度をひ必要とす
る場合には前記した水以外の液体を用いるとよ
い。液体の添加量はガラス粉末粒度により異るの
で一概に決められないが、液体に水を用い、ガラ
ス粉末粒径が100μm以下の場合で水分が15〜30重
量%で揺変性を示す。ここで水分が30%以上では
スラリー状となり静置しても自己形状を維持でき
ず、15%以下では振動を付与しても揺変性を示さ
ず流動性がよくならない。揺変性を水分量の範囲
は、ガラス粉末粒径が大きくなる程小さくなる。
Liquids that can be mixed with glass powder include water, caustic soda, water glass, methyl cellulose,
Aqueous solutions such as polyvinyl alcohol or organic silicic acid compounds such as ethyl silicate are commonly used. Although water alone is effective as a binder for glass powder, if the strength of the molded product before firing is required, it is preferable to use a liquid other than water as described above. The amount of liquid to be added varies depending on the glass powder particle size and cannot be determined unconditionally, but when water is used as the liquid and the glass powder particle size is 100 μm or less, the glass powder exhibits thixotropy when the water content is 15 to 30% by weight. If the water content is more than 30%, it becomes slurry-like and cannot maintain its own shape even if it is left standing, and if it is less than 15%, it does not exhibit thixotropy and does not have good fluidity even if it is subjected to vibration. The range of water content for thixotropy becomes smaller as the glass powder particle size becomes larger.

ガラス粉末に付与する振動には何ら制約はな
い。振動数としては数十ないし数万r.p.m.、振巾
としては数百μmないし数cmの範囲が用いられる。
但し振動数が小さい場合は振巾を大きくしないと
ガラス粉末がなかなか流動化しない。振動の方向
は水平方向、垂直方向どちらでもよいが型内の内
容物がとびださないよう水平方向とするのが好ま
しい。付与する加圧力は型内内容物のはね上り押
さえる程度、即1〜5gr/cm2程度で十分であ
る。高圧で加圧する程脱水率は向上するが大面積
の製品を作る場合にプレスが必要となる。数g
r/cm2程度なら、上型を兼ねて落し蓋を載置する
ことで達成出来る。
There are no restrictions on the vibrations applied to the glass powder. The frequency range is from several tens to tens of thousands of rpm, and the amplitude is from several hundred μm to several cm.
However, if the vibration frequency is low, the glass powder will not easily fluidize unless the vibration width is increased. The direction of vibration may be either horizontal or vertical, but it is preferably horizontal to prevent the contents of the mold from spilling out. The applied pressure is sufficient to suppress the contents in the mold from springing up, that is, about 1 to 5 gr/cm 2 . The higher the pressure, the better the dehydration rate will be, but a press will be required when making large-area products. Several grams
r/cm 2 can be achieved by placing a drop lid that also serves as an upper mold.

ガラス粉成形物の焼成は、用いられているガラ
スが105〜1011ポイズ粘性、さらに好ましくは106
〜1010ポイズの粘性を示す温度域に加熱すること
により行なわれる。この焼結によりガラス粉末同
志は焼結ないし融着し、強固なガラス体となる。
焼成はガラス粉成形物を型の中に入れたまま行つ
てもよいが、本発明では液体がバインダー作用を
するので、脱型して焼結することが可能で、こう
することにより型の回転を早めることが出来る。
When firing the glass powder molded product, the glass used has a viscosity of 10 5 to 10 11 poise, more preferably 10 6
This is done by heating to a temperature range that exhibits a viscosity of ~10 to 10 poise. Through this sintering, the glass powders are sintered or fused together to form a strong glass body.
Firing may be carried out while the glass powder molded product is in the mold, but in the present invention, the liquid acts as a binder, so it is possible to remove the mold and sinter it. can be accelerated.

〔実施例〕〔Example〕

粒径分布が1680〜840μm、840〜297μm、297〜
177μm、177〜105μmが各15重量%および105μm
未満のもの40重量%のフロート板ガラス組成
(sio271.2、Al2O31.4、CaO9、MgO3.9、
Na2O13.5、K2O1重量%、軟化点730℃比重2.5g
r/cm3)のガラス粉末7500grの中6000grに弁
柄粉末60grと水900grを残りの1500grに酸
化チタン粉末30grと水225gr加え、それぞれ
を十分に混合した上転動造粒機で3〜15mmの粒径
に造粒した。造粒物を内面に離型剤としてシリコ
ン油を塗布した内法寸法40cm×40cm×6cm深さの
金型内に前記両造物がそれぞれ片寄らぬよう均一
に混在させ、その上に厚さ約1mmのフエルト布を
覆せ、さらにその上に上型と重しを兼ねる寸法
39.5cm×39.5cm×1.2cm厚の鉄板の縦横それぞれ5
cmピツチに1cm径の孔を設けたものを載置し、金
型ごと振動テーブルに固定し、振動数9000r.p.m.
振巾2mmで振動を付与した。振動が始まると、上
型孔部にフエルトを通して水が浸み出すとともに
気泡がフエルトを通り抜けて、前記孔部に貯つた
水面に浮上する状態がしばらく続いた。浸み出る
水を吸引除去すると、振動約4分で水の浸み出し
および泡抜けが止まつたので、5分後に振動を止
めた。上型を外し、フエルタ布を剥し、離型剤と
して珪砂粉末を散布した鉄板上に金型を裏返して
ガラス粉末予備成形体を移設し、2日間室温で乾
燥させた。乾燥後のガラス粉末成形体は40cm×40
cm×2.1cm厚さを有しており、指で押えたぐらい
え崩れない程度に固つていた。これを電気炉中で
10℃/分の速度で650゜Cまで上昇させ、1時間保
持後750℃まで昇温し1時間保持後1℃/分で室
温まで冷却した。ガラス粉末同志は焼結ないしは
融着しており、得られたガラス体は寸法が39.5cm
×39.5cm×2cm厚さで、全面に0.05mm以下の微細
気泡が均一に内在し、入射光を散乱させるのでソ
フトな光沢を有し、赤地模様中に白地模様が点在
し、境界部は適度にぼかされているので天然石の
研磨面の様な外観を有していた。また径が0.3mm
以上の気泡は皆無でかつクラシツクや層間剥離な
ども無く、比重は2.43gr/cm3で、その曲げ強度
は510Kg/cm2であり、建築物壁面装飾に用いられ
る天然石をしのぐ強度が得られた。
Particle size distribution is 1680~840μm, 840~297μm, 297~
177μm, 177~105μm each 15% by weight and 105μm
Float plate glass composition of less than 40% by weight (SIO 2 71.2, Al 2 O 3 1.4, CaO9, MgO3.9,
Na 2 O 13.5, K 2 O 1% by weight, softening point 730℃ specific gravity 2.5g
Add 60g of Bengara powder and 900g of water to 6000g of 7500g of glass powder (r/cm 3 ), and add 30g of titanium oxide powder and 225g of water to the remaining 1500g. Mix each thoroughly and use an upper rotary granulator to make a powder of 3 to 15 mm. It was granulated to a particle size of Both of the above-mentioned granules were mixed uniformly in a mold with internal dimensions of 40 cm x 40 cm x 6 cm deep, with silicone oil applied as a mold release agent on the inner surface, and a mold with a thickness of about 1 mm was placed on top of the mold. The size allows you to cover the felt cloth, and also doubles as an upper mold and weight on top of it.
39.5cm x 39.5cm x 1.2cm thick iron plate length and width 5 each
Place a hole with a diameter of 1 cm on a cm pitch, fix the mold together on a vibration table, and set the vibration frequency to 9000 r.pm.
Vibration was applied with a width of 2 mm. When the vibrations started, water leaked through the felt through the holes in the upper mold, and air bubbles passed through the felt and floated to the surface of the water stored in the holes, which continued for a while. When the oozing water was removed by suction, the oozing of water and bubbles stopped after about 4 minutes of vibration, so the vibration was stopped after 5 minutes. The upper mold was removed, the felt cloth was peeled off, the mold was turned over and the glass powder preform was transferred onto an iron plate on which silica sand powder had been sprinkled as a mold release agent, and the glass powder preform was dried at room temperature for 2 days. Glass powder compact after drying is 40cm x 40
It had a thickness of cm x 2.1 cm, and was firm enough that it would not crumble even if you pressed it with your fingers. This is done in an electric furnace.
The temperature was raised to 650°C at a rate of 10°C/min, held for 1 hour, then raised to 750°C, held for 1 hour, and then cooled to room temperature at 1°C/min. The glass powders are sintered or fused together, and the resulting glass body measures 39.5 cm.
x 39.5 cm x 2 cm thick, the entire surface contains microbubbles of 0.05 mm or less uniformly, scattering incident light, giving it a soft luster. White background patterns are scattered within the red background pattern, and the border area is Since it was moderately blurred, it had the appearance of a polished surface of natural stone. Also, the diameter is 0.3mm
There were no air bubbles, no cracking or delamination, the specific gravity was 2.43g/cm 3 , and the bending strength was 510Kg/cm 2 , which exceeded the strength of natural stone used for wall decoration of buildings. .

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、ガラス粉末を液体の存
在下で振動を付与しながら加圧成形するので、ガ
ラス粉末が細部まで流動かつ最密充填され、した
がつて焼成後のガラス体には大粒の気泡が残らな
い。また使用する液体がバインダーとして作用す
るので、焼成前に脱型していてもガラス粉成型体
が崩れたりすることなく、高価な型枠の回転を早
めることが出来て、大量生産にも適している。
According to the method of the present invention, the glass powder is pressure-molded in the presence of a liquid while applying vibrations, so the glass powder is fluidized and most closely packed in the details, so that the glass body after firing contains large particles. No air bubbles left. In addition, since the liquid used acts as a binder, the glass powder molded body does not collapse even if it is removed from the mold before firing, and the rotation of expensive molds can be accelerated, making it suitable for mass production. There is.

Claims (1)

【特許請求の範囲】 1 ガラス粉末を型中に加圧充填した後焼成する
ガラス体の製造方法において、ガラス粉末を液体
の存在下で振動を付与しながら加圧成形し、しか
る後焼成することを特徴とするガラス体の製造方
法。 2 前記ガラス粉末にはあらかじめ造粒されたガ
ラス粉末造粒物を含んでいる特許請求の範囲第1
項に記載のガラス体の製造方法。 3 前記ガラス粉末造粒物が相異る発色をする顔
料を含んでいる少くとも2種以上の造粒物からな
る特許請求の範囲第2項に記載のガラス体の製造
方法。 4 前記液体が水を含む液体である特許請求の範
囲第1項ないし第3項に記載のガラス体の製造方
法。 5 前記ガラス粉末が粒径200μm以下の粒子を少
くとも20重量%以上含んだガラス粉末である特許
請求の範囲第1項ないし第4項に記載のガラス体
の製造方法。
[Claims] 1. A method for manufacturing a glass body in which glass powder is pressure-filled into a mold and then fired, comprising press-molding the glass powder in the presence of a liquid while applying vibrations, and then firing the glass powder. A method for manufacturing a glass body characterized by: 2. Claim 1, wherein the glass powder includes glass powder granules that have been granulated in advance.
A method for producing a glass body as described in 2. 3. The method for manufacturing a glass body according to claim 2, wherein the glass powder granules are comprised of at least two types of granules containing pigments that develop different colors. 4. The method for manufacturing a glass body according to claims 1 to 3, wherein the liquid is a liquid containing water. 5. The method for manufacturing a glass body according to claims 1 to 4, wherein the glass powder contains at least 20% by weight of particles with a particle size of 200 μm or less.
JP8155584A 1984-04-23 1984-04-23 Production of glass body Granted JPS60226417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155584A JPS60226417A (en) 1984-04-23 1984-04-23 Production of glass body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155584A JPS60226417A (en) 1984-04-23 1984-04-23 Production of glass body

Publications (2)

Publication Number Publication Date
JPS60226417A JPS60226417A (en) 1985-11-11
JPH0422859B2 true JPH0422859B2 (en) 1992-04-20

Family

ID=13749530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155584A Granted JPS60226417A (en) 1984-04-23 1984-04-23 Production of glass body

Country Status (1)

Country Link
JP (1) JPS60226417A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6646905B2 (en) * 2015-10-30 2020-02-14 小林 博 Method for producing glass frit covered with collection of fine particles of metal or alloy, and method for producing molded body made of glass frit having properties of metal or alloy

Also Published As

Publication number Publication date
JPS60226417A (en) 1985-11-11

Similar Documents

Publication Publication Date Title
RU2305085C2 (en) Composite material and method of its preparation
KR100829487B1 (en) Manufacturing method of porcelain tile and porcelain tile manufactured therefrom
JPH02233549A (en) Ceramic plate material product and its manufacture
JPH0422859B2 (en)
US2875485A (en) Precision casting mold and method of making the same
KR101215731B1 (en) Artificial marble having various designs, improved abrasion and stain resistances, and process for preparing the same
KR100884901B1 (en) Cement type artificial marble having natural marble appearance and process for preparing the same
JP3371584B2 (en) Artificial stone product having stone-grain-containing surface layer and method for producing the same
JPH01264938A (en) Wired vitreous artificial stone and its production
CN103214247A (en) American-style handmade brick formula, and American-style handmade brick preparation process
JP2005104737A (en) Surface treating agent for ceramic-made glove mold, ceramic-made glove mold, method for manufacturing the same, and glove
JP2500221B2 (en) Method for producing paving stone material made of mineral material
JP2501211B2 (en) Glass body manufacturing method
US20100316796A1 (en) Method for producing raised marking on a glass object
JP2966882B2 (en) Manufacturing method of products with pseudo three-dimensional pattern
CN1022768C (en) Multi-hole metal making method
JP2860692B2 (en) Method for producing porous product by cristobalite
JPH07242456A (en) Production of antifungal artificial marble product
JPS63203555A (en) Vessel
JPS624348B2 (en)
JPS60151251A (en) Glassy artificial stone and its manufacture
CN111943710A (en) Production process of adsorption slow-release functional ceramic
JPH05319844A (en) Production of glass molded body
JPS5945961A (en) Manufacture of glazed tile
JP3554383B2 (en) Gel coat resin for producing a stone pattern and method for producing the same, artificial stone product having a stone pattern using the gel coat resin, and method for producing the same