JPH04228548A - Sliding means for valve gear mechanism - Google Patents

Sliding means for valve gear mechanism

Info

Publication number
JPH04228548A
JPH04228548A JP22365891A JP22365891A JPH04228548A JP H04228548 A JPH04228548 A JP H04228548A JP 22365891 A JP22365891 A JP 22365891A JP 22365891 A JP22365891 A JP 22365891A JP H04228548 A JPH04228548 A JP H04228548A
Authority
JP
Japan
Prior art keywords
cam
wear
carbide
amount
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22365891A
Other languages
Japanese (ja)
Inventor
Toshihiko Matsubara
松原 敏彦
Akira Fujiwara
昭 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22365891A priority Critical patent/JPH04228548A/en
Publication of JPH04228548A publication Critical patent/JPH04228548A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a sliding means for valve gear mechanism having superior wear resistance and excellent in durability. CONSTITUTION:In the sliding member for valve gear mechanism where hard phases are dispersed in a matrix phase of a sliding surface layer, the size of the grains of the above hard phases, average grain spacing, and visual field space factor are set at 4-15mum, 5-15mum, and 10-50%, respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内燃機関の動弁機構に
おいて、大きな面圧の下で、カムまたは該カムに摺動接
触するロッカアーム(その対カム摺接面部)、バルブ・
リフター等のカム摺動部材の摺動手段に関するものであ
る。
[Industrial Field of Application] The present invention relates to a cam or a rocker arm (its sliding contact surface with the cam) that is in sliding contact with a cam, a valve mechanism, and a valve mechanism for an internal combustion engine.
This invention relates to a sliding means for a cam sliding member such as a lifter.

【0002】0002

【従来技術】高出力化と高速化が図られた内燃機関の動
弁機構では、カムとカム摺動部材とに対し大きな面圧が
加わって高速度でカムが摺動接触しいるため、カムとカ
ム摺動部材間に潤滑油を供給して両者間を潤滑していて
も、高い耐摩耗性が要求される。このため、従来では、
摺動手段は、鍛造鋼、鋳鋼、合金鋳鉄等で作られ、摺接
面に熱処理による表面硬化、浸炭焼入れ処理、チル硬化
、硬質Crメッキ等の表面処理が施されていた。ところ
が、浸炭焼入れ材は耐スカッフ性(注;スカッフとは、
摩擦面間の凝着が激しく、それによって表面肌が荒れる
現象を言う)に劣り、チル硬化材は耐久性に劣り、硬質
Crメッキ材は局部当たり伴う剥離あるいは摩耗剥離を
生じることがある等、それぞれに問題を有している。
[Prior Art] In the valve mechanism of an internal combustion engine designed to achieve high output and high speed, large surface pressure is applied to the cam and the cam sliding member, causing the cam to come into sliding contact at high speed. Even if lubricating oil is supplied between the cam sliding member and the cam sliding member to lubricate the space between the two, high wear resistance is required. For this reason, conventionally,
The sliding means is made of forged steel, cast steel, alloyed cast iron, etc., and the sliding surface is subjected to surface treatments such as surface hardening by heat treatment, carburizing and quenching, chill hardening, and hard Cr plating. However, carburized and quenched materials have scuff resistance (note: scuff is
Chill hardened materials have poor durability, and hard Cr plating materials may peel off due to local contact or wear and tear. Each has its own problems.

【0003】この問題を解決しようとしたものとして、
特公昭59−7003号公報、特開昭60−63350
号公報に記載されたものがあった。前記特公昭59−7
003号公報に記載されたものでは、摺接面部がパーラ
イト基地で30〜45%の炭化物を含む鋳鉄カムと、該
カムとの摺接面部が鉄系で基地硬度がHV 250〜6
50 を有し、硬質相の体積比が5〜35%、HV 8
80〜1800の硬質相が全硬質相の65%以上で、硬
質相の大きさ5〜150 μm の硬質相が全硬質相の
80%以上を占め、空孔率が10%以下でかつ1250
℃の焼結温度で液相焼結を生ぜしむるP.B等の元素を
1種あるいは2種以上を0.2 〜5重量%を含む焼結
合金よりなるカム摺動部材とを組合わせている。また前
記特開昭60−63350号公報に記載されたカムと摺
接するカム摺動部材では、特定の炭化物からなる30〜
60%(重量)の硬質層と、特定の元素を含有した鉄族
金属からなる残部の結合層とから炭化物系焼結合金が形
成され、前記硬質層が0.5 〜10μm の平均粒子
径を有して分散されるとともに、前記焼結合金がHV 
500〜1200望ましくはHV 600〜1000の
硬さに形成されている。
[0003] In an attempt to solve this problem,
Japanese Patent Publication No. 59-7003, Japanese Patent Publication No. 60-63350
There was something described in the issue. Said Special Public Service 1987-7
003 discloses a cast iron cam whose sliding surface is made of pearlite and contains 30 to 45% carbide, and whose sliding surface is made of iron and has a base hardness of HV 250 to 6.
50, the volume ratio of the hard phase is 5-35%, HV 8
The hard phase of 80 to 1800 μm accounts for 65% or more of the total hard phase, the hard phase of 5 to 150 μm in size accounts for 80% or more of the total hard phase, and the porosity is 10% or less and 1250 μm or more.
P. which produces liquid phase sintering at a sintering temperature of °C. It is combined with a cam sliding member made of a sintered alloy containing 0.2 to 5% by weight of one or more elements such as B. In addition, in the cam sliding member that is in sliding contact with the cam described in JP-A No. 60-63350, the cam sliding member is made of a specific carbide.
A carbide-based sintered alloy is formed from a 60% (by weight) hard layer and the remaining bonding layer made of an iron group metal containing a specific element, and the hard layer has an average particle size of 0.5 to 10 μm. and the sintered alloy is dispersed with HV
It is formed to have a hardness of HV 500 to 1200, preferably HV 600 to 1000.

【0004】0004

【解決しようとする課題】しかし前記公告公報および公
開公報に記載されたものでは、耐摩耗性に大きな影響を
与える硬質相の硬度、体積比、大きさ、平均粒子径のみ
に注目して、これらの数値を規定しているが、カムおよ
びカム摺動部材間に存在する潤滑油をどのように管理し
て、両者間の潤滑をどのように遂行しようかという考慮
が払われていなかったため、充分な耐摩耗性が得られな
かった。
[Problem to be solved] However, the publications described in the above-mentioned gazettes and published publications focus only on the hardness, volume ratio, size, and average particle diameter of the hard phase, which have a large effect on wear resistance. However, there was no consideration given to how to manage the lubricating oil existing between the cam and the cam sliding member, and how to achieve lubrication between the two. Abrasion resistance could not be obtained.

【0005】[0005]

【課題を解決するための手段および作用】本発明は、カ
ムおよびカム摺動部材の摺動面部の摩耗がどのように行
なわれ、これに関連して両摺動面部間の潤滑油がどのよ
うに潤滑に寄与するかという点に注目して発明がなされ
たものであり、摺動表面層の基地相中に硬質相が分散し
た動弁機構の摺動手段において、前記硬質相の80%以
上が大きさ4〜15μm であって、該硬質相が平均粒
子間隔5〜15μm で分散するとともに、該硬質相の
視野占有面積率が10〜50%であることを特徴とする
ものである。
[Means and operations for solving the problems] The present invention describes how the sliding surfaces of the cam and the cam sliding member wear out, and in relation to this, how the lubricating oil between the sliding surfaces is distributed. The invention was made with an eye to whether the hard phase contributes to lubrication, and in a sliding means of a valve mechanism in which a hard phase is dispersed in the base phase of the sliding surface layer, 80% or more of the hard phase The hard phase has a size of 4 to 15 μm, the hard phase is dispersed at an average particle spacing of 5 to 15 μm, and the hard phase has a viewing area ratio of 10 to 50%.

【0006】カムまたはカム摺動部材の摺接部が摩耗す
ると、硬質相に比べて基地相が摩耗され易く、基地相の
表面が硬質相の表面より凹み、基地相表面の潤滑油層が
硬質相表面の潤滑油層より厚くなるが、本発明では、硬
質相の大きさ、平均粒子間隔および視野占有面積率が前
記したように設定されているため、硬質相の粒子形状が
どのような形状であっても、基地相表面の厚い潤滑油層
中の潤滑油が、カム表面の摺動により同じ方向に流動し
て、硬質相表面の薄い潤滑油層に流入し、該硬質相表面
およびこれに摺接している相手側の摺接面部にも充分な
潤滑が行なわれ、前記カム摺動部材の硬質相表面のみな
らず、カムの硬質相表面の摩耗が可及的に抑制されると
ともに、前記硬質相表面でカムの押込み荷重を充分に負
担して、前記基地相に加わるカムの押込み荷重を軽減し
、該基地相の摩耗量も抑制され、カム摺動部材およびカ
ムの耐久性が著しく向上する。
When the sliding contact portion of the cam or cam sliding member wears, the base phase is more easily worn than the hard phase, the surface of the base phase is depressed from the surface of the hard phase, and the lubricating oil layer on the surface of the base phase is Although it is thicker than the lubricating oil layer on the surface, in the present invention, since the size of the hard phase, the average particle spacing, and the viewing area ratio are set as described above, it does not matter what shape the particles of the hard phase have. However, the lubricating oil in the thick lubricating oil layer on the surface of the base phase flows in the same direction due to the sliding of the cam surface, flows into the thin lubricating oil layer on the hard phase surface, and the lubricating oil in the thick lubricating oil layer on the surface of the base phase flows in the same direction as the cam surface slides. Sufficient lubrication is provided to the sliding contact surface of the mating member, and wear is suppressed as much as possible not only on the hard phase surface of the cam sliding member but also on the hard phase surface of the cam. By sufficiently bearing the pushing load of the cam, the pushing load of the cam applied to the base phase is reduced, the amount of wear of the base phase is also suppressed, and the durability of the cam sliding member and the cam is significantly improved.

【0007】ここで留意すべきは、単にそれ等の因子を
規定するだけでは本来の意味で規定したことにはならず
、炭化物の存在形態を測定する方法を明確に定義しなけ
ればならない点である。
[0007] It should be noted here that simply specifying these factors does not mean that they have been specified in the original sense; the method for measuring the form of existence of carbides must be clearly defined. be.

【0008】そこで、本発明者等の採用した測定方法は
下記の通りである。■炭化物の大きさ(粒子径):JI
S−G−0552“鋼のフェライト結晶粒度試験方法”
における切断法を応用したものであり、試料の切断断面
を研磨仕上げして腐蝕し、腐蝕面を顕微鏡で視察するか
、または顕微鏡写真に撮影して、一定の長さの直交する
二本の線分で切断される炭化物粒子の数と長さの総和か
ら、次式によって平均粒子径を求める。
[0008] Therefore, the measurement method adopted by the present inventors is as follows. ■ Size of carbide (particle diameter): JI
S-G-0552 “Steel ferrite grain size test method”
This is an application of the cutting method used in 2007, in which the cut cross section of the sample is polished and corroded, and the corroded surface is observed with a microscope or photographed using a microscope, and two orthogonal lines of a certain length are drawn. From the total number and length of carbide particles cut in minutes, the average particle diameter is determined by the following formula.

【0009】[0009]

【数1】各粒子の線分による切断長の総和/粒子数=平
均粒子径
[Equation 1] Sum of cutting lengths of each particle by line segment/Number of particles = Average particle diameter

【0010】なお、線分の両端にあって一部分しか切断
されない炭化物粒子は、その一方だけを数え、切断され
ない炭化物粒子が線分の一端だけの場合には、これを数
えないこととする。また、一本の線分で切断される炭化
物粒子の数は、一視野で少なくとも10個以上になるよ
うに顕微鏡の倍率を選定し、総計50個以上になるよう
に複数視野測定する。測定例:  第1図によれば、
[0010] In the case of carbide particles that are only partially cut at both ends of a line segment, only one of them is counted, and if the carbide particles that are not cut are only at one end of the line segment, they are not counted. Further, the magnification of the microscope is selected so that the number of carbide particles cut by one line segment is at least 10 in one field of view, and the measurement is performed in multiple fields so that the total number of carbide particles is 50 or more. Measurement example: According to Figure 1,


0011】
[
0011

【数2】平均粒子径=d1 +d2 …+d7 /7[Equation 2] Average particle diameter = d1 + d2... + d7 / 7


0012】■炭化物の平均粒子間隔:前記■項に順じ、
一定の長さの直交する二本の線分で切断される隣接炭化
物粒子相互の間隔長の平均値を次式によって求める。
[
[0012] ■ Average particle spacing of carbide: according to the above section (■),
The average value of the distance between adjacent carbide particles cut by two orthogonal line segments of a certain length is determined by the following equation.

【0013】[0013]

【数3】粒子間間隔長の和/粒子間の数=平均粒子間隔
[Equation 3] Sum of interparticle spacing length/number of interparticles = average particle spacing

【0014】なお、線分の両端がそれぞれ炭化物粒子の
一部分を切断する場合には、一方の炭化物粒子について
のみ、その隣接粒子との間の長さを勘定し、線分の一端
だけが炭化物粒子の一部分を切断する場合には、その隣
接粒子との間の長さを勘定に入れないこととする。また
、一本の線分で切断される炭化物粒子相互の間隔部分の
数は、一視野で少なくとも10個以上になるように顕微
鏡の倍率を選定し、総計50以上になるように複数視野
測定する。測定:  第1図によれば、下記のようにな
る。
[0014] When both ends of the line segment each cut a part of the carbide particle, the length between only one carbide particle and its adjacent particle is counted, and only one end of the line segment cuts a part of the carbide particle. When cutting a part of the particle, the length between the particle and the adjacent particle is not taken into account. In addition, the magnification of the microscope is selected so that the number of intervals between carbide particles cut by one line segment is at least 10 in one field of view, and multiple fields of view are measured so that the total number of intervals is 50 or more. . Measurement: According to Figure 1, it is as follows.

【0015】[0015]

【数4】平均粒子間隔=l1 +l2 +…l5 /5
[Equation 4] Average particle spacing = l1 + l2 +... l5 /5

【0016】■炭化物の量(視野占有面積率):試料の
切断断面を研磨仕上げして腐蝕し、腐蝕面を顕微鏡写真
に撮影して、第2図に示す線分法により視野占有面積率
を求める。一定面積の矩形の視野を定め、炭化物粒子の
大きさに見合う所定間隔長(d0 )で、平行な走査線
1を引き、各炭化物粒子2との交線の長さをl1 ,l
2 ,…ln とし、走査線1の長さをLとして、次式
により視野占有面積率を求める。
[0016] Amount of carbide (viewing area ratio): The cut cross section of the sample was polished and corroded, the corroded surface was photographed using a microscope, and the viewing area ratio was calculated using the line segment method shown in Figure 2. demand. A rectangular field of constant area is determined, parallel scanning lines 1 are drawn at a predetermined interval length (d0) corresponding to the size of the carbide particles, and the lengths of the lines of intersection with each carbide particle 2 are determined as l1 and l.
2,...ln, and the length of the scanning line 1 is L, the visual field occupation area ratio is determined by the following equation.

【0017】[0017]

【数5】(l1 l2 …ln )×d(炭化物粒子全
面積)/L×d0 ×(m+1)(視野面積)=視野占
有面積率(ただし、mは走査線1の本数である。)
[Formula 5] (l1 l2...ln) x d (total area of carbide particles)/L x d0 x (m+1) (visual field area) = visual field occupation area ratio (however, m is the number of scanning lines 1)

【0
018】なお、この手法は、画像解析装置によって実行
することも可能である。
0
Note that this method can also be executed by an image analysis device.

【0019】試  験  例 ロッカアームの対カム摺接面部に貼着される部片(摺動
部材)、およびカムを、下記■、■の方法で用意した。
Test Example A piece (sliding member) to be attached to the cam sliding surface of the rocker arm and a cam were prepared by the following methods (1) and (2).

【0020】■摺動部材の目標組成を、C  −  2
.5 %,      Cr  −  17.0%Mo
  −  3.0 %,      W  −  0.
13%V  −  0.15%,      Mn  
−  0.3 %Sn  −  0.8 %,    
  P  −  0.25%Ni  −  3.0 %
,      Fe  −  残  部(以上、いずれ
も重量%) とし、250 〜350 メッシュの粉末が15〜25
体積%含まれるFe−C−Cr−Mo−W−V−Mn−
Sn  合金粉末に、C,Fe−Ni合金、Fe−P合
金の各粉末を添加、混合して圧搾成形した後、真空また
アンモニアガス雰囲気中にて、温度1190℃、時間6
0分なる条件で焼結を行なった。
■The target composition of the sliding member is C-2.
.. 5%, Cr-17.0%Mo
−3.0%, W −0.
13%V - 0.15%, Mn
- 0.3%Sn - 0.8%,
P - 0.25% Ni - 3.0%
, Fe - balance (all above, weight%), 250 to 350 mesh powder is 15 to 25
Volume % Fe-C-Cr-Mo-W-V-Mn-
C, Fe-Ni alloy, and Fe-P alloy powders were added to the Sn alloy powder, mixed and compressed, and then compressed in vacuum or in an ammonia gas atmosphere at a temperature of 1190°C for 6 hours.
Sintering was performed under conditions of 0 minutes.

【0021】次に、焼結品をロッカアームの対カム摺接
面部にろう付けした後、浸炭焼入れ、焼戻しを行い、研
磨して、摺動部材Aを得た。また、焼結品をロッカアー
ムの対カム摺接面部にろう付けした後、浸炭焼入れ、焼
戻しを行い、研磨して、更に塩浴軟窒化処理(温度  
580 ℃、時間70分)を施して摺動部材Bを得た。 摺動部材Aの基地相の硬度はHV 600〜900 、
炭化物硬度はHV 1,000〜1,300 、密度は
7.65〜7.70g/cm3 であった。また、前記
測定方法によって摺動部材における炭化物存在形態を調
べたところ、平均粒子径 4.5μm 、平均粒子間隔
11μm 、視野占有面積率30%であった。なお、焼
結によって得た摺動部材は、マルテンサイトの基地相に
硬質な金属炭化物を分散させたものであり、自身の耐摩
耗性向上を計るとともに、炭化物の種類、量、大きさ、
分散状態の適切な選択によって相手材であるカムの摩耗
を少なくすることができる。
Next, the sintered product was brazed to the sliding surface of the rocker arm against the cam, and then carburized, quenched, tempered, and polished to obtain a sliding member A. After the sintered product is brazed to the rocker arm's sliding surface against the cam, it is carburized and quenched, tempered, polished, and then salt bath nitrocarburized (temperature
580° C. for 70 minutes) to obtain a sliding member B. The hardness of the base phase of sliding member A is HV 600 to 900,
The carbide hardness was HV 1,000 to 1,300, and the density was 7.65 to 7.70 g/cm3. Further, when the existence form of carbide in the sliding member was investigated by the above-mentioned measuring method, the average particle diameter was 4.5 μm, the average particle spacing was 11 μm, and the visual field occupation area ratio was 30%. The sliding member obtained by sintering has hard metal carbide dispersed in the base phase of martensite, and in addition to improving its own wear resistance, the type, amount, size, and
Appropriate selection of the dispersion state can reduce wear on the mating cam.

【0022】各元素の添加理由は下記の通りである。C
rは、基地相を強化すると共に、Cと反応して硬質の炭
化物を形成し、耐摩耗性を向上させる。ただし、その添
加量が5重量%未満では所要の硬化を期待できず、30
重量%を越えて添加すると、相手カムを摩耗させ易くな
り総合摩耗量が大きくなる他、焼結性が著しく低下する
等の不利を生じる。Moは、Crと同様に基地相を強化
すると共に、Cと反応して硬質の炭化物を形成し、耐摩
耗性を向上させる。ただし、添加量1重量%未満では所
望の効果が得られず、5重量%を越えて添加すると材料
の脆化を招く。W,Vは、いずれもCと反応してMC型
(ただし、Mは金属元素記号を示す)の硬質炭化物を形
成し、耐摩耗性の向上に寄与する。両者のうち少なくと
も1種の成分の添加量が0.1 重量%以上でなければ
所望の効果が得られず、添加量4重量%を越えると切削
性が低下し、また相手材を摩耗させ易くなる。Snは、
基地相中に拡散固溶し、Niによるオーステナイト化を
抑制する作用がある。添加量が0.2 重量%未満では
効果が認められず、5重量%より多く添加すると炭化物
粒子を粗大化させ、機械的強度を低下させて耐摩耗性が
悪化する。Niは、基地相を強化し炭化物の脱落を防止
する。また、焼結性を向上させ、相手カムとのなじみ性
を良くする作用をも有する。さらに、Snを伴わずに5
重量%を越えて添加すると、基地相中にオーステナイト
相が生じ、耐摩耗性が低下するが、Sn量が上述の範囲
においては、Ni 5.5〜10重量%の添加量で良好
な耐摩耗性を示す。Cは、基地相を強化すると共に、C
r、その他の添加成分と反応して硬質相を析出させ、耐
摩耗性を向上させる。ただし、1重量%未満では所望の
効果が得られず、4重量%を越えると靱性の低下を招く
。P,Bは、焼結を促進させる作用を有し、焼結部材を
高密度化させる元素であり、少なくともその一方を添加
すればよい。添加量が、0.05重量%未満では所望の
効果を得られず、5重量%を越えて添加すると、焼結時
に過剰の液相を生じて寸法変化率が大きくなり好ましく
ない。
The reasons for adding each element are as follows. C
r strengthens the base phase and reacts with C to form a hard carbide, improving wear resistance. However, if the amount added is less than 5% by weight, the required hardening cannot be expected;
If it is added in excess of this amount by weight, the mating cam is likely to be worn out, resulting in a large total amount of wear, as well as disadvantages such as a marked decrease in sinterability. Like Cr, Mo strengthens the base phase and reacts with C to form hard carbides, thereby improving wear resistance. However, if the amount added is less than 1% by weight, the desired effect cannot be obtained, and if it is added in excess of 5% by weight, the material becomes brittle. Both W and V react with C to form an MC type (where M represents the symbol of a metal element) hard carbide, contributing to improvement in wear resistance. If the amount of at least one of the two components added is 0.1% by weight or more, the desired effect will not be obtained, and if the amount added exceeds 4% by weight, machinability will decrease and the mating material will be likely to wear. Become. Sn is
It diffuses into a solid solution in the base phase and has the effect of suppressing austenitization caused by Ni. If the amount added is less than 0.2% by weight, no effect will be observed, and if it is added more than 5% by weight, the carbide particles will become coarser, reducing mechanical strength and deteriorating wear resistance. Ni strengthens the base phase and prevents carbides from falling off. It also has the effect of improving sinterability and improving compatibility with the mating cam. Additionally, 5 without Sn
If added in excess of 5.5% to 10% by weight, an austenite phase will be formed in the base phase and the wear resistance will decrease, but if the Sn content is within the above range, good wear resistance can be achieved with an addition amount of 5.5 to 10% by weight. Show your gender. C strengthens the base phase and C
r, reacts with other additive components to precipitate a hard phase and improve wear resistance. However, if it is less than 1% by weight, the desired effect cannot be obtained, and if it exceeds 4% by weight, the toughness will decrease. P and B are elements that have the effect of promoting sintering and increase the density of the sintered member, and at least one of them may be added. If the amount added is less than 0.05% by weight, the desired effect cannot be obtained, and if it is added in excess of 5% by weight, an excessive liquid phase is generated during sintering, resulting in a large dimensional change rate, which is not preferable.

【0023】■JIS G5501−FC30(ねずみ
鋳鉄)製カムを用意した。このカムは、カム・ノーズを
中心にして±90度の角度範囲でチル化されており、該
カムのカム・ノーズを中心にして±30度の角度範囲に
亘る表面層にプラズマ・トーチを用いて深さ1mmの急
速再溶融処理を施し、その溶融池にCr粉末 1.5重
量%、Mo粉末1重量%を添加した後、自己冷却により
急冷せしめた。得られたカム3を第3図、第4図に示す
(図中、4はカム・ノーズ、5はチル層、6は再溶融硬
化処理層をそれぞれ示している)。チル層5の硬度はH
R 45、再溶融硬化処理層6の硬度はHR 60であ
った。なお、再溶融硬化処理の際に溶融池に添加するC
r粉末、Mo粉末は、炭化物安定化元素であって、この
池、V,Hbも同様な機能を有する。これ等の元素は、
その単体粉末、それ等相互の合金粉末、あるいは炭素等
の化合物粉末形態として添加され得る。ただし、炭化物
安定元素の添加量が 0.5重量%未満では、再溶融硬
化処理層中の炭化物量が少なくなって耐摩耗性の大幅向
上を期待できず、また、4重量%を越えて添加しても、
耐摩耗性の向上効果が少なく、経済的に不利となる。
■ A cam made of JIS G5501-FC30 (gray cast iron) was prepared. This cam is chilled over an angular range of ±90 degrees around the cam nose, and the surface layer of the cam over an angular range of ±30 degrees around the cam nose is chilled using a plasma torch. Then, 1.5% by weight of Cr powder and 1% by weight of Mo powder were added to the molten pool, followed by rapid cooling by self-cooling. The obtained cam 3 is shown in FIGS. 3 and 4 (in the figures, 4 indicates the cam nose, 5 indicates the chill layer, and 6 indicates the remelted hardened layer). The hardness of chill layer 5 is H
R 45, and the hardness of the remelt hardened layer 6 was HR 60. In addition, C added to the molten pool during remelting hardening treatment
R powder and Mo powder are carbide stabilizing elements, and V and Hb also have similar functions. These elements are
It can be added in the form of a single powder, an alloy powder of them, or a compound powder of carbon or the like. However, if the amount of carbide stabilizing elements added is less than 0.5% by weight, the amount of carbide in the re-melt hardened layer will be small and a significant improvement in wear resistance cannot be expected; Even if
It has little effect on improving wear resistance and is economically disadvantageous.

【0024】■前記■項によって得た複数のカム3を用
い、また前記■項と同様の手法で得た炭化物存在状態の
異なる複数の摺動部材Aを用意し、各摺動部材Aとカム
とを、内燃機関に組み込み、2000rpm 、 30
0時間の運転を行ない、各組合せについて摺動部材とカ
ムの摩耗量を調べ、その結果を第5図ないし第7図に示
した。また、摺動部材Bについても同様に内燃機関に組
み込み6000rpm 、 400時間の運転を行い、
その摩耗量を調べ、摺動部材Aの摩耗量と対比した第8
図に示した。
■ Using a plurality of cams 3 obtained in the above section (■), and preparing a plurality of sliding members A with different carbide presence states obtained by the same method as in the above section (■), each sliding member A and the cam is incorporated into an internal combustion engine, 2000 rpm, 30
After 0 hours of operation, the amount of wear on the sliding member and cam was examined for each combination, and the results are shown in FIGS. 5 to 7. In addition, sliding member B was similarly installed in an internal combustion engine and operated at 6000 rpm for 400 hours.
The amount of wear was investigated and compared with the amount of wear of sliding member A.
Shown in the figure.

【0025】■第5図は、摺動部材(ロッカアーム)A
の組織中に含まれる炭化物の粒子径が摩耗量に及ぼす影
響を示している。第5図によれば、炭化物の平均粒子径
が15μm を越えるとカムの摩耗量が急増し、平均粒
子径4μm 以下については、該粒子性の測定が難しく
、この範囲で、カムの摩耗量が増加する傾向がある。ま
た、摺動部材Aの摩耗量は、炭化物の平均粒子径が6μ
m を越えるとやや増大する傾向があるものの、ほぼ一
定である。それ故、カムの摩耗量が7〜27μm 、摺
動部材Aの摩耗量が6〜17μm である平均粒子径4
〜15μm の範囲を選択するのが望ましく、炭化物の
80%以上が粒子径4〜15μm であればその範囲に
収まる。
■Figure 5 shows sliding member (rocker arm) A
This figure shows the influence of the particle size of carbides contained in the structure of the steel on the amount of wear. According to Fig. 5, when the average particle size of carbide exceeds 15 μm, the amount of cam wear increases rapidly, and when the average particle size is 4 μm or less, it is difficult to measure the particle nature, and within this range, the amount of cam wear increases. There is a tendency to increase. In addition, the amount of wear of sliding member A is determined by the average particle diameter of carbide being 6 μm.
Although it tends to increase slightly when exceeding m, it remains almost constant. Therefore, the average particle diameter is 4 when the amount of wear on the cam is 7 to 27 μm and the amount of wear on the sliding member A is 6 to 17 μm.
It is desirable to select a particle size in the range of 15 μm to 15 μm, and if 80% or more of the carbides have a particle size of 4 to 15 μm, the particle size falls within this range.

【0026】■第6図は、摺動部材(ロッカアーム)A
の組織中に含まれる炭化物の平均粒子間隔が摩耗量に及
ぼす影響を示している。第6図によれば、炭化物の平均
粒子間隔が15μm を越えると摺動部材Aの摩耗量が
増大し、平均粒子間隔が20μm を越えるとカムの摩
耗量が増え、スカッフ現象が生じる。また、平均粒子間
隔が5μm 未満では、摺動部材Aにおける基地相の強
度が低下して割れが発生し、カムの摩耗も増加する傾向
となる。それ故、カムの摩耗量が9〜19μm 、摺動
部材Aの摩耗量が5〜16μm である平均粒子間隔5
〜15μm の範囲を選択するのが望ましい。
■Figure 6 shows sliding member (rocker arm) A
This figure shows the influence of the average particle spacing of carbides contained in the structure of the steel on the amount of wear. According to FIG. 6, when the average particle spacing of carbide exceeds 15 μm, the amount of wear on the sliding member A increases, and when the average particle spacing exceeds 20 μm, the amount of wear on the cam increases, causing the scuffing phenomenon. Furthermore, if the average particle spacing is less than 5 μm, the strength of the base phase in the sliding member A decreases, cracks occur, and cam wear tends to increase. Therefore, the average particle spacing is 5 when the amount of wear on the cam is 9 to 19 μm and the amount of wear on the sliding member A is 5 to 16 μm.
It is desirable to select a range of ~15 μm.

【0027】■第7図は、摺動部材(ロッカアーム)A
の組織中に含まれる炭化物の視野占有面積率が摩耗量に
及ぼす影響を示しており、また第8図は、炭化物視野占
有面積率と摺動部材A,Bの摩耗量との関係を示してい
る。第7図、第8図によれば、視野占有面積率が大きく
なるほど、カムの摩耗量がほぼ直線的に増大し、摺動部
材の摩耗量がほぼ直線的に減少することが判る。また、
視野占有面積率が50%を越えると、熱処理を行なった
際の割れが生じ易いため、視野占有面積率以下にするの
が望ましい。そして、視野占有面積率10%未満では炭
化物による効果を期待できないため、視野占有面積率1
0%以上にすべきである。それ故、カムの摩耗量が12
〜14.4μm 、摺動部材の摩耗量が 3.7〜11
.0μm である視野占有面積率10〜50%の範囲を
選択するのが望ましい。また、塩浴軟窒化処理を施すこ
とにより、摩耗量を更に低減化することができる。
■Figure 7 shows sliding member (rocker arm) A
Fig. 8 shows the influence of the visual area occupied area ratio of carbides contained in the structure on the amount of wear, and Fig. 8 shows the relationship between the area ratio of the carbide viewed area occupied and the amount of wear of sliding members A and B. There is. According to FIGS. 7 and 8, it can be seen that as the visual field occupation area ratio increases, the amount of wear on the cam increases almost linearly, and the amount of wear on the sliding member decreases almost linearly. Also,
If the viewing area ratio exceeds 50%, cracks are likely to occur during heat treatment, so it is desirable to keep the viewing area ratio below. If the visual field occupying area ratio is less than 10%, the effect of carbide cannot be expected, so the visual field occupying area ratio is 1
It should be 0% or more. Therefore, the amount of cam wear is 12
~14.4μm, the amount of wear on the sliding member is 3.7~11
.. It is desirable to select a field area ratio of 10 to 50%, which is 0 μm. Further, by performing salt bath soft nitriding treatment, the amount of wear can be further reduced.

【0028】さらに前記第一摺動部材たるカム摺接部片
の炭化物の粒子径と炭化物の平均粒子間隔と、炭化物の
視野占有面積率を色々と変えた実施例1〜4と、本実施
例に該当しない比較例との各摩耗量は下記の通りである
Further, Examples 1 to 4 in which the particle diameter of the carbide, the average particle interval of the carbide, and the ratio of the viewing area occupied by the carbide of the cam sliding contact piece which is the first sliding member were variously changed, and the present example The amount of wear compared to the comparative example that does not correspond to the above is as follows.

【0029】[0029]

【表1】[Table 1]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】合金基地相中に含まれる炭化物の平均粒子径を
測定する方法を示す図
[Figure 1] Diagram showing a method for measuring the average particle size of carbides contained in the alloy base phase

【図2】同じく平均粒子間距離を測定する方法を示す図
[Figure 2] Diagram showing the method of measuring the average interparticle distance as well

【図3】その表面に再溶融硬化処理を施された鋳鉄製カ
ムの断面図
[Figure 3] Cross-sectional view of a cast iron cam whose surface has been remelted and hardened

【図4】そのIV−IV線断面図[Figure 4] Cross-sectional view along the IV-IV line

【図5】炭化物平均粒子径と、カム、摺動部材(ロッカ
アーム)Aの摩耗量との関係を示すグラフ
[Fig. 5] Graph showing the relationship between the average particle diameter of carbide and the amount of wear of the cam and sliding member (rocker arm) A

【図6】炭化
物平均粒子間隔と、カムと摺動部材(ロッカアーム)A
の摩耗量との関係を示すグラフ
[Figure 6] Carbide average particle spacing, cam and sliding member (rocker arm) A
Graph showing the relationship between the amount of wear and

【図7】炭化物の視野占
有面積率と、カム、摺動部材(ロッカアーム)Aの摩耗
量との関係を示すグラフ
[Fig. 7] Graph showing the relationship between the visual field occupation area ratio of carbide and the amount of wear of the cam and sliding member (rocker arm) A

【図8】炭化物の視野占有面積
率と、カム、摺動部材(ロッカアーム)A,Bとの関係
を対比的に示すグラフ
[Fig. 8] A graph showing the relationship between the visual field occupation area ratio of carbide and the cam and sliding members (rocker arms) A and B in contrast.

【符号の説明】[Explanation of symbols]

1…走査線、2…炭化物粒子、3…カム、4…カム・ノ
ーズ、5…チル層、6…再溶融硬化処理層。
DESCRIPTION OF SYMBOLS 1...Scanning line, 2...Carbide particles, 3...Cam, 4...Cam nose, 5...Chill layer, 6...Remelting hardening treatment layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  摺動表面層の基地相中に硬質相が分散
した動弁機構の摺動手段において、前記硬質相の80%
以上が大きさ4〜15μm であって、該硬質相が平均
粒子間隔5〜15μm で分散するとともに、該硬質相
の視野占有面積率が10〜50%であることを特徴とす
る動弁機構の摺動手段。
Claim 1: In a sliding means of a valve mechanism in which a hard phase is dispersed in a base phase of a sliding surface layer, 80% of the hard phase
The above particles have a size of 4 to 15 μm, the hard phase is dispersed with an average particle spacing of 5 to 15 μm, and the hard phase has a visual field occupation area ratio of 10 to 50%. sliding means.
JP22365891A 1991-08-09 1991-08-09 Sliding means for valve gear mechanism Pending JPH04228548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22365891A JPH04228548A (en) 1991-08-09 1991-08-09 Sliding means for valve gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22365891A JPH04228548A (en) 1991-08-09 1991-08-09 Sliding means for valve gear mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24944286A Division JPS63105948A (en) 1986-10-22 1986-10-22 Wear-resistant sliding member made for ferrous sintered alloy

Publications (1)

Publication Number Publication Date
JPH04228548A true JPH04228548A (en) 1992-08-18

Family

ID=16801629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22365891A Pending JPH04228548A (en) 1991-08-09 1991-08-09 Sliding means for valve gear mechanism

Country Status (1)

Country Link
JP (1) JPH04228548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317253A (en) * 2001-04-20 2002-10-31 Taiho Kogyo Co Ltd Ferrous sliding member
WO2016166839A1 (en) * 2015-04-15 2016-10-20 株式会社小松製作所 Sliding component and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597003A (en) * 1982-07-06 1984-01-14 トヨタ自動車株式会社 Manufacture of ceramic powder compacted body
JPS5985847A (en) * 1982-11-08 1984-05-17 Mitsubishi Metal Corp Fe-base sintered material for sliding member of internal-combustion engine
JPS6063350A (en) * 1983-09-19 1985-04-11 Toyota Motor Corp Moving valve member for internal-combustion engine
JPS6164804A (en) * 1984-09-04 1986-04-03 Toyota Motor Corp Sliding member for valve system and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597003A (en) * 1982-07-06 1984-01-14 トヨタ自動車株式会社 Manufacture of ceramic powder compacted body
JPS5985847A (en) * 1982-11-08 1984-05-17 Mitsubishi Metal Corp Fe-base sintered material for sliding member of internal-combustion engine
JPS6063350A (en) * 1983-09-19 1985-04-11 Toyota Motor Corp Moving valve member for internal-combustion engine
JPS6164804A (en) * 1984-09-04 1986-04-03 Toyota Motor Corp Sliding member for valve system and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317253A (en) * 2001-04-20 2002-10-31 Taiho Kogyo Co Ltd Ferrous sliding member
JP4523736B2 (en) * 2001-04-20 2010-08-11 大豊工業株式会社 Iron-based sliding member
WO2016166839A1 (en) * 2015-04-15 2016-10-20 株式会社小松製作所 Sliding component and method for manufacturing same
CN107532648A (en) * 2015-04-15 2018-01-02 株式会社小松制作所 Sliding component and its manufacture method
JPWO2016166839A1 (en) * 2015-04-15 2018-02-15 株式会社小松製作所 Sliding parts and manufacturing method thereof
US10436192B2 (en) 2015-04-15 2019-10-08 Komatsu Ltd. Sliding component and method for producing the same

Similar Documents

Publication Publication Date Title
EP0295111B1 (en) A steel having good wear resistance
JP2506333B2 (en) Abrasion resistant iron-based sintered alloy
EP1601801A2 (en) Corrosion and wear resistant alloy
JP7331074B2 (en) Powder containing free graphite
JPS63303030A (en) Locker arm
JPH0360897B2 (en)
JPH0350824B2 (en)
US5498483A (en) Wear-resistant sintered ferrous alloy for valve seat
JP6736227B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine with excellent wear resistance and combination of valve seat and valve
JPH09242516A (en) Valve seat for internal combustion engine
JPH07103451B2 (en) Abrasion resistant iron-based sintered alloy
JPS6342357A (en) Wear-resistant ferrous sintered alloy
JP3382326B2 (en) Cast iron sliding member
JPH04228548A (en) Sliding means for valve gear mechanism
WO2020050053A1 (en) Steel material for sliding members, and method for producing same
JP6951949B2 (en) Sliding mechanism
JP2020045557A (en) Slide member
JP2594505B2 (en) Rocker arm
JPS63105948A (en) Wear-resistant sliding member made for ferrous sintered alloy
JP3484076B2 (en) Piston ring for internal combustion engine
JP2683444B2 (en) Sintered alloy for valve mechanism of internal combustion engine
JP3440008B2 (en) Sintered member
JPS60255958A (en) Wear resistant sintered alloy
JPS63105947A (en) Combination of sliding members
JPH076027B2 (en) Method for producing wear-resistant iron-based sintered alloy