JPH04227030A - Permselective hollow fiber bundle and fluid separation apparatus having the same built therein - Google Patents

Permselective hollow fiber bundle and fluid separation apparatus having the same built therein

Info

Publication number
JPH04227030A
JPH04227030A JP3123168A JP12316891A JPH04227030A JP H04227030 A JPH04227030 A JP H04227030A JP 3123168 A JP3123168 A JP 3123168A JP 12316891 A JP12316891 A JP 12316891A JP H04227030 A JPH04227030 A JP H04227030A
Authority
JP
Japan
Prior art keywords
hollow fiber
hollow fibers
filaments
fiber bundle
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3123168A
Other languages
Japanese (ja)
Other versions
JP3080430B2 (en
Inventor
Tomoji Hanai
花井 智司
Yoshiaki Nitori
似鳥 嘉昭
Tetsuo Watanabe
哲夫 渡邉
Joji Nishikido
條二 錦戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP03123168A priority Critical patent/JP3080430B2/en
Publication of JPH04227030A publication Critical patent/JPH04227030A/en
Application granted granted Critical
Publication of JP3080430B2 publication Critical patent/JP3080430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a permselective hollow fiber bundle excellent in separation efficiency and effective for the miniaturization of a fluid separator and the enhancement of the capacity thereof. CONSTITUTION:A hollow fiber bundle constituted of hollow fibers 1 and filaments 2 with fineness of 0.05-20 denier, and the filaments 2 are arranged in a ratio of 2-3000 per one hollow fiber 1 in the substantially same length direction and the hollow fiber bundle is formed by the entanglement of the filaments 2 with the hollow fibers 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、限外濾過法、透析法、
浸透法、逆浸透法等による液体の分離や混合気体の分離
などに利用することができる選択透過性中空繊維束及び
それを内蔵した流体分離装置に関するものである。
[Industrial Application Field] The present invention is applicable to ultrafiltration, dialysis,
The present invention relates to a permselective hollow fiber bundle that can be used for liquid separation or mixed gas separation by osmosis, reverse osmosis, etc., and a fluid separation device incorporating the same.

【0002】0002

【従来の技術】中空繊維型の流体分離装置に対する小型
、高性能化の要求は非常に高い。この要求に応えるため
に従来から装置の分離効率の低下の原因となる流体の装
置内部での偏流を防止すべく、1本又は2本の中空繊維
毎にスペーサーヤーンをラセン状に巻きつけて、中空繊
維と中空繊維との距離を実質的にほぼ一定となるように
規制する方法(特公昭59−18084号公報)や、中
空繊維束の中に特殊な形状をもった複数の糸状体を分散
させ、中空繊維同士の密着を防止する方法(特開平2−
60658号公報)、また、撚糸を中空繊維と平行に且
つ個々の中空繊維に結合させずに中空繊維束内に均一に
付与して流体分離装置の筒状容器内の不要空間を充填し
、局所的な流れの抵抗を選択的に増大させる方法(特開
平2−140172号公報)等が提案されている。
2. Description of the Related Art There is a very high demand for hollow fiber type fluid separation devices to be smaller in size and higher in performance. In order to meet this demand, spacer yarns have traditionally been wound around each one or two hollow fibers in a helical pattern in order to prevent uneven flow of fluid inside the device, which causes a decrease in the separation efficiency of the device. A method of regulating the distance between hollow fibers so that it is substantially constant (Japanese Patent Publication No. 18084/1984), and a method of dispersing a plurality of filaments with a special shape in a hollow fiber bundle. A method of preventing hollow fibers from adhering to each other by
60658), the twisted yarns are applied uniformly within the hollow fiber bundle in parallel with the hollow fibers without being bonded to individual hollow fibers to fill unnecessary spaces in the cylindrical container of the fluid separation device, A method of selectively increasing the flow resistance (Japanese Unexamined Patent Publication No. 2-140172) has been proposed.

【0003】0003

【発明が解決しようとする課題】しかし、特公昭59−
18084号に提案されている方法では、1本又は2本
の中空繊維毎に巻きつけられたスペーサーヤーンにより
分離効率の向上は図れるものの、中空繊維束全体がかな
り嵩高になるため、分離装置筒体内への中空繊維の充填
率を60%以上の高いものにしようとすると中空繊維束
を流体分離装置の筒状容器にセットする際無理に絞って
細くする必要があり、中空繊維に損傷を与えやすく成型
収率が大幅に低下してしまう。また、スペーサーヤーン
に細いものを使用することは充填率の向上を一応可能に
するが、巻きつけ作業は困難を極め、中空繊維束の量産
が行えない。また、ラセン巻の場合は中空繊維の長さ方
向に、隣接する中空繊維との間にスペーサーヤーンの存
在しない区間が多いため、細いスペーサーヤーンでは、
スペーサーとしての役目がほとんど発揮されず分離効率
が向上しない。中空繊維の充填率を上げて選択透過性中
空繊維の有効膜面積を増加させると同時にその膜面をで
きるだけ分離に寄与させることは、流体分離装置の小型
、高性能化にとって極めて重要であるため、これらの点
が本従来法の問題であった。
[Problem to be solved by the invention] However,
In the method proposed in No. 18084, although the separation efficiency can be improved by using a spacer yarn wrapped around every one or two hollow fibers, the entire hollow fiber bundle becomes quite bulky, so If you try to increase the filling rate of hollow fibers to 60% or more, it is necessary to forcibly squeeze the hollow fiber bundle to make it thinner when setting it in the cylindrical container of the fluid separation device, which can easily damage the hollow fibers. The molding yield will drop significantly. Furthermore, although using a thin spacer yarn makes it possible to improve the filling rate, the winding process is extremely difficult and mass production of hollow fiber bundles is not possible. In addition, in the case of helical winding, there are many sections in the length direction of the hollow fibers where there is no spacer yarn between adjacent hollow fibers, so with thin spacer yarns,
Its role as a spacer is hardly achieved and separation efficiency is not improved. Increasing the filling rate of the hollow fibers to increase the effective membrane area of the permselective hollow fibers and at the same time making the membrane surface contribute to separation as much as possible is extremely important for downsizing and improving the performance of fluid separation devices. These points were problems with the present conventional method.

【0004】また、特開平2−60658号に提案され
ている方法では、中空繊維の一部を性能に寄与しない糸
状体で置き換えているために、性能発現にとって重要な
選択透過性中空繊維の有効膜面積を充分に確保すること
ができず小型、高性能化に不向きである。さらに、糸状
体には軸方向に波形状、径変化、ラセン状または表面に
凹凸が付与されており、このような形状の糸状体の製造
には手間がかかり、高価になるといった問題もある。
Furthermore, in the method proposed in JP-A-2-60658, a part of the hollow fibers is replaced with filaments that do not contribute to the performance, so the effectiveness of the permselective hollow fibers, which is important for performance development, is reduced. It is not possible to secure a sufficient membrane area, making it unsuitable for miniaturization and high performance. Furthermore, the filament has a corrugated shape in the axial direction, a diameter change, a helical shape, or an uneven surface, and there is a problem that manufacturing a filament having such a shape is time-consuming and expensive.

【0005】また、特開平2−140172号公報に提
案されている方法は同一の筒状容器内に異なる本数の中
空繊維を充填することにより、一種類の容器で種々の膜
面積の透析器を製造することを目的としたものであり、
撚糸は使用する中空繊維の本数の差によって生じる筒状
容器内の不要空間の充填のために、中空繊維と同等の径
のものを中空繊維10〜25本あたりに1本入れること
を提案しているにすぎず、高い分離効率と有効膜面積の
増加を同時に満たそうとする流体分離装置の小型、高性
能化には不向きである。
[0005] Furthermore, a method proposed in Japanese Patent Application Laid-Open No. 2-140172 is that by filling different numbers of hollow fibers in the same cylindrical container, dialyzers with various membrane areas can be manufactured using one type of container. It is intended to manufacture
In order to fill the unnecessary space inside the cylindrical container caused by the difference in the number of hollow fibers used, we propose that one twisted yarn with the same diameter as the hollow fibers be inserted for every 10 to 25 hollow fibers. Therefore, it is not suitable for increasing the size and performance of fluid separation devices that aim to simultaneously satisfy high separation efficiency and increase in effective membrane area.

【0006】これらの従来技術に鑑み、本発明者らは分
離効率に優れ、同時に選択透過性中空繊維の充填率を向
上させることにより有効膜面積を増加させた小型且つ高
性能な流体分離装置の実現を課題とした。
In view of these conventional techniques, the present inventors have developed a small and high-performance fluid separation device that has excellent separation efficiency and at the same time increases the effective membrane area by improving the packing ratio of permselective hollow fibers. The challenge was to realize it.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
、中空繊維束を内蔵してなる流体分離装置用の選択透過
性中空繊維束の間隙に、該中空繊維1本に対し2〜3,
000本の割合で繊度が0.05〜20デニールのフィ
ラメントを該中空繊維の長さ方向と実質的に同一方向に
配列し、且つ少なくとも一部の該フィラメントを該中空
繊維に絡みつけることによって解決した。
[Means for Solving the Problems] The present inventors have solved the above problem by providing 2 to 3 permselective permselective hollow fiber bundles for each hollow fiber bundle in the gap of a permselective hollow fiber bundle for a fluid separation device having a built-in hollow fiber bundle. ,
The problem is solved by arranging filaments with a fineness of 0.05 to 20 denier at a ratio of 0.000 in substantially the same direction as the length direction of the hollow fibers, and entangling at least some of the filaments with the hollow fibers. did.

【0008】[0008]

【発明の構成】本発明の選択透過性中空繊維束と流体分
離装置に内蔵される中空繊維は、選択的な透過能を有す
る中空繊維である限りにおいては素材及び形状などによ
って限定されることはないが、例えばポリアクリロニト
リル、ポリプロピレン、ポリスチレン、ポリメチルメタ
クリレートなどのポリオレフィン系重合体、ポリアミド
系重合体、ポリエステル系重合体、銅アンモニア再生セ
ルロース、酢酸セルロースなどのセルロース系重合体か
ら形成される。
[Structure of the Invention] The permselective hollow fiber bundle and the hollow fibers incorporated in the fluid separation device of the present invention are not limited by material or shape as long as they are hollow fibers having selective permeability. However, it is formed from polyolefin polymers such as polyacrylonitrile, polypropylene, polystyrene, and polymethyl methacrylate, polyamide polymers, polyester polymers, cellulose polymers such as cuprammonium regenerated cellulose, and cellulose acetate.

【0009】中空繊維の外径、内径及び長さなども特に
限定されるものではないが、フィラメントの効果がよく
現われるのは外径が約100〜1,000μmの中空繊
維を内蔵する流体分離装置、特に血液透析装置の場合で
ある。
Although the outer diameter, inner diameter, and length of the hollow fibers are not particularly limited, the effect of the filament is best exhibited in a fluid separation device incorporating hollow fibers with an outer diameter of about 100 to 1,000 μm. , especially in hemodialysis machines.

【0010】本発明に用いられるフィラメントは、中空
繊維束内に分散させて中空繊維と中空繊維の間に極めて
微小でばらつきの少ない間隙を形成させると同時に中空
繊維束を集束し互いに結束させる役割を有するものであ
り、その繊度及び中空繊維1本に対して分散させる混入
比は、本発明の目的を達成させるために欠くべからざる
要件である。即ち、フィラメントの繊度は0.05〜2
0デニールであることが必須であり、好ましくは0.5
〜10デニール、更に好ましくは1〜5デニールである
。細いフィラメントは他のフィラメントや中空繊維との
絡みが良いので中空繊維の結束性を高める点で好ましい
が、繊度が0.05デニール未満では作業性が極端に悪
くなり中空繊維束へのばらつきのない分散が困難である
上、中空繊維間に十分な隙間をあけることができない。 また20デニールを越えると嵩高性が増し、選択透過性
中空繊維の有効膜面積を上げることができず小型、高性
能化にとって不適当である上に、フィラメントのコシが
強くなりすぎて他のフィラメントや中空繊維と絡む能力
が劣ってしまう。
The filaments used in the present invention are dispersed within the hollow fiber bundles to form extremely small and uniform gaps between the hollow fibers, and at the same time serve to focus the hollow fiber bundles and bind them together. The fineness of the fiber and the mixing ratio for dispersing it into one hollow fiber are indispensable requirements for achieving the object of the present invention. That is, the fineness of the filament is 0.05 to 2.
0 denier is essential, preferably 0.5
-10 denier, more preferably 1-5 denier. Thin filaments are preferable in terms of improving the cohesiveness of the hollow fibers because they intertwine well with other filaments and hollow fibers, but if the fineness is less than 0.05 denier, workability becomes extremely poor and there is no uniformity in the hollow fiber bundles. In addition to being difficult to disperse, it is not possible to leave sufficient gaps between the hollow fibers. Moreover, if it exceeds 20 deniers, the bulkiness increases and the effective membrane area of the permselective hollow fiber cannot be increased, making it unsuitable for miniaturization and high performance. The ability to intertwine with hollow fibers is poor.

【0011】また、フィラメントの混入比は中空繊維1
本に対し2〜3,000本が必須であり、好ましくは2
〜500本、更に好ましくは3〜100本である。混入
比が1本以下では、選択透過性中空繊維間に充分な流路
が形成できず、偏流により分離効率が低下してしまう上
にフィラメントによる中空繊維の結束効果が乏しく、本
発明の効果が十分に発揮されない。
[0011] Also, the mixing ratio of filaments is hollow fiber 1
2 to 3,000 books are required, preferably 2 to 3,000 books.
~500 pieces, more preferably 3~100 pieces. If the mixing ratio is less than 1, a sufficient flow path cannot be formed between the permselective hollow fibers, the separation efficiency decreases due to uneven flow, and the binding effect of the hollow fibers by the filament is poor, so that the effect of the present invention is reduced. Not fully demonstrated.

【0012】フィラメントの繊度と混入比は互いの兼ね
合いで適宜決定される。即ち繊度が低いほどフィラメン
トの混入比を多くとる必要があるが、それでも混入比が
3,000本を越えると中空繊維束の嵩高性が増し、選
択透過性中空繊維の有効膜面積を上げることができず小
型、高性能化にとって不適当である。以上の条件を満た
すフィラメントは、中空繊維束内に分離されると少なく
とも一部が中空繊維に絡みつき、また、多く場合フィラ
メント同志も絡みあって、それにより束全体が密に集束
される。
[0012] The fineness of the filaments and the mixing ratio are appropriately determined in consideration of each other. In other words, the lower the fineness, the higher the filament mixing ratio, but if the mixing ratio exceeds 3,000 filaments, the bulkiness of the hollow fiber bundle increases and the effective membrane area of the permselective hollow fibers cannot be increased. Therefore, it is unsuitable for small size and high performance. When the filaments satisfying the above conditions are separated into a hollow fiber bundle, at least a portion thereof becomes entangled with the hollow fibers, and in many cases, the filaments also become entangled with each other, so that the entire bundle is tightly bundled.

【0013】フィラメントの素材は特に限定されるもの
ではなく、例えばポリエステル、ポリアミド、ポリアク
リロニトリル、ポリプロピレン、ポリ塩化ビニル、ポリ
フッ化ビニリデン、セルロース、セルロースエステル系
の繊維などが目的、用途に応じて適宜用いられる。具体
的には例えば腐食性の強い流体の分離には、ポリフッ化
ビニリデン系繊維が好ましく、また血液透析の場合には
溶出物の少ないポリエステル、セルロースエステルなど
の繊維が好ましく用いられる。
The material of the filament is not particularly limited, and for example, polyester, polyamide, polyacrylonitrile, polypropylene, polyvinyl chloride, polyvinylidene fluoride, cellulose, cellulose ester fibers, etc. can be used as appropriate depending on the purpose and use. It will be done. Specifically, for example, polyvinylidene fluoride fibers are preferred for separating highly corrosive fluids, and for hemodialysis, fibers such as polyester and cellulose ester, which have a small amount of eluate, are preferably used.

【0014】本発明に用いられるフィラメントは、前述
の繊度を満たすものであれば、その形状は限定されない
が、特に中空繊維を嵩高にしないように結束するために
は、長さ方向に実質的に連続した一定の断面形状を有す
る単繊維が、中空繊維束の製造の容易性やコスト面から
も好ましい。フィラメントの混入比を小さくとる場合に
は断面形状か非円形の任意の形状のフィラメントを用い
ると、フィラメントの中空繊維への絡みが良く結束性が
向上する。
The shape of the filament used in the present invention is not limited as long as it satisfies the above-mentioned fineness, but in particular, in order to bind the hollow fibers without making them bulky, it is necessary to Single fibers having a continuous and constant cross-sectional shape are preferred from the viewpoint of ease of manufacturing the hollow fiber bundle and cost. When the mixing ratio of filaments is kept small, use of filaments of any cross-sectional shape or non-circular shape will allow the filaments to entangle with the hollow fibers better and improve the cohesiveness.

【0015】本発明において中空繊維とフィラメントと
は中空繊維束全長にわたって実質的に同一方向に配列さ
れているが、個々のフィラメントは必ずしも長手方向全
域にわたって中空繊維とほぼ平行に直線状に並んでいる
のではなく、一部は微小区間で波をうっていたり、数本
の中空繊維にゆるやかにまたがるように斜めに走ってい
るものもある。したがってフィラメントの一部は隣接す
るフィラメントと交絡し、また別のフィラメントの一部
は1本〜数本の中空繊維の外壁面に這うように接してお
り、各部位でのこれらフィラメントの交絡や接触が、全
体として中空繊維束の全長にわたる束割れのない密な集
束をもたらしている。
In the present invention, the hollow fibers and filaments are arranged in substantially the same direction over the entire length of the hollow fiber bundle, but the individual filaments are not necessarily arranged in a straight line almost parallel to the hollow fibers over the entire length of the bundle. Instead, some of them wave in minute sections, and some run diagonally as if gently spanning several hollow fibers. Therefore, some of the filaments are intertwined with adjacent filaments, and some of the other filaments are in contact with the outer wall surface of one to several hollow fibers, and these filaments are intertwined and in contact with each other at each location. However, as a whole, the hollow fiber bundle is tightly bundled over the entire length without bundle breakage.

【0016】第1図は本発明の選択透過性中空繊維束の
任意の横断面の模式図を示している。フィラメント2の
直径は中空繊維1のそれの約10−1〜10−2と極め
て細いので、フィラメント2の存在はそれが全く無い場
合と比べて中空繊維束全体の嵩をほとんど増加させず中
空繊維の充填率の高い束を実現させる。また、中空繊維
のみから構成される束の場合は外周を帯などで拘束しな
い限り各中空繊維はばらばらになってしまい、密に集束
された状態の束としては存在し得ないが、本発明の中空
繊維束ではフィラメントが各中空繊維を不要な大きい隙
間をつくらずに結束する役割を果たし、中空繊維間の距
離をどの部位でも微小且つほぼ一定の状態に維持させて
いる。したがって本発明の中空繊維束は、特別な外力を
与えない限り束の状態をほぼ維持しており、非常に取り
扱い易い。すなわち、従来の中空繊維では束全体を包囲
する「巻き紙」の使用が必要不可欠であったが、本発明
の中空繊維束では中空繊維束の、特に束の最外周部から
の個々の中空繊維の離脱や、中空繊維の潰れ、折れとい
った損傷が束の取り扱い中にほとんど発生しないので、
束を巻く帯は必ずしも必要でない。それゆえ流体分離装
置用の円筒状容器への挿入に先立つ中空繊維束の紙巻き
作業、及び挿入後の紙の取り外し作業が省略可能であり
、成型が極めて容易に行える。
FIG. 1 shows a schematic diagram of an arbitrary cross section of the permselective hollow fiber bundle of the present invention. Since the diameter of the filament 2 is extremely thin, about 10-1 to 10-2 that of the hollow fiber 1, the presence of the filament 2 hardly increases the bulk of the entire hollow fiber bundle compared to the case where the filament 2 is not present at all. Achieves bundles with a high filling rate. In addition, in the case of a bundle consisting only of hollow fibers, unless the outer periphery is restrained with a band or the like, each hollow fiber will fall apart and cannot exist as a tightly bundled bundle. In the hollow fiber bundle, the filaments play the role of binding each hollow fiber without creating unnecessary large gaps, and maintain the distance between the hollow fibers in a small and almost constant state at any part. Therefore, the hollow fiber bundle of the present invention substantially maintains its bundle state unless a special external force is applied to it, and is very easy to handle. That is, in the case of conventional hollow fibers, it was essential to use a "wrapping paper" to surround the entire bundle, but in the hollow fiber bundle of the present invention, the individual hollow fibers of the hollow fiber bundle, especially from the outermost part of the bundle, Damage such as detachment of the fibers, crushing or bending of the hollow fibers hardly occurs during handling of the bundles.
A belt to wrap the bundle is not necessarily necessary. Therefore, the paper-wrapping operation of the hollow fiber bundle prior to insertion into the cylindrical container for the fluid separation device and the paper removal operation after insertion can be omitted, and molding can be performed extremely easily.

【0017】第2図は本発明の流体分離装置の1例を示
すもので、円筒状容器3内に、フィラメント2によって
結束された中空繊維束6が内蔵されている。
FIG. 2 shows an example of the fluid separation device of the present invention, in which a hollow fiber bundle 6 bound by filaments 2 is housed in a cylindrical container 3.

【0018】フィランメント2は流体分離装置内で中空
繊維1とほぼ同じ程度の長さを有しており、中空繊維と
一緒に集束されて両端をポッティング剤7によって流体
分離装置の容器3に固着される。中空繊維のみから構成
される束の場合は、中空繊維の充填率を68%程度にま
で高めると、円筒状容器3にセットされた中空繊維束両
端の一部に中空繊維の密集部分ができる。この密集部分
の中空繊維間のわずかな隙間には粘性の高いポッティン
グ剤が浸入することができず、いわゆるポッティング部
不良の状態となる。このような中空繊維の密集部分を失
くすため、通常は円筒状容器にセットする前の中空繊維
束の端部のもみほぐしを行うが、その際中空繊維同士が
絡み合って嵩高性が増し、円筒状容器3に再びセットす
ることが出来なくなるか、無理に絞って細くしようとす
ると中空繊維に損傷を与え成型収率が低下してしまう。 しかしながら本発明の中空繊維束では中空繊維は最密充
填に近い状態で配列しているにも拘わらず各中空繊維の
間にフィラメントの存在によって微小ながらも確実に隙
間が形成されているので、中空繊維の充填率を68%程
度にまで高めても中空繊維の密集部分ができず、もみほ
ぐしを行わなくても中空繊維束両端におけるポッティン
グ剤の中空繊維間への廻り込みが良く、それゆえポッテ
ィングが確実である。
The filament 2 has approximately the same length as the hollow fiber 1 in the fluid separation device, is bundled together with the hollow fiber, and has both ends fixed to the container 3 of the fluid separation device with a potting agent 7. be done. In the case of a bundle composed only of hollow fibers, when the filling rate of the hollow fibers is increased to about 68%, dense areas of hollow fibers are formed at both ends of the hollow fiber bundle set in the cylindrical container 3. The highly viscous potting agent cannot penetrate into the small gaps between the hollow fibers in this densely packed area, resulting in a so-called defective potting area. In order to eliminate such dense areas of hollow fibers, the ends of the hollow fiber bundle are usually loosened before being set in a cylindrical container, but at this time, the hollow fibers become entangled with each other, increasing bulk, and forming a cylindrical container. If the hollow fibers cannot be set again in the shaped container 3, or if the hollow fibers are forcefully squeezed to make them thinner, the hollow fibers will be damaged and the molding yield will be reduced. However, in the hollow fiber bundle of the present invention, although the hollow fibers are arranged in a close-packed state, a small but sure gap is formed between each hollow fiber due to the presence of filaments. Even if the fiber filling rate is increased to about 68%, no dense areas of hollow fibers are formed, and even without massaging, the potting agent can easily penetrate between the hollow fibers at both ends of the hollow fiber bundle. is certain.

【0019】第1の流体は入口4から容器内に入り出口
5から流出する。第2の流体は入口9から入り、出口1
0から流出する。その間中空繊維束の外側を流れる第1
の流体は偏流することなく装置内を広く流れるので、中
空繊維内を流れる第2の流体との間に、高い分離効率を
示す。
The first fluid enters the container through inlet 4 and exits through outlet 5. The second fluid enters through inlet 9 and exit 1
Flows from 0. Meanwhile, the first flowing outside the hollow fiber bundle
Since the fluid flows widely within the device without drifting, it exhibits high separation efficiency from the second fluid flowing within the hollow fibers.

【0020】なお、若干量のフィラメントが流体分離装
置内で切れていても本発明の効果に影響はない。
Note that even if a small amount of filament is broken within the fluid separation device, the effects of the present invention are not affected.

【0021】本発明の選択透過性中空繊維とフィラメン
トからなる選択透過性中空繊維束の製造法に限定はなく
、所定本数のフィラメントを1本1本の状態で中空繊維
とひき揃え、それを束ねて中空繊維束とする方法や、1
本または数本の中空繊維と数十本束ねたフィラメントと
をひき揃え、それを束ねて中空繊維束とする方法がある
。この場合は、1本1本のフィラメントを中空繊維のま
わりに分散させ、その一部を中空繊維に絡みつかせるた
めに、ひき揃え中に注水を行うかまたはエアーを送る方
法、または長い束の状態で一端を固定し、他端をフリー
な状態で流水中に浸漬する方法や流水下で一端を固定し
た短い束を振動させる方法などが採用される。
[0021] There is no limitation to the method of manufacturing the permselective hollow fiber bundle made of permselective hollow fibers and filaments of the present invention, and the method includes aligning a predetermined number of filaments one by one with the hollow fibers and bundling them. method to make a hollow fiber bundle, 1
There is a method of aligning one or more hollow fibers and tens of bundled filaments and bundling them together to form a hollow fiber bundle. In this case, in order to disperse the filaments one by one around the hollow fibers and make some of them entwine with the hollow fibers, it is recommended to use a method of pouring water or sending air while pulling the filaments, or by using long bundles of filaments. Methods such as immersing a bundle in running water with one end fixed and the other end free, or vibrating a short bundle with one end fixed under running water are employed.

【0022】[0022]

【実施例】次に実施例により本発明をより具体的に説明
する。なお、以下の実施例においては流体分離装置の1
例として血液透析装置を作製し、その分離効率を尿素の
透析効率で評価した。
[Examples] Next, the present invention will be explained in more detail with reference to Examples. In addition, in the following examples, one of the fluid separation devices
As an example, a hemodialysis device was constructed, and its separation efficiency was evaluated based on the urea dialysis efficiency.

【0023】(実施例1)内径250μm、外径320
μmのポリアクリロニトリル系中空繊維2本に対して、
2.1デニールの単糸が24本集まったポリエステルマ
ルチフィラメントをひき揃え、注水を行いながら巻取り
集束した。さらにこれを長い束の状態で一端を固定し、
他端をフリーな状態にして流水中で1本1本のフィラメ
ントが中空繊維の長さ方向と実質的に同一方向に配列さ
れ、かつフィラメントの一部が他のフィラメント及び中
空繊維に絡みつき中空繊維が互いにフィラメントにより
結束された状態の選択透過性中空繊維束を作成した。そ
の際の中空繊維本数は6,900本で、フィラメントの
混入比は12であった。
(Example 1) Inner diameter 250 μm, outer diameter 320
For two μm polyacrylonitrile hollow fibers,
A polyester multifilament consisting of 24 single yarns of 2.1 denier was arranged and wound and bundled while pouring water. Furthermore, fix one end of this in a long bundle,
With the other end free, each filament is oriented in running water in substantially the same direction as the length direction of the hollow fiber, and some of the filaments are entangled with other filaments and hollow fibers, making the hollow fiber A permselective hollow fiber bundle was prepared in which the fibers were bound together by filaments. The number of hollow fibers at that time was 6,900, and the filament mixing ratio was 12.

【0024】(実施例2)実施例1で作成した選択透過
性中空繊維束を内径31.6mm、長さ210mmの容
器に収納して成型し、組立てて透析装置を製造した。そ
の際の充填率は68.5%、有効膜面積は1.0m2 
であった。
(Example 2) The permselective hollow fiber bundle prepared in Example 1 was placed in a container with an inner diameter of 31.6 mm and a length of 210 mm, molded, and assembled to produce a dialysis device. At that time, the filling rate was 68.5% and the effective membrane area was 1.0m2.
Met.

【0025】上記仕様の透析装置を100本製造したと
きの成型、組立て収率は98%であった。また、透析実
験を、尿素1g/リットルの濃度の溶液を中空繊維の内
側に200ml/分で流し、中空繊維の外側に水を50
0ml/分で流すことにより行い、尿素の入口及び出口
濃度を測定することによりクリアランスを実測したとこ
ろ、191ml/分であった。さらに、用いた中空繊維
の尿素の透過係数は15.2×10−4cm/秒で、理
論クリアランスを計算すると192ml/分であった。 以上より透析効率は99%であった。
When 100 dialysis devices having the above specifications were manufactured, the molding and assembly yield was 98%. In addition, in a dialysis experiment, a solution of urea with a concentration of 1 g/liter was flowed inside the hollow fiber at a rate of 200 ml/min, and water was poured outside the hollow fiber at a rate of 50 ml/min.
The clearance was measured by flowing at 0 ml/min and measuring the inlet and outlet concentrations of urea, and found to be 191 ml/min. Further, the permeability coefficient of urea of the hollow fibers used was 15.2 x 10-4 cm/sec, and the calculated theoretical clearance was 192 ml/min. From the above, the dialysis efficiency was 99%.

【0026】(実施例3)内径250μm、外径320
μmのポリアクリロニトリル系中空繊維2本に対して、
0.1デニールの単糸が1,120本集まったポリエス
テルマルチフィラメントをひき揃え、注水を行いながら
巻取り集束した。次にこれを長い束の状態で一端を固定
し、他端をフリーな状態にして流水中に流し、さらに長
さ310mmの束の状態で流水下に垂直に立て置き、固
定した束上端を左右に振り動かした。さらに上下を逆に
して同様な操作を繰り返すことによりマルチフィラメン
トを1本1本のフィラメントに分散させた。このように
して1本1本のフィラメントが中空繊維の長さ方向と実
質的に同一方向に配列され、且つフィラメントの一部が
他のフィラメント及び中空繊維に絡みつき中空繊維が互
いにフィラメントにより結束された状態の選択透過性中
空繊維束を作成した。その際の中空繊維本数は8,30
0本で、フィラメントの混入比は560であった。
(Example 3) Inner diameter 250 μm, outer diameter 320
For two μm polyacrylonitrile hollow fibers,
A polyester multifilament consisting of 1,120 single yarns of 0.1 denier was arranged and wound and bundled while pouring water. Next, fix this in a long bundle at one end, leave the other end free, and let it flow under running water.Furthermore, in the form of a bundle with a length of 310 mm, stand it vertically under running water, and place the top end of the fixed bundle on the left and right sides. I swung it. Furthermore, by repeating the same operation upside down, the multifilament was dispersed into individual filaments. In this way, each filament was arranged in substantially the same direction as the length direction of the hollow fibers, and some of the filaments were entwined with other filaments and the hollow fibers, so that the hollow fibers were bound together by the filaments. A permselective hollow fiber bundle was prepared. The number of hollow fibers at that time is 8.30
There were 0 filaments, and the filament mixing ratio was 560.

【0027】(実施例4〜12)実施例1で使用したも
のと同じポリアクリロニトリル系中空繊維に対して表1
に示したような素材、繊度、混入比の条件で、実施例1
で述べた方法で選択透過性中空繊維束を作成し、内径3
4.7mm、長さ251mmの容器に収納して成型し組
立てて透析装置を製造した。その際の中空繊維本数は8
,300本、充填率は68%、有効膜面積は1.5m2
 であった。得られた透析装置を用いて、実施例2と同
様な透析実験を行って求めたクリアランス及び透析効率
の結果を表1に示す。
(Examples 4 to 12) Table 1 for the same polyacrylonitrile hollow fibers used in Example 1
Example 1 under the conditions of material, fineness, and mixing ratio as shown in
A permselective hollow fiber bundle was created using the method described in
A dialysis device was manufactured by storing it in a container with a diameter of 4.7 mm and a length of 251 mm, molding it, and assembling it. The number of hollow fibers in this case is 8
, 300 tubes, filling rate 68%, effective membrane area 1.5m2
Met. Using the obtained dialysis apparatus, a dialysis experiment similar to that in Example 2 was conducted and the results of clearance and dialysis efficiency are shown in Table 1.

【0028】[0028]

【表1】[Table 1]

【0029】(比較例1)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維のみからなる中空繊
維束を作製した。さらに、中空繊維本数、充填率、容器
及び有効膜面積は実施例2と同一条件にて成型し、組立
てた。その結果、10本製造したときの成型、組立て収
率は0%で、全てが中空繊維束両端の隔壁を鋳造するポ
ッティングの際の硬化性液剤(ポッティング剤)が浸入
せずに起こった小孔による隔壁の漏洩による不良品であ
った。
(Comparative Example 1) A hollow fiber bundle consisting only of the same polyacrylonitrile hollow fibers as used in Example 1 was prepared. Further, the molding and assembly were performed under the same conditions as in Example 2 regarding the number of hollow fibers, filling rate, container, and effective membrane area. As a result, when 10 fibers were produced, the molding and assembly yield was 0%, and all of the small holes were caused by the hardening liquid (potting agent) not penetrating during potting to cast the partition walls at both ends of the hollow fiber bundle. The product was defective due to leakage from the bulkhead.

【0030】(比較例2)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維9,400本のみか
らなる中空繊維束を内径40mm、長さ240mmの容
器に収納して成型し組立てて透析装置を製造した。その
際の充填率は60%、有効膜面積は1.6m2 であっ
た。得られた透析装置で、実施例1で述べた透析実験を
行って求めたクリアランス及び透析効率の結果を表1に
示す。
(Comparative Example 2) A hollow fiber bundle consisting of 9,400 polyacrylonitrile hollow fibers, the same as those used in Example 1, was placed in a container with an inner diameter of 40 mm and a length of 240 mm, molded, assembled, and subjected to dialysis. The device was manufactured. The filling rate at that time was 60% and the effective membrane area was 1.6 m2. Table 1 shows the results of the clearance and dialysis efficiency obtained by conducting the dialysis experiment described in Example 1 using the obtained dialysis apparatus.

【0031】(比較例3)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維に、特公昭59−1
8084号公報の実施例1と同様に75デニールのポリ
エステル加工糸を中空繊維10mmに対し1回の巻き数
でSおよびZの2層にラセン状に巻きつけて集束した中
空繊維束を作製した。ただし、中空繊維本数、充填率、
容器及び有効膜面積は本実施例2と同一条件にて成型し
、組立てた。その結果、10本製造したときの成型、組
立て収率は0%で、全てが中空繊維束の嵩高性のために
容器に挿入する際に受けた中空繊維の損傷が原因する不
良品であった。
(Comparative Example 3) The same polyacrylonitrile hollow fiber as used in Example 1 was coated with
Similar to Example 1 of Publication No. 8084, a 75-denier processed polyester yarn was wound in a helical manner around two layers, S and Z, with one winding per 10 mm of hollow fiber to produce a bundled hollow fiber bundle. However, the number of hollow fibers, filling rate,
The container and effective membrane area were molded and assembled under the same conditions as in Example 2. As a result, when 10 pieces were manufactured, the molding and assembly yield was 0%, and all of them were defective products due to damage to the hollow fibers when inserted into the container due to the bulkiness of the hollow fiber bundle. .

【0032】(比較例4)比較例3と同じ要領で中空繊
維に75デニールのポリエステル加工糸を巻きつけた中
空繊維束を作製し、有効膜面積を実施例4〜12の1.
5m2 と同一となるように、内径41.3mm、長さ
266mmの容器に中空繊維本数7,800本、充填率
45%で収納して成型し、組立てて透析装置を製造した
。 得られた透析装置で、実施例1で述べた透析実験を行っ
て求めたクリアランス及び透析効率の結果を表1に示す
(Comparative Example 4) A hollow fiber bundle was prepared by wrapping a 75-denier processed polyester yarn around a hollow fiber in the same manner as in Comparative Example 3, and the effective membrane area was adjusted to 1.1 of Examples 4 to 12.
7,800 hollow fibers were housed in a container with an inner diameter of 41.3 mm and a length of 266 mm at a filling rate of 45% so that the area was the same as that of 5 m2, and the fibers were molded and assembled to produce a dialysis device. Table 1 shows the results of the clearance and dialysis efficiency obtained by conducting the dialysis experiment described in Example 1 using the obtained dialysis apparatus.

【0033】(実施例13)実施例1で使用したのと同
じポリアクリロニトリル系中空繊維1本に対して、2.
1デニールの単糸が96本集まったポリエステルマルチ
フィラメントをひき揃え、実施例1で述べたと同じ方法
で選択透過性中空繊維束を作成し、内径36.9mm、
長さ276mmの容器に収納して成型し組立てて透析装
置を製造した。その際の混入比は96、中空繊維本数は
6,200本、充填率は45%、有効膜面積は1.3m
2 であった。得られた透析装置で、実施例2と同様に
透析実験を行って求めたクリアランス及び透析効率の結
果を表1に示す。
(Example 13) For one polyacrylonitrile hollow fiber used in Example 1, 2.
A polyester multifilament consisting of 96 single strands of 1 denier was arranged, and a permselective hollow fiber bundle was prepared in the same manner as described in Example 1, with an inner diameter of 36.9 mm,
A dialysis device was manufactured by storing it in a container with a length of 276 mm, molding it, and assembling it. At that time, the mixing ratio was 96, the number of hollow fibers was 6,200, the filling rate was 45%, and the effective membrane area was 1.3 m.
It was 2. Using the obtained dialysis apparatus, a dialysis experiment was conducted in the same manner as in Example 2, and the results of clearance and dialysis efficiency are shown in Table 1.

【0034】(比較例5)実施例1で使用したものと同
じポリアクリロニトリル系中空繊維2糸条一対として1
5デニールのポリエステル加工糸(単糸デニール2.5
dのモノフィラメント6本よりなるマルチフィラメント
の加工糸)を、特公昭59−18084号公報の実施例
3と同様に0.5回/10mmの巻き数で一層に巻きつ
けた集束した中空繊維束を作製した。ただし、中空繊維
本数、充填率、容器及び有効膜面積は本実施例4〜12
と同一条件にて成型し、組立てて透析装置を製造した。 得られた透析装置で、実施例2で述べた透析実験を行っ
て求めたクリアランス及び透析効率の結果を表1に示す
(Comparative Example 5) The same polyacrylonitrile hollow fibers as used in Example 1.
5 denier polyester processed yarn (single yarn denier 2.5
A focused hollow fiber bundle is obtained by winding the multifilament processed yarn consisting of 6 monofilaments (d) in a single layer at a winding rate of 0.5 turns/10 mm in the same manner as in Example 3 of Japanese Patent Publication No. 59-18084. Created. However, the number of hollow fibers, filling rate, container and effective membrane area are as per Examples 4 to 12.
A dialysis device was manufactured by molding and assembling under the same conditions as above. Table 1 shows the results of the clearance and dialysis efficiency obtained by conducting the dialysis experiment described in Example 2 using the obtained dialysis apparatus.

【0035】(実施例14)実施例1で使用したのと同
じポリアクリロニトリル系中空繊維4本に対して、15
デニールの単糸が12本集まったポリエステルマルチフ
ィラメントをひき揃え、実施例1で述べたと同じ方法で
選択透過性中空繊維束を作成し、内径34.7mm、長
さ251mmの容器に収納して成型し組立てて分離装置
を製造した。その際の混入比は3、中空繊維本数は7,
300本、充填率は60%、有効膜面積は1.3m2 
であった。得られた透析装置で実施例2と同様に透析実
験を行って求めたクリアランス及び透析効率の結果を表
1に示す。
(Example 14) For the same four polyacrylonitrile hollow fibers used in Example 1, 15
A polyester multifilament consisting of 12 denier single filaments was arranged, a permselective hollow fiber bundle was created in the same manner as described in Example 1, and the bundle was placed in a container with an inner diameter of 34.7 mm and a length of 251 mm and molded. and assembled to manufacture a separation device. At that time, the mixing ratio was 3, the number of hollow fibers was 7,
300 tubes, filling rate 60%, effective membrane area 1.3m2
Met. Table 1 shows the results of clearance and dialysis efficiency obtained by carrying out a dialysis experiment in the same manner as in Example 2 using the obtained dialysis apparatus.

【0036】(比較例6)中空繊維24本に対して、1
5デニールの単糸が12本集まったポリエステルマルチ
フィラメントをひき揃え、混入比が0.5となるように
した以外は実施例14と同一の条件で透析装置を製造し
た。得られた透析装置で実施例2と同様の透析実験を行
った。得られたクリアランス及び透析効率の結果を表1
に示す。
(Comparative Example 6) 1 for 24 hollow fibers
A dialysis device was manufactured under the same conditions as in Example 14, except that polyester multifilament consisting of 12 5-denier single filaments was arranged and the mixing ratio was 0.5. A dialysis experiment similar to that in Example 2 was conducted using the obtained dialysis apparatus. The results of the obtained clearance and dialysis efficiency are shown in Table 1.
Shown below.

【0037】(比較例7)実施例1で使用したのと同じ
ポリアクリロニトリル系中空繊維を用いて特開平2−1
40172号公報の実施例と同様の中空繊維束を作成し
た。すなわち、中空繊維25本に対して、15デニール
の単糸が36本集まったポリエステル撚糸1本をひき揃
えて作成した。この中空繊維束を内径40mm、長さ2
40mmの容器に収納して成型し組立てて透析装置を製
造した。その際の中空繊維1本に対する撚糸の混入比は
0.04、中空糸本数は8,800本、充填率は56%
、有効膜面積は1.5m2 であった。得られた透析装
置の性能を表1に示す。
(Comparative Example 7) Using the same polyacrylonitrile hollow fiber as used in Example 1, JP-A-2-1
A hollow fiber bundle similar to the Example of Publication No. 40172 was prepared. That is, one twisted polyester yarn consisting of 36 single yarns of 15 denier was tied together for 25 hollow fibers. This hollow fiber bundle has an inner diameter of 40 mm and a length of 2
A dialysis device was manufactured by storing it in a 40 mm container, molding it, and assembling it. At that time, the mixing ratio of twisted yarn to one hollow fiber was 0.04, the number of hollow fibers was 8,800, and the filling rate was 56%.
The effective membrane area was 1.5 m2. Table 1 shows the performance of the obtained dialysis device.

【0038】(実施例15)内径185μm,外径22
0μmの銅アンモニア再生セルロース系中空繊維4本に
対して、1.6デニールの単糸が32本集まったポリエ
ステルマルチフィラメントをひき揃え、エアーを吹きつ
けながら巻取り集束して、フィラメントが、中空繊維の
長さ方向と実質的に同一方向に配列され、かつフィラメ
ントの一部が中空繊維に絡みついた選択透過性中空繊維
束を作成した。その際の中空繊維本数は12,000本
でフィラメントの混入比を8であった。
(Example 15) Inner diameter 185 μm, outer diameter 22
A polyester multifilament consisting of 32 1.6 denier single filaments is lined up against four 0 μm copper ammonia regenerated cellulose hollow fibers, and the filaments are made into hollow fibers by winding and converging them while blowing air. A permselective hollow fiber bundle was prepared in which the filaments were arranged in substantially the same direction as the length direction of the filaments and some of the filaments were entwined with the hollow fibers. The number of hollow fibers at that time was 12,000, and the filament mixing ratio was 8.

【0039】以上により作成した選択透過性中空繊維を
内径36.5mm、長さ276mmの容器に収納して成
型し、組立てて透析装置を製造した。その際の湿潤時の
充填率は67%、有効膜面積は1.80m2 であった
。 得られた透析装置を用いて実施例2と同様な透析実験を
行った。その結果クリアランスの実測値は194ml/
分であり、用いた中空繊維の尿素の透過係数は12×1
0−4cm/秒で理論クリアランスを計算すると198
ml/分であった。以上により透析効率は98%であっ
た。
The permselective hollow fibers prepared above were placed in a container with an inner diameter of 36.5 mm and a length of 276 mm, molded, and assembled to produce a dialysis device. At that time, the wet filling rate was 67% and the effective membrane area was 1.80 m2. A dialysis experiment similar to that in Example 2 was conducted using the obtained dialysis device. As a result, the actual clearance value was 194ml/
The permeability coefficient of urea of the hollow fiber used is 12×1
Calculating the theoretical clearance at 0-4cm/sec is 198
ml/min. As a result of the above, the dialysis efficiency was 98%.

【0040】(実施例16〜20)実施例15で使用し
たものと同じ銅アンモニア再生セルロース系中空繊維に
対して表2に示したような素材,繊度,混入比の条件で
、実施例15と同様な方法で選択透過性中空繊維束を作
成し、表1に示したような容器に収納して成型し、組立
てて透析装置を製造した。その際の中空繊維本数,湿潤
時充填率,有効膜面積は表2に示す通りであった。得ら
れた透析装置を用いて、実施例15と同様な透析実験を
行って求めたクリアランス及び透析効率の結果を表2に
示す。
(Examples 16 to 20) The same copper ammonia regenerated cellulose hollow fibers used in Example 15 were prepared using the same material, fineness, and mixing ratio as shown in Table 2. A permselective hollow fiber bundle was prepared in a similar manner, placed in a container as shown in Table 1, molded, and assembled to produce a dialysis device. The number of hollow fibers, wet filling rate, and effective membrane area were as shown in Table 2. Using the obtained dialysis apparatus, a dialysis experiment similar to that in Example 15 was conducted and the results of clearance and dialysis efficiency are shown in Table 2.

【0041】[0041]

【表2】[Table 2]

【0042】(比較例8)実施例15で使用したものと
同じ銅アンモニア再生セルロース系中空繊維のみからな
る中空繊維束を作成した。さらに、中空繊維本数,湿潤
時充填率,容器及び有効膜面積は実施例15と同一条件
にて成型し、組立てた。得られた透析装置で実施例15
で述べた透析実験を行って求めたクリアランス及び透析
効率の結果を表2に示す。
(Comparative Example 8) A hollow fiber bundle consisting only of the same copper ammonia regenerated cellulose hollow fibers as used in Example 15 was prepared. Further, molding and assembly were performed under the same conditions as in Example 15 regarding the number of hollow fibers, wet filling rate, container, and effective membrane area. Example 15 with the obtained dialysis device
Table 2 shows the results of the clearance and dialysis efficiency obtained by conducting the dialysis experiment described above.

【0043】(比較例9)実施例15で使用したものと
同じ銅アンモニア再生セルロース系中空繊維4本に対し
て、1.7デニールの単糸が44本集まったベンベルグ
(登録商標)マルチフィラメントをひき揃え、エアーを
吹きつけることなく巻取り集束した。その際の中空繊維
本数は10,300本でフィラメントの混入比は1:1
であった。以上により作成した選択透過性中空繊維束を
内径36.5mm、長さ276mmの容器に収納して成
型し組み立てて透析装置を製造した。得られた透析装置
で実施例15で述べた透析実験を行って求めたクリアラ
ンス及び透析効率の結果を表2に示す。なお、中空繊維
束端面を観察すると中空繊維とフィラメントが分離した
ような状態になっていた。
(Comparative Example 9) Bemberg (registered trademark) multifilament consisting of 44 single fibers of 1.7 denier was used for the same four copper ammonia regenerated cellulose hollow fibers used in Example 15. They were aligned, wound and focused without blowing air. The number of hollow fibers at that time was 10,300, and the filament mixing ratio was 1:1.
Met. The permselective hollow fiber bundle prepared above was placed in a container with an inner diameter of 36.5 mm and a length of 276 mm, molded, and assembled to produce a dialysis device. Table 2 shows the results of clearance and dialysis efficiency obtained by carrying out the dialysis experiment described in Example 15 using the obtained dialysis apparatus. Note that when the end surface of the hollow fiber bundle was observed, it was found that the hollow fibers and filaments were separated.

【0044】[0044]

【発明の効果】本発明にしたがえば、フィラメントの繊
度が細いために中空繊維束の嵩高性がほとんど増加せず
、しかも束が密に結束しているので、中空繊維の充填率
の高い流体分離装置を収率良く製造することができ、小
型・高性能化が可能となる。例えば、中空繊維の充填率
ρを容器内壁の断面M、中空繊維の外周のなす円形断面
の面積m、中空繊維の本数をNとしたときρ=N・m/
Mで定義すれば、従来法では充填率が60%を越えると
成型収率が低下するのに対し、本発明に従えば、68%
の充填率でも95%以上の成型収率を達成することが可
能である。それ故本発明の流体分離装置では、充填率が
高められる分だけ小型の容器で設計しても従来法と同等
な有効膜面積を得ることが可能である。
[Effects of the Invention] According to the present invention, the bulkiness of the hollow fiber bundle is hardly increased due to the fineness of the filaments, and since the bundles are tightly bound, a fluid with a high filling rate of hollow fibers can be obtained. Separation devices can be manufactured with high yield, making it possible to downsize and improve performance. For example, if the filling rate ρ of the hollow fibers is the cross section M of the inner wall of the container, the area m of the circular cross section formed by the outer periphery of the hollow fibers, and the number of hollow fibers N, then ρ=N・m/
Defined by M, in the conventional method, the molding yield decreases when the filling rate exceeds 60%, but according to the present invention, the molding yield decreases to 68%.
Even with a filling rate of 95% or more, it is possible to achieve a molding yield of 95% or more. Therefore, in the fluid separation device of the present invention, it is possible to obtain an effective membrane area equivalent to that of the conventional method even if the container is designed to be smaller due to the increased filling rate.

【0045】また、本発明の流体分離装置では細い繊度
のフィラメントが多数中空繊維束内に分散されているた
めに、中空繊維間に極めて微小でばらつきの少ない隙間
が形成されており、それゆえ中空繊維の外側を流れる流
体がこの隙間を流路として隈なく分配され、偏流するこ
とがなく顕著な分離効率の改善が実現できる。
In addition, in the fluid separation device of the present invention, since a large number of thin filaments are dispersed within the hollow fiber bundle, extremely small and uniform gaps are formed between the hollow fibers. The fluid flowing on the outside of the fibers is distributed throughout the space using these gaps as flow paths, and the separation efficiency can be significantly improved without drifting.

【0046】本発明の流体分離装置を血液透析装置とし
て使用する場合、実測されるクリアランス(単位時間当
たり実際にその装置により透析除去される尿素などの溶
質の量)の、下記の数式1で示される理論クリアランス
に対する百分率で定義される透析効率は、本発明にした
がう血液透析装置ではほぼ100%が実現できる。
When the fluid separation device of the present invention is used as a hemodialysis device, the actually measured clearance (the amount of solute such as urea that is actually dialyzed and removed by the device per unit time) is expressed by the following formula 1. The dialysis efficiency, defined as a percentage of the theoretical clearance, can be approximately 100% in the hemodialysis apparatus according to the present invention.

【0047】[0047]

【数1】[Math 1]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のフィラメントを分散させた選択透過性
中空繊維束の横断面の模式図である。
FIG. 1 is a schematic cross-sectional view of a permselective hollow fiber bundle in which filaments of the present invention are dispersed.

【図2】本発明の流体分離装置の1例を示す縦断面図で
ある。
FIG. 2 is a longitudinal sectional view showing an example of the fluid separation device of the present invention.

【符号の説明】[Explanation of symbols]

1  中空繊維 2  フィラメント 3  容器 4  第1の流体の入口 5  第1の流体の出口 6  中空繊維束 7  隔壁(ポッティング部) 8  ヘッダー 9  第2の流体の入口 10  第2の流体の出口 1 Hollow fiber 2 Filament 3 Container 4 First fluid inlet 5 First fluid outlet 6 Hollow fiber bundle 7 Partition wall (potting part) 8 Header 9 Second fluid inlet 10 Second fluid outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  中空繊維1本に対し2〜3,000本
の割合で繊度0.05〜20デニールのフィラメントが
該中空繊維の長さ方向と実質的に同一方向に配列され、
かつ少なくとも一部の該フィラメントが該中空繊維に絡
みつくことにより該中空繊維が該フィラメントにより互
いに結束された状態にある選択透過性中空繊維束。
Claim: 1. Filaments having a fineness of 0.05 to 20 deniers are arranged at a ratio of 2 to 3,000 filaments per hollow fiber in substantially the same direction as the length direction of the hollow fiber,
and a permselective hollow fiber bundle in which at least some of the filaments are entwined with the hollow fibers so that the hollow fibers are bound together by the filaments.
【請求項2】  中空繊維1本に対し2〜3,000本
の割合で繊度0.05〜20デニールのフィラメントが
該中空繊維の長さ方向と実質的に同一方向に配列され、
かつ少なくとも一部の該フィラメントが該中空繊維に絡
みつくことにより該中空繊維が該フィラメントにより互
いに結束された状態にある選択透過性中空繊維束を内蔵
する流体分離装置。
2. Filaments having a fineness of 0.05 to 20 denier are arranged at a ratio of 2 to 3,000 filaments per hollow fiber in substantially the same direction as the length direction of the hollow fiber,
and a fluid separation device incorporating a permselective hollow fiber bundle in which at least some of the filaments are entangled with the hollow fibers so that the hollow fibers are bound together by the filaments.
JP03123168A 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same Expired - Fee Related JP3080430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03123168A JP3080430B2 (en) 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-172692 1990-07-02
JP17269290 1990-07-02
JP03123168A JP3080430B2 (en) 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same

Publications (2)

Publication Number Publication Date
JPH04227030A true JPH04227030A (en) 1992-08-17
JP3080430B2 JP3080430B2 (en) 2000-08-28

Family

ID=26460165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03123168A Expired - Fee Related JP3080430B2 (en) 1990-07-02 1991-04-26 Permselective hollow fiber bundle and fluid separation device incorporating the same

Country Status (1)

Country Link
JP (1) JP3080430B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514963A (en) * 2011-06-21 2014-06-26 コーロン インダストリーズ インク Pressurized hollow fiber membrane module
JP2015508020A (en) * 2012-02-22 2015-03-16 イムテックス メンブレインズ コーポレイション Unsteady state gas permeation process
WO2019018179A1 (en) * 2017-07-18 2019-01-24 Saudi Arabian Oil Company Hollow fiber membrane module
US11253819B2 (en) 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes
US11406941B2 (en) 2020-02-14 2022-08-09 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678776B2 (en) 2003-04-23 2011-04-27 旭化成クラレメディカル株式会社 Hollow fiber membrane fluid processor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514963A (en) * 2011-06-21 2014-06-26 コーロン インダストリーズ インク Pressurized hollow fiber membrane module
US9034189B2 (en) 2011-06-21 2015-05-19 Kolon Industries, Inc. Pressurized hollow fiber membrane module
JP2015508020A (en) * 2012-02-22 2015-03-16 イムテックス メンブレインズ コーポレイション Unsteady state gas permeation process
WO2019018179A1 (en) * 2017-07-18 2019-01-24 Saudi Arabian Oil Company Hollow fiber membrane module
CN110944735A (en) * 2017-07-18 2020-03-31 沙特阿拉伯石油公司 Hollow fiber membrane module
US11406941B2 (en) 2020-02-14 2022-08-09 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
US11253819B2 (en) 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes

Also Published As

Publication number Publication date
JP3080430B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
US5198110A (en) Bundle of permselective hollow fibers and a fluid separator containing the same
JP3104203B2 (en) Fluid separation module and fluid separation method
US5160673A (en) Hollow fiber module
US4293418A (en) Fluid separation apparatus
JPS61278306A (en) Improved hollow fiber membrane having inside lap
JPS63236502A (en) Multilayer hollow fiber coil, its production, heat transmitting method, mass exchange method, mass transfer method, substance separation method, dialytic method and oxygen adding method
JPH08246283A (en) Hollow fiber bundle and substance- and/or heat exchanger
JPH0667405B2 (en) Capillary dialyzer
JPS5911866A (en) Fluid treating apparatus
KR950008629B1 (en) Liquid membrane modules with mininal effective membrane thickness and methods of making the same
JPH04227030A (en) Permselective hollow fiber bundle and fluid separation apparatus having the same built therein
JP2020527457A (en) Hollow fiber membrane module
EP0514021A1 (en) Liquid membrane modules with minimal effective membrane thickness and methods of making the same
US5126053A (en) Method for manufacturing hollow fiber piles
SU1722208A3 (en) Method for production of filter medium of labyrinth filter
JPH03238027A (en) Fluid treatment apparatus using hollow fiber
JP3841475B2 (en) Hollow fiber membrane module
EA038203B1 (en) Hollow fibre membrane having three dimensional texturing
JPH0412988B2 (en)
JPS5959218A (en) Hollow yarn type fluid separation element and preparation thereof
JPS5959217A (en) Hollow yarn type fluid separation element and preparation thereof
JPS5959216A (en) Hollow yarn type fluid separation element and preparation thereof
JPH028766B2 (en)
JPH08117563A (en) Hollow yarn membrane bundle and production thereof
JPH067767Y2 (en) Filter material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees