JPH04225778A - Method and device for manufacturing superhigh purity methane - Google Patents

Method and device for manufacturing superhigh purity methane

Info

Publication number
JPH04225778A
JPH04225778A JP2406964A JP40696490A JPH04225778A JP H04225778 A JPH04225778 A JP H04225778A JP 2406964 A JP2406964 A JP 2406964A JP 40696490 A JP40696490 A JP 40696490A JP H04225778 A JPH04225778 A JP H04225778A
Authority
JP
Japan
Prior art keywords
methane
liquid
purity methane
condenser
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2406964A
Other languages
Japanese (ja)
Inventor
Hideo Nishida
英夫 西田
Kunio Osaka
大坂 邦夫
Masayuki Tanaka
正幸 田中
Yasushi Tomisaka
富阪 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2406964A priority Critical patent/JPH04225778A/en
Publication of JPH04225778A publication Critical patent/JPH04225778A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/60Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Abstract

PURPOSE:To reduce the cost of superhigh purity methane by a method wherein a liquid of high boiling point component is distillated by a first distillating device, the liquid is used for cooling a capacitor, and superhigh purity methane in a liquid state is recovered from the bottom of a second distillating device to receive fluid taken out from the first distillating device. CONSTITUTION:Liquefied natural gas is introduced to the lower part of a first distillating tower 10, where the gas is distillated and treated. In this case, the mixture liquid of methane and hydrocarbon having a boiling point higher than that of the methane is distillated to the bottom part of the first distillating tower 10. The liquid is first introduced to a capacitor 12 of a tenth distillating tower 10 while a pressure and temperature through a capacitor cooling passage 30. A part of the liquid is vaporized at the tenth distillating tower and the capacitor 12 is cooled by means of a vaporizing latent heat. This method liquefies a part of gas in the top part of the first distillating tower 10 and returns it as reflux to the tower. Remaining fluid (mixture fluid of nitrogen and methane) is introduced to a conveying passage 32, a part of the fluid is introduced to a liquefier 37 for liquefaction, and the liquefied fluid is stored as high purity methane in a product storage tank.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液化天然ガスを原料と
して超高純度メタンを製造するための方法及び装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing ultra-high purity methane from liquefied natural gas.

【0002】0002

【従来の技術】従来、液化天然ガスを原料として、この
ガスから純度99.9999%以上の超高純度メタンを
分離、濃縮する方法の開発が進められている。
BACKGROUND OF THE INVENTION Conventionally, progress has been made in the development of a method for separating and concentrating ultra-high purity methane with a purity of 99.9999% or more from liquefied natural gas as a raw material.

【0003】図2及び図3は、従来の超高純度メタン製
造装置の一例を示したものである。これらの装置はいず
れも、メタン、このメタンよりも低沸点の成分(主に窒
素)、及びメタンよりも高沸点の炭化水素(主にエタン
)を含有する液化天然ガスから高純度のメタンを分離す
るように構成されている。
FIGS. 2 and 3 show an example of a conventional ultra-high purity methane production apparatus. All of these devices separate high-purity methane from liquefied natural gas, which contains methane, components with lower boiling points than this methane (mainly nitrogen), and hydrocarbons with higher boiling points than methane (mainly ethane). is configured to do so.

【0004】具体的に、図2において90は窒素等の低
沸点成分を分離するための第1蒸留塔であり、この第1
蒸留塔90にはコンデンサ91及びリボイラ92が配設
されている。液化天然ガスは、まずこの第1蒸留塔90
の中段に導入され、蒸留される。その塔頂からは窒素等
の低沸点成分とメタンとの混合ガスが排出され、塔底か
らはメタンとメタンよりも高沸点の炭化水素との混合液
が留出される。この混合液は、高沸点成分分離用の吸着
塔93の底部に導入され、この吸着塔93の頂部から、
超高純度メタンがガスの状態で排出される。このガスは
液化器99で液化された後、製品貯蔵タンクに回収され
る。
Specifically, in FIG. 2, 90 is a first distillation column for separating low boiling point components such as nitrogen;
A condenser 91 and a reboiler 92 are arranged in the distillation column 90. The liquefied natural gas is first distilled into this first distillation column 90.
is introduced into the middle stage and distilled. A mixed gas of methane and low-boiling components such as nitrogen is discharged from the top of the column, and a mixed liquid of methane and hydrocarbons with a boiling point higher than methane is distilled from the bottom of the column. This mixed liquid is introduced into the bottom of an adsorption tower 93 for separating high boiling point components, and from the top of this adsorption tower 93,
Ultra-high purity methane is emitted in gaseous form. After this gas is liquefied in a liquefier 99, it is collected in a product storage tank.

【0005】一方、図3の装置では、第1蒸留塔90で
窒素等の低沸点成分を分離するまでは上記装置と同様で
あるが、この第1蒸留塔90から留出された液は、コン
デンサ95及びリボイラ96を備えた高沸点成分分離用
の第2蒸留塔94に導入され、この蒸留塔94の頂部か
ら超高純度メタンが同じくガス状で回収されるようにな
っている。また、この装置では、上記第1蒸留塔90に
ついての液面レベル調節計97、および第1蒸留塔90
から第2蒸留塔94に亘る通路(配管)に流量調節計9
8が配されており、この流量調節計98によって第1蒸
留塔90から第2蒸留塔94へ向かう液の流量が一定に
調節されるとともに、この流量にしてかつ上記第1蒸留
塔90内の液面レベルを所定レベルに保つように、上記
液面レベル調節計97によって排出液の液量調節が行わ
れるようになっている。
On the other hand, the apparatus shown in FIG. 3 is similar to the above apparatus until low-boiling components such as nitrogen are separated in the first distillation column 90, but the liquid distilled from the first distillation column 90 is The methane is introduced into a second distillation column 94 for separating high-boiling components, which is equipped with a condenser 95 and a reboiler 96, and ultra-high purity methane is also recovered in gaseous form from the top of this distillation column 94. Further, in this apparatus, a liquid level controller 97 for the first distillation column 90 and a liquid level controller 97 for the first distillation column 90 are provided.
A flow rate controller 9 is installed in the passage (piping) extending from the second distillation column 94 to the second distillation column 94.
8 is arranged, and this flow rate controller 98 adjusts the flow rate of the liquid from the first distillation column 90 to the second distillation column 94 to a constant level, and also controls the flow rate of the liquid in the first distillation column 90 at this flow rate. The liquid level controller 97 adjusts the amount of discharged liquid so as to maintain the liquid level at a predetermined level.

【0006】[0006]

【発明が解決しようとする課題】上記各装置における蒸
留塔の運転温度は約−150℃前後に達するので、コン
デンサ91,95の冷媒源として液体窒素等の特別な手
段を用いなければならない。このような冷媒の消費量は
超高純度メタンのコストに大きく影響するものであり、
その削減が大きな課題となっている。また、これらの装
置では超高純度メタンがガスの状態で回収されるので、
これを液化して回収するための冷媒及び液化器99が必
要であり、これもコスト削減の大きな妨げとなっている
Since the operating temperature of the distillation column in each of the above apparatuses reaches approximately -150 DEG C., special means such as liquid nitrogen must be used as a refrigerant source for the condensers 91 and 95. The consumption of such refrigerants greatly affects the cost of ultra-high purity methane.
Reducing this has become a major issue. In addition, these devices recover ultra-high purity methane in a gaseous state.
A refrigerant and a liquefier 99 are required to liquefy and recover this, which is also a major hindrance to cost reduction.

【0007】さらに、図2の装置では吸着法が用いられ
ているので、吸着塔93の再生工程が必要であり、この
関係からバッチ運転を行った場合には製造効率が悪く、
また複数の吸着塔を用いて連続運転を行う場合には、高
価な通路切替システムを要する欠点がある。
Furthermore, since the adsorption method is used in the apparatus shown in FIG. 2, a regeneration process of the adsorption tower 93 is necessary, and due to this relationship, when batch operation is performed, the production efficiency is poor;
Further, when continuous operation is performed using a plurality of adsorption towers, there is a drawback that an expensive passage switching system is required.

【0008】また、図3の装置では、第1蒸留塔90か
ら第2蒸留塔94へ移送される液の流量を一定に保ち、
かつこの状態で第1蒸留塔90内の液面レベルを一定に
保つために一部の液を排出させなければならず、その分
メタン回収のロスが生じる。
Furthermore, in the apparatus shown in FIG. 3, the flow rate of the liquid transferred from the first distillation column 90 to the second distillation column 94 is kept constant;
In addition, in this state, a part of the liquid must be discharged in order to keep the liquid level in the first distillation column 90 constant, resulting in a corresponding loss in methane recovery.

【0009】本発明は、このような事情に鑑み、超高純
度メタンを効率よく回収し、かつそのコストを大幅に削
減することができる製造方法及び装置を提供することを
目的とする。
[0009] In view of the above circumstances, it is an object of the present invention to provide a manufacturing method and apparatus that can efficiently recover ultra-high purity methane and can significantly reduce its cost.

【0010】0010

【課題を解決するための手段】本発明は、液化天然ガス
から超高純度メタンを製造する方法であって、上記液化
天然ガスをコンデンサ及びリボイラを備えた高沸点成分
分離用の第1蒸留装置に入れ、この第1蒸留装置の頂部
からメタン及びメタンよりも低沸点の成分からなる混合
流体を取出し、コンデンサ及びリボイラを備えた低沸点
成分分離用の第2蒸留装置に入れ、この第2蒸留装置の
底部の液を超高純度メタンとして回収するとともに、上
記第1蒸留装置の底液を少なくとも一方の蒸留装置のコ
ンデンサに通し、このコンデンサで蒸発させる方法であ
る(請求項1)。
[Means for Solving the Problems] The present invention provides a method for producing ultra-high purity methane from liquefied natural gas, comprising: a first distillation device for separating high-boiling components, which is equipped with a condenser and a reboiler; A mixed fluid consisting of methane and a component with a lower boiling point than methane is taken out from the top of the first distillation device and put into a second distillation device for separating low-boiling components equipped with a condenser and a reboiler. This is a method in which the liquid at the bottom of the apparatus is recovered as ultra-high purity methane, and the bottom liquid of the first distillation apparatus is passed through a condenser of at least one distillation apparatus and evaporated in this condenser (Claim 1).

【0011】さらに、この方法において、上記第1蒸留
装置の頂部から取出した混合流体の一部を上記超高純度
メタンよりも純度の低い高純度メタンとして回収するこ
とにより、より優れた効果が得られる(請求項2)。
Furthermore, in this method, better effects can be obtained by recovering a part of the mixed fluid taken out from the top of the first distillation apparatus as high-purity methane, which is lower in purity than the ultra-high-purity methane. (Claim 2).

【0012】上記方法を実施するための装置としては、
液化天然ガスから超高純度メタンを製造するための装置
であって、コンデンサ及びリボイラを備え、内部に液化
天然ガスが導入される高沸点成分分離用の第1蒸留装置
と、コンデンサ及びリボイラを備え、底液が超高純度メ
タンとして取り出される低沸点成分分離用の第2蒸留装
置と、上記第1蒸留装置の頂部から窒素及びメタンの混
合流体を抽出し、上記第2蒸留装置に送るための移送通
路と、上記第1蒸留装置の底部の液を少なくとも一方の
蒸留装置のコンデンサに通し、このコンデンサで蒸発さ
せるためのコンデンサ冷却通路とを備えたもの(請求項
3)、さらに好ましくは、上記移送通路から分岐し、上
記混合流体の一部を上記超高純度メタンよりも純度の低
い高純度メタンとして回収するための回収通路を備えた
もの(請求項4)が好適である。
[0012] As an apparatus for carrying out the above method,
A device for producing ultra-high purity methane from liquefied natural gas, comprising a first distillation device for separating high-boiling components into which liquefied natural gas is introduced, and a condenser and reboiler. , a second distillation device for separating low-boiling components from which the bottom liquid is taken out as ultra-high purity methane; and a second distillation device for extracting a mixed fluid of nitrogen and methane from the top of the first distillation device and sending it to the second distillation device. A transfer passage and a condenser cooling passage for passing the liquid at the bottom of the first distillation apparatus to a condenser of at least one distillation apparatus and evaporating it in the condenser (Claim 3), more preferably, the above-mentioned It is preferable to have a recovery passage branching from the transfer passage and recovering a part of the mixed fluid as high-purity methane having a purity lower than that of the ultra-high purity methane (claim 4).

【0013】[0013]

【作用】上記構成によれば、第1蒸留装置の底部から留
出される液がコンデンサに送られて蒸発することにより
、その蒸発潜熱でコンデンサの冷却が行われる。すなわ
ち、上記第1蒸留装置からの留出液がコンデンサの冷却
に寄与することとなり、その分冷媒等の使用量は削減さ
れる。また、超高純度メタンは第2蒸留装置の底部から
液の状態で回収されるので、それ以降の液化処理は不要
となる。
According to the above structure, the liquid distilled from the bottom of the first distillation apparatus is sent to the condenser and evaporated, thereby cooling the condenser with its latent heat of vaporization. That is, the distillate from the first distillation device contributes to cooling the condenser, and the amount of refrigerant used is reduced accordingly. Furthermore, since the ultra-high purity methane is recovered in liquid form from the bottom of the second distillation apparatus, subsequent liquefaction treatment is not necessary.

【0014】さらに、この方法及び装置では、上記第1
蒸留装置の頂部から高純度メタンを回収することにより
、互いに純度の異なる超高純度メタン及び高純度メタン
を同時に得ることが可能である。
[0014] Furthermore, in this method and apparatus, the first
By recovering high-purity methane from the top of the distillation apparatus, it is possible to simultaneously obtain ultra-high-purity methane and high-purity methane having different purities.

【0015】[0015]

【実施例】図1は、本発明の一実施例における超高純度
メタンの製造装置を示したものである。
Embodiment FIG. 1 shows an apparatus for producing ultra-high purity methane in one embodiment of the present invention.

【0016】この装置は、液化天然ガスからメタンより
も高沸点の炭化水素(主に窒素)を分離することを目的
とする第1蒸留塔10と、メタンよりも低沸点の成分(
主に窒素)を分離することを目的とする第2蒸留塔20
とを備え、各塔の上部にはコンデンサ12,22が、下
部にはリボイラ14,24がそれぞれ配されている。
This apparatus includes a first distillation column 10 whose purpose is to separate hydrocarbons (mainly nitrogen) with a higher boiling point than methane from liquefied natural gas, and a component (mainly nitrogen) with a lower boiling point than methane.
The second distillation column 20 whose purpose is to separate nitrogen (mainly nitrogen)
Condensers 12 and 22 are arranged in the upper part of each column, and reboilers 14 and 24 are arranged in the lower part, respectively.

【0017】上記第1蒸留塔10の底部からはコンデン
サ冷却通路(ここでは配管)30が導出され、このコン
デンサ冷却通路30は第1蒸留塔10のコンデンサ12
、さらには第2蒸留塔20のコンデンサ22を通過する
ように構成されている。また、上記第1蒸留塔10の頂
部と第2蒸留塔20の中部とは移送通路32を介して連
通され、この移送通路32の途中からは、高純度メタン
を回収するための回収通路34が設けられている。この
回収通路34は液化器37を介して製品貯蔵タンクに通
じている。また、上記第2蒸留塔20の底部からは、製
品貯蔵タンクに通ずる回収通路38が導出されている。
A condenser cooling passage (piping in this case) 30 is led out from the bottom of the first distillation column 10, and this condenser cooling passage 30 is connected to the condenser 12 of the first distillation column 10.
, and further passes through the condenser 22 of the second distillation column 20. Further, the top of the first distillation column 10 and the middle part of the second distillation column 20 are communicated via a transfer passage 32, and a recovery passage 34 for recovering high-purity methane is connected from the middle of the transfer passage 32. It is provided. This recovery passage 34 communicates with a product storage tank via a liquefier 37. Further, a recovery passage 38 leading to a product storage tank is led out from the bottom of the second distillation column 20.

【0018】次に、この装置により実施される超高純度
メタンの製造方法を説明する。
Next, a method for producing ultra-high purity methane carried out by this apparatus will be explained.

【0019】まず、原料である液化天然ガスは第1蒸留
塔10の下部に導入され、ここで蒸留処理される。具体
的に、この第1蒸留塔10の底部にはメタンとメタンよ
りも高沸点の炭化水素との混合液が留出されるが、この
液はコンデンサ冷却通路30を通じて減圧降温しながら
まず第1蒸留塔10のコンデンサ12に導入され、ここ
で一部蒸発し、その蒸発潜熱によってコンデンサ12が
冷却される。さらに、残りの液は第2蒸留塔20のコン
デンサ22に導入され、ここで蒸発することによりやは
りコンデンサ22が冷却される。
First, liquefied natural gas, which is a raw material, is introduced into the lower part of the first distillation column 10, where it is subjected to distillation treatment. Specifically, a mixed liquid of methane and a hydrocarbon having a boiling point higher than methane is distilled at the bottom of the first distillation column 10, and this liquid is first distilled into the first distillation column while being reduced in pressure and temperature through the condenser cooling passage 30. It is introduced into the condenser 12 of the distillation column 10, where it partially evaporates, and the condenser 12 is cooled by its latent heat of vaporization. Furthermore, the remaining liquid is introduced into the condenser 22 of the second distillation column 20, where it is evaporated to cool the condenser 22 as well.

【0020】このようにしてコンデンサ12が冷却され
ることにより、第1蒸留塔10頂部のガスは一部液化さ
れて還流液として塔内に戻され、残りの流体(窒素等と
メタンとの混合流体)は移送通路32内に導かれる。こ
の流体の一部は、回収通路34を通じて液化器37に導
入され、ここで液化された後に高純度メタン(濃度99
.9%以上のメタン)として製品貯蔵タンク内に貯蔵さ
れる。
By cooling the condenser 12 in this manner, the gas at the top of the first distillation column 10 is partially liquefied and returned to the column as a reflux liquid, and the remaining fluid (a mixture of nitrogen etc. and methane) is liquefied and returned to the column as a reflux liquid. fluid) is led into the transfer passage 32. A part of this fluid is introduced into the liquefier 37 through the recovery passage 34, where it is liquefied and then high-purity methane (concentration 99
.. 9% or more methane) in product storage tanks.

【0021】残りの流体は、第2蒸留塔20内に導入さ
れ、ここで蒸留操作がなされる。具体的に、塔底には濃
度99.9999 %以上の超高純度メタンが液体とな
って留出し、これが回収通路38を通じて製品貯蔵タン
クに回収されるとともに、塔頂からは分離された窒素等
の低沸点成分ガスが排出される。
The remaining fluid is introduced into the second distillation column 20, where a distillation operation is performed. Specifically, ultra-high purity methane with a concentration of 99.9999% or more is distilled out as a liquid at the bottom of the column, and this is recovered into the product storage tank through the recovery passage 38, while separated nitrogen, etc. are released from the top of the column. of low-boiling component gases are discharged.

【0022】以上のように、この方法及び装置では、ま
ず第1蒸留塔10で高沸点成分の液を留出させ、この液
をコンデンサ12,22の冷却に用いるようにしている
ので、コンデンサ12,22の冷却用冷媒を大幅に削減
し、さらに好ましくは冷媒を全く省略することも可能と
なる。そして、この第1蒸留塔10の頂部から取り出し
た流体を第2蒸留塔20に移送し、この第2蒸留塔20
の底部から液の状態で超高純度メタンを回収するように
しているので、回収の際に液化する工程もなくなり、こ
れに要する液化手段や冷媒を省略することによりコスト
はさらに低減される。
As described above, in this method and apparatus, the first distillation column 10 first distills the high boiling point component liquid, and this liquid is used to cool the condensers 12 and 22. , 22 can be significantly reduced, and more preferably, the refrigerant can be omitted altogether. Then, the fluid taken out from the top of the first distillation column 10 is transferred to the second distillation column 20.
Since the ultra-high purity methane is recovered in liquid form from the bottom of the tank, there is no need to liquefy it during recovery, and costs are further reduced by omitting the liquefaction means and refrigerant required for this process.

【0023】また、この装置では、第1蒸留塔10から
留出した流体の一部を上記超高純度メタンよりは純度の
低い高純度メタンとして回収することができるので、需
要に応じて互いに純度の異なる2種類のメタン、すなわ
ち、高純度メタンと超高純度メタンとを同時に得ること
ができる。また、その生産調整も容易である。
[0023] Furthermore, in this apparatus, a part of the fluid distilled from the first distillation column 10 can be recovered as high-purity methane, which is lower in purity than the ultra-high-purity methane. Two types of methane with different values, ie, high-purity methane and ultra-high-purity methane, can be obtained at the same time. Moreover, the production adjustment is also easy.

【0024】次の表1は、図1に示される各点■〜■で
の流体圧力、温度、及び組成を示したものである。この
表は、上記装置によれば高純度メタン及びこれよりもさ
らに高純度の超高純度メタンを同時に得ることができる
ことを明確に示している。
Table 1 below shows the fluid pressure, temperature, and composition at each point (1) to (2) shown in FIG. This table clearly shows that high purity methane and even higher purity ultra-high purity methane can be obtained at the same time using the above device.

【0025】[0025]

【表1】[Table 1]

【0026】なお、本発明はこのような実施例に限定さ
れるものではなく、例として次のような態様を採ること
も可能である。
[0026] The present invention is not limited to such an embodiment, and the following embodiments can also be adopted as examples.

【0027】(1)  前記実施例の装置において、第
1蒸留塔10のコンデンサ12を全凝縮器として第2蒸
留塔への供給流体を液体にすることにより、第2蒸留塔
20におけるコンデンサ22の凝縮負荷をより削減する
ことが可能である。さらに、この場合には、回収通路3
4から回収される高純度メタンも液状となるので、その
液化に必要な前記液化器37や冷媒源である液体窒素を
省略することができる。ただし、この場合、前記コンデ
ンサ12で全凝縮するためにコンデンサ冷却通路30を
流れる混合液を増量すると、その分メタンの回収率は低
くなるので、このメタン回収率と上記液体窒素等の省略
によるコストの削減とのバランスを考慮する必要がある
(1) In the apparatus of the above embodiment, the condenser 12 in the first distillation column 10 is used as a total condenser and the fluid supplied to the second distillation column is made into a liquid, so that the condenser 22 in the second distillation column 20 is It is possible to further reduce the condensation load. Furthermore, in this case, the collection passage 3
Since the high-purity methane recovered from 4 is also in liquid form, the liquefier 37 and liquid nitrogen as a refrigerant source necessary for liquefaction can be omitted. However, in this case, if the amount of the mixed liquid flowing through the condenser cooling passage 30 is increased in order to completely condense it in the condenser 12, the methane recovery rate will decrease accordingly, so the cost due to this methane recovery rate and the omission of the liquid nitrogen, etc. It is necessary to consider the balance with the reduction of

【0028】(2)  上記実施例では、第1蒸留塔1
0の底液を双方のコンデンサ12,22に通す装置を示
したが、本発明はこれに限らず、いずれか一方のコンデ
ンサにのみ上記液を通し、他方のコンデンサは従来通り
別の冷媒を用いて冷却するようにしても、従来と比して
コストの削減を果たすことができる。
(2) In the above embodiment, the first distillation column 1
Although a device is shown in which the bottom liquid of 0 is passed through both condensers 12 and 22, the present invention is not limited to this, and the present invention is not limited to this. Even if it is cooled by cooling, the cost can be reduced compared to the conventional method.

【0029】[0029]

【発明の効果】以上のように本発明は、まず第1蒸留装
置で高沸点成分の液を留出させ、この液をコンデンサの
冷却に用いるようにしたものであるので、コンデンサの
冷却用冷媒を大幅に削減し、さらに好ましくは冷媒を全
く省略することも可能である。そして、この第1蒸留装
置から取り出した流体を第2蒸留装置に移送し、この第
2蒸留装置の底部から液の状態で超高純度メタンを回収
するようにしているので、回収の際に液化する工程もな
くなり、これに要する液化手段や冷媒を省略することに
よりコストをさらに低減することができる効果がある。
Effects of the Invention As described above, the present invention first distills a liquid with high boiling point components in the first distillation apparatus, and this liquid is used for cooling the condenser. It is also possible to significantly reduce the amount of refrigerant, and even more preferably to omit the refrigerant altogether. Then, the fluid taken out from the first distillation device is transferred to the second distillation device, and ultra-high purity methane is recovered in liquid form from the bottom of the second distillation device, so it is liquefied during recovery. This eliminates the step of liquefaction, and by omitting the liquefaction means and refrigerant required for this, there is an effect that costs can be further reduced.

【0030】また、上記第1蒸留装置から留出した流体
の一部を上記超高純度メタンよりは純度の低い高純度メ
タンとして回収することも可能であるので、需要に応じ
て互いに純度の異なる2種類のメタンを同時に得ること
ができ、またその生産調整を容易に行うことができる効
果がある。
[0030] Furthermore, it is possible to recover a part of the fluid distilled from the first distillation apparatus as high-purity methane, which is lower in purity than the ultra-high-purity methane. Two types of methane can be obtained at the same time, and the production can be easily adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における超高純度メタンの製
造装置の全体構成図である。
FIG. 1 is an overall configuration diagram of an apparatus for producing ultra-high purity methane in an embodiment of the present invention.

【図2】従来の超高純度メタンの製造装置の一例を示す
全体構成図である。
FIG. 2 is an overall configuration diagram showing an example of a conventional ultra-high purity methane production apparatus.

【図3】従来の超高純度メタンの製造装置の一例を示す
全体構成図である。
FIG. 3 is an overall configuration diagram showing an example of a conventional ultra-high purity methane production apparatus.

【符号の説明】[Explanation of symbols]

10  第1蒸留塔(第1蒸留装置) 12,22  コンデンサ 14,24  リボイラ 20  第2蒸留塔(第2蒸留装置) 30  コンデンサ冷却通路 32  移送通路 34  回収通路 38  回収通路 10 First distillation column (first distillation device) 12, 22 Capacitor 14, 24 Reboiler 20 Second distillation column (second distillation device) 30 Condenser cooling passage 32 Transfer passage 34 Collection passage 38 Collection passage

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  液化天然ガスから超高純度メタンを製
造する方法であって、上記液化天然ガスをコンデンサ及
びリボイラを備えた高沸点成分分離用の第1蒸留装置に
入れ、この第1蒸留装置の頂部からメタン及びメタンよ
りも低沸点の成分からなる混合流体を取出し、コンデン
サ及びリボイラを備えた低沸点成分分離用の第2蒸留装
置に入れ、この第2蒸留装置の底部の液を超高純度メタ
ンとして回収するとともに、上記第1蒸留装置の底液を
少なくとも一方の蒸留装置のコンデンサに通し、このコ
ンデンサで蒸発させることを特徴とする超高純度メタン
の製造方法。
1. A method for producing ultra-high purity methane from liquefied natural gas, comprising: introducing the liquefied natural gas into a first distillation device for separating high-boiling components, which is equipped with a condenser and a reboiler; A mixed fluid consisting of methane and components with a lower boiling point than methane is taken out from the top of the methane and put into a second distillation device for separating low-boiling components equipped with a condenser and a reboiler. A method for producing ultra-high purity methane, characterized in that the bottom liquid of the first distillation apparatus is passed through a condenser of at least one of the distillation apparatuses and evaporated in the condenser, while recovering the ultra-high purity methane.
【請求項2】  請求項1記載の超高純度メタンの製造
方法において、上記第1蒸留装置の頂部から取出した混
合流体の一部を上記超高純度メタンよりも純度の低い高
純度メタンとして回収することを特徴とする請求項1記
載の超高純度メタンの製造方法。
2. The method for producing ultra-high purity methane according to claim 1, wherein a part of the mixed fluid taken out from the top of the first distillation apparatus is recovered as high-purity methane having a purity lower than that of the ultra-high purity methane. 2. The method for producing ultra-high purity methane according to claim 1.
【請求項3】  液化天然ガスから超高純度メタンを製
造するための装置であって、コンデンサ及びリボイラを
備え、内部に液化天然ガスが導入される高沸点成分分離
用の第1蒸留装置と、コンデンサ及びリボイラを備え、
底液が超高純度メタンとして取り出される低沸点成分分
離用の第2蒸留装置と、上記第1蒸留装置の頂部から窒
素及びメタンの混合流体を取出し、上記第2蒸留装置に
送るための移送通路と、上記第1蒸留装置の底部の液を
少なくとも一方の蒸留装置のコンデンサに通し、このコ
ンデンサで蒸発させるためのコンデンサ冷却通路とを備
えたことを特徴とする超高純度メタンの製造装置。
3. An apparatus for producing ultra-high purity methane from liquefied natural gas, comprising a first distillation apparatus for separating high-boiling components, which is equipped with a condenser and a reboiler, into which liquefied natural gas is introduced; Equipped with a capacitor and reboiler,
a second distillation device for separating low-boiling components from which the bottom liquid is taken out as ultra-high purity methane; and a transfer passageway for taking out a mixed fluid of nitrogen and methane from the top of the first distillation device and sending it to the second distillation device. and a condenser cooling passage for passing the liquid at the bottom of the first distillation device through a condenser of at least one distillation device and evaporating it in the condenser.
【請求項4】  請求項3記載の超高純度メタンの製造
方法において、上記移送通路から分岐し、上記混合流体
の一部を上記超高純度メタンよりも純度の低い高純度メ
タンとして回収するための回収通路を備えたことを特徴
とする超高純度メタンの製造装置。
4. The method for producing ultra-high purity methane according to claim 3, for branching from the transfer passage and recovering a part of the mixed fluid as high-purity methane having a purity lower than that of the ultra-high purity methane. An apparatus for producing ultra-high purity methane, characterized by being equipped with a recovery passage.
JP2406964A 1990-12-26 1990-12-26 Method and device for manufacturing superhigh purity methane Pending JPH04225778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406964A JPH04225778A (en) 1990-12-26 1990-12-26 Method and device for manufacturing superhigh purity methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406964A JPH04225778A (en) 1990-12-26 1990-12-26 Method and device for manufacturing superhigh purity methane

Publications (1)

Publication Number Publication Date
JPH04225778A true JPH04225778A (en) 1992-08-14

Family

ID=18516583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406964A Pending JPH04225778A (en) 1990-12-26 1990-12-26 Method and device for manufacturing superhigh purity methane

Country Status (1)

Country Link
JP (1) JPH04225778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917489A1 (en) * 2007-06-14 2008-12-19 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF METHANE RICH FLOW

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917489A1 (en) * 2007-06-14 2008-12-19 Air Liquide METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF METHANE RICH FLOW
WO2009004207A2 (en) * 2007-06-14 2009-01-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for the cryogenic separation of a methane-rich flow
CN102099648A (en) * 2007-06-14 2011-06-15 乔治洛德方法研究和开发液化空气有限公司 Method and device for the cryogenic separation of a methane-rich flow
WO2009004207A3 (en) * 2007-06-14 2013-07-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for the cryogenic separation of a methane-rich flow

Similar Documents

Publication Publication Date Title
KR900007207B1 (en) Process to produce ultrahigh purity oxygen
KR100291684B1 (en) How to separate air
CA2186549C (en) Light component stripping in plate-fin heat exchangers
JP4624343B2 (en) Removal of liquid natural gas from gaseous natural gas streams
US3373574A (en) Recovery of c hydrocarbons from gas mixtures containing hydrogen
JPH0566085A (en) Method of producing krypton and xenon from liquid supply material flow
US3919853A (en) Process and apparatus for cooling and/or liquefying a gas or a gas mixture
JPH05187765A (en) Method and device for manufacturing ultrahigh purity nitrogen
US2214790A (en) Process and apparatus for separating gases
JPH04295587A (en) Production system of rough neon
JPH08240380A (en) Separation of air
JPH05288464A (en) Method and device for cryogenic rectification for producing nitrogen and ultra high purity oxygen
US2411680A (en) Separation of the constituents of gaseous mixtures
US3333434A (en) Process for separating oxygen from air
JPH0979744A (en) Method and equipment for evaporating liquid flow
JPH04225778A (en) Method and device for manufacturing superhigh purity methane
JPH10153384A (en) Method of producing ultrapure liquid oxygen
CN207702828U (en) The equipment for producing High Purity Nitrogen and oxygen from air by cryogenic rectification
CN108120226A (en) The method and apparatus of High Purity Nitrogen and oxygen is produced from air by cryogenic rectification
JP3082092B2 (en) Oxygen purification method and apparatus
JPH0399190A (en) Method of manufacturing oxygen
JP3259101B2 (en) Method for enriching krypton and xenon
US20220316794A1 (en) Method and unit for processing a gas mixture containing nitrogen and methane
JPH0560461A (en) Method of separating supply gas in cryogenic distillation column
JP2000292055A (en) Method and apparatus for manufacturing ultrahigh purity gas