JPH04225556A - Production of capacitive element - Google Patents

Production of capacitive element

Info

Publication number
JPH04225556A
JPH04225556A JP2408146A JP40814690A JPH04225556A JP H04225556 A JPH04225556 A JP H04225556A JP 2408146 A JP2408146 A JP 2408146A JP 40814690 A JP40814690 A JP 40814690A JP H04225556 A JPH04225556 A JP H04225556A
Authority
JP
Japan
Prior art keywords
insulating film
film
forming
capacitive element
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2408146A
Other languages
Japanese (ja)
Inventor
Takeshi Mishima
三嶋 猛
Tomoyuki Sasaki
智幸 佐々木
Yuuji Soshiro
勇治 十代
Hideo Nikawa
二河 秀夫
Hirobumi Uchida
博文 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2408146A priority Critical patent/JPH04225556A/en
Publication of JPH04225556A publication Critical patent/JPH04225556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form an capacitive element which is not influenced by the transistor characteristic of a memory cell which constitutes a large capacity DRAM. CONSTITUTION:The method consists of a process of forming a first insulating film 26 on a semiconductor substrate 21, a process of forming a contact window 27 on the prescribed area of the first insulating film 26, a process of forming a second insulating film 28 on the first insulating film 26, a process of anisotropically etching the second insulating film 28 and leaving the second insulating film 28 on the side wall of the contact window 27, a process of forming a bottom electrode 29 on the left insulating film 28, a process of forming a dielectric film 30 on the electrode 29 and a process of forming a top electrode 31 on the film 30.

Description

【発明の詳細な説明】                          
 【0001】 【産業上の利用分野】本発明は、容量素子の製造方法に
関する。 【0002】 【従来の技術】記憶容量がメガビットクラスの大容量ダ
イナミックランダムアクセスメモリ(以後ダイナミック
メモリと記す)では、素子数の大容量化にともない半導
体記憶素子(以後、メモリと記す)1個あたりの面積が
小さくなってきた。その結果、メモリセルの容量を確保
するために、従来の基板表面に形成したプレーナキャパ
シタ(プレーナ容量素子)に代り、半導体基板の上の大
きな段差を利用して多結晶シリコンを一方の電極とし、
この多結晶シリコンの上に容量絶縁膜を形成するスタッ
クドキャパシタが採用されてきている。 【0003】以下に、半導体記憶装置等に用いられてい
る従来の容量素子の製造方法の一例を図2に示した容量
素子の製造工程順断面図を参照しながら説明する。 【0004】まず、図2(a)に示すように、P型(1
00)のシリコン基板1の上に周知の方法により膜厚5
00nm程度の選択酸化膜(LOCOS膜)2を形成す
る。次に、シリコン基板1の表面を熱酸化して膜厚18
nmのゲート酸化膜3を形成し、次に気相成長によりた
とえば膜厚200nmのゲート電極4となる多結晶シリ
コン膜を形成する。この多結晶シリコン膜は抵抗を低く
するために不純物をドープしている。ドープの方法とし
ては、ノンドープの多結晶シリコン膜を形成後に不純物
をイオン注入したり、あるいは不純物ガスを用いて相か
ら不純物を拡散したり、またCVD装置で多結晶シリコ
ン膜を成長する際ガスに不純物元素を含んだガスを混合
し、成長と同時に不純物を含んだ多結晶シリコン膜を形
成していく方法等が用いられている。その後通常のフォ
トリソグラフィを用いて所定領域に窓開けしたフォトレ
ジストをマスクに多結晶シリコン膜をエッチングし多結
晶シリコンのゲート電極4を形成する。その後、シリコ
ン基板1の全面にイオン注入し、拡散層(拡散層配線)
5を形成する。この時、多結晶シリコンのゲート電極4
と選択酸化膜2の直下にあるシリコン基板1にはイオン
は注入されない。さらに気相成長法により膜厚150n
mのCVD酸化膜6を形成した後、フォトリソグラフィ
を用いて所定領域に窓開けしたフォトレジストをマスク
にしてCVD酸化膜6をCHF3とO2とArの混合ガ
スによるリアクティブイオンエッチングを行い、拡散層
5の上の所定の箇所にコンタクト窓7を形成する。次に
、気相成長法により多結晶シリコン膜8を形成し、この
多結晶シリコン膜8にたとえばりん等の不純物を拡散さ
せることにより導電性を高め、その後ホトレジストをマ
スクにしてリアクティブイオンエッチング技術により所
定の形状に加工して容量素子の下部電極とする。 【0005】次に図2(b)に示すように、この多結晶
シリコン膜8の表面に気相成長により窒化シリコン膜等
の容量絶縁膜9を形成する。その上に気相成長法により
多結晶シリコン膜10を形成し、この多結晶シリコン膜
10にたとえばりん等の不純物を拡散させることにより
導電性を高め、容量素子の上部電極とする。その後、層
間絶縁膜11,コンタクトホール12,アルミニウム配
線13を形成して容量素子が形成される。 【0006】 【発明が解決しようとする課題】しかしながら上記従来
の構成では、コンタクト窓7を形成する際にフォトリソ
グラフィにおける合わせずれが生じた場合には多結晶シ
リコン膜のゲート電極4に接近するためコンタクト窓7
を介して多結晶シリコン膜8からのたとえばりん等の不
純物がトランジスタ領域に拡散し、形成したトランジス
タの特性に変動が生じるという課題を有していた。 【0007】本発明は上記従来の課題を解決するもので
、微細なコンタクト窓を形成することによりトランジス
タ特性が安定する容量素子の製造方法を提供することを
目的とする。 【0008】 【課題を解決するための手段】この目的を達成するため
に本発明の容量素子の製造方法は、半導体基板の上に第
1の絶縁膜を形成する工程と、前記第1の絶縁膜の所定
の領域にコンタクト窓を形成する工程と、前記第1の絶
縁膜の上に第2の絶縁膜を形成する工程と、前記第2の
絶縁膜を異方性エッチングし、前記コンタクト窓の側壁
に前記第2の絶縁膜を残す工程と、前記第1および第2
の絶縁膜の上に下部電極を形成する工程と、前記下部電
極の表面に第3の絶縁膜を形成する工程と、前記第3の
絶縁膜の上に上部電極を形成する工程とを有している。 【0009】 【作用】この構成によって、微細なコンタクト窓を有す
る容量素子を形成することができる。 【0010】 【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。 【0011】図1は本発明の一実施例における容量素子
の製造方法の工程断面図である。まず図1(a)に示す
ように、P型(100)シリコン基板21の一方の主面
上に周知の方法により膜厚500nm程度の選択酸化膜
(LOCOS膜)22を形成する。次に、シリコン基板
21の表面を熱酸化して膜厚18nmのゲート酸化膜2
3を形成し、その上に気相成長によりたとえば膜厚20
nmの多結晶シリコン膜を形成する。この多結晶シリコ
ン膜は抵抗を低くするために不純物をドープしている。 【0012】その後通常のフォトリソグラフィを用いて
所定領域に窓開けしたフォトレジストをマスクに多結晶
シリコン膜をエッチングし多結晶シリコンのゲート電極
24を形成する。その後、全面にイオン注入し拡散層(
拡散層配線)25を形成する。この時、ゲート電極24
と選択酸化膜22の直下にあるシリコン基板21にはイ
オンは注入されない。 【0013】さらに、例えばTEOS(テトラエトキシ
シラン)と酸素の混合ガスを用い成長温度約710℃で
CVD酸化膜26を250nm形成した後、フォトレジ
ストをマスクにしてCVD酸化膜26を例えばCHF3
とO2とArの混合ガスを用いリアクティブイオンエッ
チングし、拡散層25の上の所定の箇所に直径0.85
μmのコンタクト窓27を形成する。次に、CVD酸化
膜26の形成と同一の条件でCVD酸化膜28を270
nm形成する。このCVD酸化膜28をCHF3とO2
とArの混合ガスを用いて膜厚300nmリアクティブ
イオンエッチングする。このエッチングは異方性のエッ
チングのためCVD酸化膜28はエッチング除去される
が、コンタクト窓27の内壁には0.15μmのCVD
酸化膜28が残る。すなわち直径0.55μmのコンタ
クト窓が形成される。 【0014】次に図1(b)に示すように、気相成長法
により多結晶シリコン膜29を形成し、この多結晶シリ
コン膜29にたとえばりん等の不純物を拡散させること
により導電性を高め、その後ホトレジストをマスクにし
てリアクティブイオンエッチング技術により所定の形状
に加工して容量素子の下部電極(29で示す)とする。 【0015】次に図1(c)に示すように、この多結晶
シリコン膜29の表面に気相成長により窒化シリコン膜
等の容量絶縁膜30を形成する。その上に気相成長法に
より多結晶シリコン膜31を形成し、この多結晶シリコ
ン膜31にたとえばりん等の不純物を拡散させることに
より導電性を高め、容量素子の上部電極(31で示す)
とする。その後、層間絶縁膜32,コンタクト窓33,
アルミニウム配線34を形成して容量素子が形成される
。 【0016】なお、CVD酸化膜26は、膜厚200n
m未満ではCVD酸化膜28をエッチバックする際にオ
ーバーエッチされるため、CVD酸化膜26も一部エッ
チングされて薄くなり、最終的には膜厚が150nm以
下となる。そのために、2層の多結晶シリコン膜間の耐
圧不足などの問題が生じる。また、CVD酸化膜26の
膜厚が300nmを超えると基板上の段差が大きくなる
ためアルミニウム配線形成が困難となってくる。またC
VD酸化膜28の膜厚が200nm未満ではコンタクト
窓27の内壁に充分な側壁膜が形成されず、また膜厚が
300nmを超えるとエッチバックするCVD酸化膜2
8の膜厚が350nm以上になる。この場合、CVD酸
化膜26,28の膜厚のばらつきが±5%程度、またド
ライエッチングのエッチング速度のばらつきが±5%程
度であることを考慮すると、前述したように最終的なC
VD酸化膜の膜厚が150nm以下となって、このため
2層の多結晶シリコン膜間の耐圧不足などの問題が生じ
る。そのため、CVD酸化膜26,28の膜厚は両方と
も200から300nmの範囲内にあることが望ましい
。 【0017】また本実施例においては、容量素子の上部
または下部の電極として多結晶シリコン膜を用いたが、
金属珪化物または多結晶シリコンと金属珪化物の積層膜
であってもよい。 【0018】 【発明の効果】以上のように本発明の容量素子の製造方
法によれば、例えば従来の技術により容量素子の製造を
行い、ゲートの端とコンタクト窓との間隔が0.1μm
程度に狭くなっても、0.25μm程度の間隔を確保で
きるため、トランジスタの特性変動がなく、安定した特
性を有する容量素子の製造が可能となる。
[Detailed description of the invention]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a capacitive element. [0002] In a large-capacity dynamic random access memory (hereinafter referred to as dynamic memory) with a storage capacity in the megabit class, as the number of elements becomes larger, the storage capacity per semiconductor memory element (hereinafter referred to as memory) increases. area has become smaller. As a result, in order to secure the capacity of the memory cell, instead of the conventional planar capacitor (planar capacitance element) formed on the surface of the substrate, polycrystalline silicon was used as one electrode by using a large step on the semiconductor substrate.
Stacked capacitors in which a capacitive insulating film is formed on this polycrystalline silicon are being used. [0003] An example of a conventional method for manufacturing a capacitive element used in semiconductor memory devices and the like will be described below with reference to FIGS. First, as shown in FIG. 2(a), P-type (1
00) on a silicon substrate 1 with a film thickness of 5 by a well-known method.
A selective oxide film (LOCOS film) 2 with a thickness of about 00 nm is formed. Next, the surface of the silicon substrate 1 is thermally oxidized to have a film thickness of 18
A gate oxide film 3 having a thickness of 200 nm is formed, and then a polycrystalline silicon film having a thickness of 200 nm, for example, which will become the gate electrode 4 is formed by vapor phase growth. This polycrystalline silicon film is doped with impurities to lower its resistance. Doping methods include ion-implanting impurities after forming a non-doped polycrystalline silicon film, or diffusing impurities from the phase using an impurity gas, or using a gas when growing a polycrystalline silicon film using a CVD device. A method is used in which a gas containing impurity elements is mixed and a polycrystalline silicon film containing impurities is formed simultaneously with growth. Thereafter, the polycrystalline silicon film is etched using normal photolithography using a photoresist with windows opened in a predetermined area as a mask to form a gate electrode 4 of polycrystalline silicon. After that, ions are implanted into the entire surface of the silicon substrate 1 to form a diffusion layer (diffusion layer wiring).
form 5. At this time, the polycrystalline silicon gate electrode 4
Ions are not implanted into the silicon substrate 1 directly under the selective oxide film 2. Furthermore, a film thickness of 150n was obtained using the vapor phase growth method.
After forming a CVD oxide film 6 of m thickness, reactive ion etching is performed on the CVD oxide film 6 using a mixed gas of CHF3, O2, and Ar using a photoresist with windows opened in a predetermined area using photolithography as a mask, and diffusion is performed. Contact windows 7 are formed at predetermined locations on layer 5 . Next, a polycrystalline silicon film 8 is formed by a vapor phase growth method, and conductivity is increased by diffusing impurities such as phosphorus into this polycrystalline silicon film 8, and then reactive ion etching technology is applied using a photoresist as a mask. It is processed into a predetermined shape and used as a lower electrode of a capacitive element. Next, as shown in FIG. 2B, a capacitive insulating film 9 such as a silicon nitride film is formed on the surface of this polycrystalline silicon film 8 by vapor phase growth. A polycrystalline silicon film 10 is formed thereon by a vapor phase growth method, and an impurity such as phosphorus is diffused into this polycrystalline silicon film 10 to increase its conductivity and serve as the upper electrode of the capacitive element. Thereafter, an interlayer insulating film 11, a contact hole 12, and an aluminum wiring 13 are formed to form a capacitive element. [0006] However, in the above-mentioned conventional configuration, if misalignment occurs in photolithography when forming the contact window 7, the contact window 7 approaches the gate electrode 4 of the polycrystalline silicon film. contact window 7
There is a problem in that impurities such as phosphorus from the polycrystalline silicon film 8 diffuse into the transistor region through the process, causing variations in the characteristics of the formed transistor. The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a method for manufacturing a capacitive element in which transistor characteristics are stabilized by forming fine contact windows. Means for Solving the Problems In order to achieve this object, the method for manufacturing a capacitive element of the present invention includes a step of forming a first insulating film on a semiconductor substrate, and a step of forming a first insulating film on a semiconductor substrate. forming a contact window in a predetermined region of the film; forming a second insulating film on the first insulating film; and etching the second insulating film anisotropically to form the contact window. leaving the second insulating film on the sidewalls of the first and second insulating films;
forming a lower electrode on the insulating film; forming a third insulating film on the surface of the lower electrode; and forming an upper electrode on the third insulating film. ing. [0009] With this configuration, a capacitive element having a fine contact window can be formed. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a process cross-sectional view of a method for manufacturing a capacitive element according to an embodiment of the present invention. First, as shown in FIG. 1A, a selective oxide film (LOCOS film) 22 with a thickness of about 500 nm is formed on one main surface of a P-type (100) silicon substrate 21 by a well-known method. Next, the surface of the silicon substrate 21 is thermally oxidized to form a gate oxide film 2 with a thickness of 18 nm.
3 is formed, and a film thickness of 20 mm is formed thereon by vapor phase growth.
A polycrystalline silicon film of nm thickness is formed. This polycrystalline silicon film is doped with impurities to lower its resistance. Thereafter, the polycrystalline silicon film is etched using ordinary photolithography using a photoresist with windows opened in a predetermined region as a mask to form a gate electrode 24 of polycrystalline silicon. After that, ions are implanted into the entire surface and the diffusion layer (
A diffusion layer wiring) 25 is formed. At this time, the gate electrode 24
Ions are not implanted into the silicon substrate 21 directly under the selective oxide film 22. Furthermore, after forming a CVD oxide film 26 to a thickness of 250 nm at a growth temperature of approximately 710° C. using a mixed gas of TEOS (tetraethoxysilane) and oxygen, for example, the CVD oxide film 26 is coated with, for example, CHF3 using a photoresist as a mask.
Reactive ion etching is performed using a mixed gas of O2 and Ar, and a diameter of 0.85
A contact window 27 of μm is formed. Next, a CVD oxide film 28 is formed at a thickness of 270 mm under the same conditions as for the formation of the CVD oxide film 26.
nm is formed. This CVD oxide film 28 is coated with CHF3 and O2.
Reactive ion etching is performed to a film thickness of 300 nm using a mixed gas of and Ar. Since this etching is anisotropic etching, the CVD oxide film 28 is etched away, but the inner wall of the contact window 27 has a thickness of 0.15 μm.
An oxide film 28 remains. That is, a contact window with a diameter of 0.55 μm is formed. Next, as shown in FIG. 1(b), a polycrystalline silicon film 29 is formed by vapor phase growth, and conductivity is increased by diffusing impurities such as phosphorus into this polycrystalline silicon film 29. Thereafter, using a photoresist as a mask, it is processed into a predetermined shape by reactive ion etching technology to form a lower electrode (indicated by 29) of the capacitive element. Next, as shown in FIG. 1C, a capacitive insulating film 30 such as a silicon nitride film is formed on the surface of this polycrystalline silicon film 29 by vapor phase growth. A polycrystalline silicon film 31 is formed thereon by a vapor phase growth method, and conductivity is increased by diffusing impurities such as phosphorus into this polycrystalline silicon film 31 to form an upper electrode (indicated by 31) of a capacitive element.
shall be. After that, the interlayer insulating film 32, the contact window 33,
A capacitive element is formed by forming an aluminum wiring 34. Note that the CVD oxide film 26 has a thickness of 200 nm.
If the thickness is less than m, the CVD oxide film 28 will be overetched when it is etched back, so that the CVD oxide film 26 will also be partially etched and become thinner, with the final film thickness becoming 150 nm or less. This causes problems such as insufficient breakdown voltage between the two layers of polycrystalline silicon films. Furthermore, if the thickness of the CVD oxide film 26 exceeds 300 nm, the step difference on the substrate becomes large, making it difficult to form aluminum wiring. Also C
If the thickness of the VD oxide film 28 is less than 200 nm, a sufficient sidewall film will not be formed on the inner wall of the contact window 27, and if the thickness exceeds 300 nm, the CVD oxide film 2 will be etched back.
The film thickness of No. 8 is 350 nm or more. In this case, considering that the variation in the film thickness of the CVD oxide films 26 and 28 is about ±5%, and the variation in the etching rate of dry etching is about ±5%, the final carbon
The thickness of the VD oxide film becomes 150 nm or less, which causes problems such as insufficient breakdown voltage between the two layers of polycrystalline silicon films. Therefore, it is desirable that the thicknesses of both the CVD oxide films 26 and 28 be within the range of 200 to 300 nm. Furthermore, in this example, a polycrystalline silicon film was used as the upper or lower electrode of the capacitive element.
A laminated film of metal silicide or polycrystalline silicon and metal silicide may be used. As described above, according to the method for manufacturing a capacitive element of the present invention, a capacitive element is manufactured using, for example, the conventional technique, and the distance between the end of the gate and the contact window is 0.1 μm.
Even if the spacing is narrowed to a certain extent, a spacing of about 0.25 μm can be secured, so that there is no change in the characteristics of the transistor, and it is possible to manufacture a capacitive element with stable characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例における容量素子の製造方法
の工程断面図
FIG. 1 is a process cross-sectional view of a method for manufacturing a capacitive element in an embodiment of the present invention.

【図2】従来の容量素子の製造方法の工程断面図[Figure 2] Process cross-sectional diagram of a conventional capacitive element manufacturing method

【符号の説明】[Explanation of symbols]

21  P型シリコン基板(半導体基板)26  CV
D酸化膜(第1の絶縁膜)27  コンタクト窓 28  CVD酸化膜(第2の絶縁膜)29  多結晶
シリコン膜(下部電極)30  容量絶縁膜
21 P-type silicon substrate (semiconductor substrate) 26 CV
D oxide film (first insulating film) 27 Contact window 28 CVD oxide film (second insulating film) 29 Polycrystalline silicon film (lower electrode) 30 Capacitive insulating film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の上に第1の絶縁膜を形成する
工程と、前記第1の絶縁膜の所定の領域にコンタクト窓
を形成する工程と、前記第1の絶縁膜の上に第2の絶縁
膜を形成する工程と、前記第2の絶縁膜を異方性エッチ
ングし、前記コンタクト窓の側壁に前記第2の絶縁膜を
残す工程と、前記第1および第2の絶縁膜の上に下部電
極を形成する工程と、前記下部電極の表面に第3の絶縁
膜を形成する工程と、前記第3の絶縁膜の上に上部電極
を形成することを特徴とする容量素子の製造方法。
1. A step of forming a first insulating film on a semiconductor substrate, a step of forming a contact window in a predetermined region of the first insulating film, and a step of forming a first insulating film on the first insulating film. forming a second insulating film, etching the second insulating film anisotropically to leave the second insulating film on the side wall of the contact window, and removing the first and second insulating films. Manufacturing a capacitive element, comprising: forming a lower electrode on top; forming a third insulating film on the surface of the lower electrode; and forming an upper electrode on the third insulating film. Method.
【請求項2】第1の絶縁膜の膜厚が200〜300nm
であることを特徴とする請求項1記載の容量素子の製造
方法。
2. The thickness of the first insulating film is 200 to 300 nm.
The method for manufacturing a capacitive element according to claim 1, characterized in that:
【請求項3】第2の絶縁膜の膜厚が200〜300nm
であることを特徴とする請求項1記載の容量素子の製造
方法。
3. The thickness of the second insulating film is 200 to 300 nm.
The method for manufacturing a capacitive element according to claim 1, characterized in that:
【請求項4】下部電極もしくは上部電極が多結晶シリコ
ン,金属珪化物または多結晶シリコンと金属珪化物の積
層膜からなる請求項1記載の容量素子の製造方法。
4. The method of manufacturing a capacitive element according to claim 1, wherein the lower electrode or the upper electrode is made of polycrystalline silicon, metal silicide, or a laminated film of polycrystalline silicon and metal silicide.
JP2408146A 1990-12-27 1990-12-27 Production of capacitive element Pending JPH04225556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2408146A JPH04225556A (en) 1990-12-27 1990-12-27 Production of capacitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2408146A JPH04225556A (en) 1990-12-27 1990-12-27 Production of capacitive element

Publications (1)

Publication Number Publication Date
JPH04225556A true JPH04225556A (en) 1992-08-14

Family

ID=18517639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2408146A Pending JPH04225556A (en) 1990-12-27 1990-12-27 Production of capacitive element

Country Status (1)

Country Link
JP (1) JPH04225556A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175756A (en) * 1987-12-29 1989-07-12 Fujitsu Ltd Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175756A (en) * 1987-12-29 1989-07-12 Fujitsu Ltd Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US7667258B2 (en) Double-sided container capacitors using a sacrificial layer
US5436188A (en) Dram cell process having elk horn shaped capacitor
US5384276A (en) Method of fabricating a memory device with a multilayer insulating film
US6784069B1 (en) Permeable capacitor electrode
KR960005245B1 (en) Method for manufacturing a capacitor having a rough electrode surface
US8026542B2 (en) Low resistance peripheral local interconnect contacts with selective wet strip of titanium
US5364813A (en) Stacked DRAM poly plate capacitor
KR0180779B1 (en) Method for manufacturing semiconductor capacitor
US5656529A (en) Method for manufacturing highly-integrated capacitor
US6146967A (en) Selective deposition of amorphous silicon film seeded in a chlorine gas and a hydride gas ambient when forming a stacked capacitor with HSG
US5501998A (en) Method for fabricating dynamic random access memory cells having vertical sidewall stacked storage capacitors
US5436187A (en) Process for fabricating a semiconductor memory device including a capacitor having a cylindrical storage node electrode
US6548348B1 (en) Method of forming a storage node contact hole in a porous insulator layer
KR0171072B1 (en) Semiconductor memory cell & its fabrication method
JPH06232365A (en) Manufacture of capacitor for semiconductor storage device
US5837579A (en) Rugged polysilicon process for DRAM capacitors
JP2820065B2 (en) Method for manufacturing semiconductor device
JP2750159B2 (en) Method for manufacturing semiconductor device
JPH05251658A (en) Manufacture of semiconductor device
JPH04225556A (en) Production of capacitive element
JPH03234051A (en) Manufacture of capacitive element
JPH01265556A (en) Semiconductor memory and manufacture thereof
JPH04368172A (en) Semiconductor device and manufacture thereof
JPH11238799A (en) Semiconductor device and its manufacture
JP3317736B2 (en) Semiconductor device and manufacturing method thereof